With Housing Patents (Class 385/92)
  • Patent number: 8821038
    Abstract: A pluggable optical transceiver is disclosed. The transceiver comprises a plurality of OSAs, an optical member and a plurality of inner fibers to couple the optical member with OSAs. The inner fibers each provides an inner connector to couple with one of OSAs. The housing, which installs the OSAs, the optical member and the inner fiber, is made of metal and has a grooves into which the inner fibers is set so as to arrange them orderly.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: September 2, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kazushige Oki, Hirokazu Komachi, Hiromi Kurashima
  • Patent number: 8821039
    Abstract: An optical transceiver capable of narrowing an extra space for an external optical fiber is disclosed. The optical transceiver of an embodiment provides an optical receptacle with a port, to which the external optical fiber is to be inserted, headed for a direction in diagonal to the longitudinal axis of the optical transceiver. In another embodiment, the optical transceiver provides an optical receptacle capable of turning the port thereof.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: September 2, 2014
    Assignees: Sumitomo Electric Industries, Ltd., Sumitomo Electric Device Innovations, Inc.
    Inventors: Takashi Matsui, Hiromi Kurashima, Kazushige Oki, Naoyuki Fukushima, Kenichiro Uchida
  • Patent number: 8820434
    Abstract: Delivering high power laser energy to form a borehole deep into the earth using laser energy. Down hole laser tools, laser systems and laser delivery techniques for advancement, workover and completion activities. A laser bottom hole assembly (LBHA) for the delivery of high power laser energy to the surfaces of a borehole, which assembly may have laser optics, a fluid path for debris removal and a mechanical means to remove earth.
    Type: Grant
    Filed: August 19, 2009
    Date of Patent: September 2, 2014
    Assignee: Foro Energy, Inc.
    Inventors: Mark S. Zediker, Mark S. Land, Charles C. Rinzler, Brian O. Faircloth, Yeshaya Koblick, Joel F. Moxley
  • Patent number: 8821041
    Abstract: A connector for connecting a fiber optic cable to a light source comprising a female adaptor having a receiving bore and a channel projecting into the receiving bore; a male ferrule, having a first portion insertable into at least part of the receiving bore, and a second portion defined at least partially by a tapered diameter region; and a compressible ring member disposed in the channel that engages the tapered portion when the male ferrule is inserted in the female adaptor in order to provide some resistance to removal of the male ferrule from the female adaptor.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: September 2, 2014
    Assignee: Tedan Surgical Innovations, LLC.
    Inventors: Marguerite McHenry, Daniel Bass, Terry Johnston
  • Publication number: 20140241675
    Abstract: Optical couplings for optically coupling one or more devices are disclosed. According to one embodiment, an optical coupling includes an optical coupling body, an optical interface, and a coded magnetic array located at the optical coupling body. The coded magnetic array has a plurality of magnetic regions configured for mating the optical interface. The optical coupling further includes a reflective surface within the optical coupling body and positioned along an optical path of the optical coupling body. The reflective surface is operable to redirect an optical signal propagating within the optical coupling body such that it propagates through the optical interface. The optical coupling may be configured as a plug, such as a plug of a connector assembly, or as a receptacle, such as a receptacle on an electronic device. Connector assemblies of optical cables, optical coupling receptacles, and translating shutter assemblies are also disclosed.
    Type: Application
    Filed: May 8, 2014
    Publication date: August 28, 2014
    Applicant: Corning Optical Communications LLC
    Inventors: Micah Colen Isenhour, Dennis Michael Knecht, James Phillip Luther
  • Publication number: 20140241673
    Abstract: A heat dissipation system and method are embodied in an optical subassembly (OSA) that mechanically couples with an electrical subassembly (ESA) of an optical communications module. When the OSA is coupled with the ESA, a heat dissipation block that is embedded in the OSA is spaced apart from components of the ESA by a small air gap. At least a portion of the heat that is generated by one or more of these components passes into the heat dissipation block, which extends through top and bottom surfaces of the OSA. Because the heat dissipation block never makes physical contact with the ESA or with components of the ESA, there is no risk of the block damaging the ESA or detrimentally affecting the electrical performance of the module.
    Type: Application
    Filed: February 26, 2013
    Publication date: August 28, 2014
    Applicant: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventor: Avago Technologies General IP (Singapore) Pte. Ltd.
  • Patent number: 8807846
    Abstract: A pluggable optical transceiver includes: a top housing; a bottom housing; and an optical-electrical assembly enclosed by the top housing and the bottom housing. The optical-electrical assembly includes a substrate; at least a transmitting optoelectronic component disposed on the substrate; at least a receiving optoelectronic component disposed on the substrate; interface integrated circuits disposed on the substrate; a pluggable electrical interface disposed on the substrate and electrically connected with the interface integrated circuits; and a coupling optical system.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: August 19, 2014
    Assignee: SAE Magnetics (H.K.) Ltd.
    Inventors: Vincent Wai Hung, Francis Guillen Gamboa, Amanda Tin Hoi Siu, Dennis Tak Kit Tong
  • Patent number: 8801300
    Abstract: A fiber optic cable fixture 1 has a joint member 3, a swaging member 4, and a fastening member 5. The joint member 3 has a cylindrical shape in which a through hole 10 is formed and includes a joint section 11 joined to another member, a male screw 12, and a cylindrical section 13 that is smaller in diameter than the male screw 12 and that is covered with a jacket 7 and tension fibers. The swaging member 4 is fitted to the cylindrical section 13 while covered with the jacket 7. A female screw 16 is formed at one end of an inner peripheral surface of the fastening member 5. A tapered surface 17 is formed on another end of the inner peripheral surface of the fastening member 5.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: August 12, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Hajime Arao, Kiyoshi Kato
  • Publication number: 20140219616
    Abstract: A pluggable optical transceiver is disclosed. The optical transceiver provides a pull-tab assembled with a body of the transceiver. The pull-tab comprises a pair of arms and a handle. The arms in an end portion thereof each provides a leg set in a guide formed in the body. Sliding the pull-tab to disengage the optical transceiver from the cage, the leg is slid within the guide to push the end portion of the arm outwardly. The handle provides in an end thereof a bar including a slope. The optical fiber pulled out from the optical connector set in the optical receptacle of the transceiver rides on the slope even when the transceiver is set in the cage by the upside-down arrangement.
    Type: Application
    Filed: February 4, 2014
    Publication date: August 7, 2014
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Kuniyuki Ishii, Hiromi Kurashima
  • Patent number: 8794848
    Abstract: An optical module includes a rotating bail disposed on a front part of a case that is inserted into and removed from a cage; a slide plate that slides along a longitudinal direction of the case in conjunction with rotation of the bail; and an engagement member is disposed on the slide plate, freely engages with an engagement member of the cage, and is released from an engaged state by a sliding of the slide plate in conjunction with the rotation of the bail. The bail and the slide plate are formed by an integrated metal plate in a folded state.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: August 5, 2014
    Assignee: Fujitsu Optical Components Limited
    Inventors: Kazuya Sasaki, Yasuo Tanaka
  • Patent number: 8792759
    Abstract: A combination of a wet mate electrical connector and a gigabit miniature transceiver in a pressure resistant cable plug connector assembly. The cable plug connector assembly includes a wet mate connector, a miniature gigabit transceiver, and electrical and optical connections necessary to convert transmitted electrical data signals to optical data signals and vice versa.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: July 29, 2014
    Assignee: Advanced Fiber Products, LLC
    Inventors: Mark C. Benton, Richard Colin Edward Durrant, Darren Adams, Wojciech Przeczkowski
  • Publication number: 20140205248
    Abstract: The purpose of the present invention is to improve the heat dissipation propert(ies) of the circuit board and/or an optical module while securing a sufficient mounting area of a circuit board. An optical transmitter/receiver apparatus includes a case including a base and a cover, a circuit board and an optical module. The circuit board is housed in the case and is fixed to the base. The optical module is housed in the case, is arranged on a side opposite to the base relative to the circuit board, and is fixed to the cover.
    Type: Application
    Filed: September 14, 2012
    Publication date: July 24, 2014
    Inventor: Yasushi Yamada
  • Patent number: 8787766
    Abstract: A chip scale fiber-optic device that includes a transducer that sends and receives information signals, a submount that holds the transducer in a substantially fixed position, and a multimode fiber lens that conveys the information signals between the transducer and an optical fiber.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: July 22, 2014
    Assignee: Teledyne Technologies Incorporated
    Inventors: Golden G. Shu, Ronald Hays
  • Patent number: 8783970
    Abstract: An optical fiber module includes an optical transmission line and a fiber stub structure. The optical transmission line has an optical fiber core, a coating enclosing the optical fiber core and a buffer layer enclosing the coating. A part of the optical fiber core is exposed to outer side of a free end of the optical transmission line. The fiber stub structure includes a sleeve and a ferrule. The sleeve has an internal central hole for accommodating the optical transmission line and an oblique hole in communication with the central hole for accommodating the ferrule. The ferrule has an internal passageway for accommodating a part of the optical fiber core of the optical transmission line. When installed, under the restriction of the oblique hole, the ferrule is disposed in the sleeve in an inclined state.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: July 22, 2014
    Assignee: Ezconn Corporation
    Inventor: Chin-Tsung Wu
  • Publication number: 20140199032
    Abstract: The present invention discloses an optical sub-assembly (OSA) comprising: a base; at least one photoelectric component; and a housing. The base includes an alignment part including an upper surface and a side surface; the side surface includes a first surface and a second surface; and the first and second surfaces have different curvatures and/or constitute a discontinuous surface. Said photoelectric component is set upon the upper surface for optically connecting to a fiber. Said housing includes a window and an interior surface in which the window is for inserting the fiber, and the interior surface is for defining an accommodation room and includes a third surface and a fourth surface. The accommodation room is capable of containing at least some of the alignment part; meanwhile, the third surface closely meets the first surface and the fourth surface closely meets the second surface.
    Type: Application
    Filed: November 11, 2013
    Publication date: July 17, 2014
    Applicant: OPTOMEDIA TECHNOLOGY INCORPORATION
    Inventor: TUNG-LOU LIN
  • Patent number: 8781332
    Abstract: An optical transceiver module adapted to a link device includes a connection unit, a driving unit and optical transmitting and receiving units. The connection unit, to be coupled with the link device, includes an indicating element for generating an indicating signal when the connection unit is coupled with the link device. The driving unit, coupled with the connection unit, receives the indicating signal and outputs a control signal according to the indicating signal. The optical transmitting unit, coupled with the driving unit, receives the control signal for driving the optical transmitting unit to output a first optical signal. The optical receiving unit, coupled with the driving unit, transmits a received second optical signal to the driving unit. An optical transmission device using the optical transceiver module, and an optical transmission method are also disclosed. A link training sequence can be initiated after the connection unit is actually coupled with the link device.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: July 15, 2014
    Assignee: Via Technologies, Inc.
    Inventors: Jin-Kuan Tang, Jiin Lai
  • Publication number: 20140193121
    Abstract: A device including a port barrel, a ball spring, a first enclosure part, and a mounting plate disposed adjacent to the first enclosure part is disclosed. The mounting plate includes a mounting hole. The port barrel is arranged to extend through the mounting hole, and the ball spring is arranged between an inner surface of the mounting hole and an exterior surface of the port barrel.
    Type: Application
    Filed: January 4, 2013
    Publication date: July 10, 2014
    Applicant: CISCO TECHNOLOGY, INC.
    Inventor: Cisco Technology, Inc.
  • Patent number: 8770857
    Abstract: Circuits, apparatus, and methods that provide a connector system that can supply both power and data to a mobile computing or other type of device using a single connection. Further examples also provide a power and data adapter that can provide power and data to a mobile computing device using a single cable. Further examples provide an easy disengagement when a cable connected to the connector is pulled. One such example provides a magnetic connector that uncouples without binding when its cord is pulled. Another example prevents power from being provided at a connector insert until the connector insert is placed in a connector receptacle.
    Type: Grant
    Filed: September 15, 2012
    Date of Patent: July 8, 2014
    Assignee: Apple Inc.
    Inventors: John C. DiFonzo, Chris Ligtenberg, Michael Culbert
  • Patent number: 8770864
    Abstract: An optical module receptacle assembly includes a receptacle cage to detachably house an optical module, a receptacle connector housed in a receptacle connector accommodating portion of the receptacle cage, and a connector cover covering the receptacle connector. A given clearance CLE, which is greater than a clearance CLD being set smaller than a clearance CLA, is formed between an upper surface of a tip end portion of a plug connector of the optical module and an inner peripheral surface of a slot of the receptacle connector.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: July 8, 2014
    Assignee: Yamaichi Electronics Co., Ltd.
    Inventor: Toshiyasu Ito
  • Publication number: 20140185988
    Abstract: Embodiments include a high bandwidth optical connection system suitable for interconnecting servers, for example within a rack of a datacenter. An edge mount optical connector assembly includes an edge-mount housing providing topside socket contacts proximate to a first end of the housing and a port at a second end to receive an optical plug connector. A socket latch cantilevered from an anchor point on the housing includes a latching face to contact a keeper face disposed on the housing and a spring load application surface between the anchor point and the latching face to apply a spring force against the electrical contacts for retention of a removable optical transceiver module. An optical plug connector includes a front housing joined to a rear housing with a plug lens spring loaded within the housing and with alignment features comprising two flat alignment surfaces orthogonally oriented relative to each other.
    Type: Application
    Filed: December 28, 2012
    Publication date: July 3, 2014
    Inventors: Qi QI, Jamyuen KO, Chun Chit LAM
  • Patent number: 8757899
    Abstract: An optical connector assembly includes: an optical connector having a connection portion at a top end thereof, the connection portion being connected to an optical module, the optical connector having a latch and a lever disposed on a side surface thereof, the latch securing connection between the optical connector and the optical module, the lever releasing the latch; a housing having a through-hole that incorporates the optical connector therein and an opening that is formed at a position at which part of the lever of the optical connector protrudes through the opening, the opening communicating with the through-hole; and a cover having the housing disposed therein, the cover having a plate-like protruding portion on an inner wall thereof, the protruding portion protruding toward the housing; wherein when the protruding portion is located at a position of the opening, the protruding portion presses the lever.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: June 24, 2014
    Assignee: Fujitsu Limited
    Inventor: Yoshikazu Hattori
  • Publication number: 20140161398
    Abstract: In an optical communication module, a fiber submount is mated with an optics assembly to optically align an optical fiber retained in a groove in the fiber submount with an optics element of the optics assembly. The fiber submount has a resiliently biased latch portion that engages the optics assembly to provide a resilient retaining force between the optics assembly and the fiber submount. The force retains the optics element in optical alignment with the fiber optical axis.
    Type: Application
    Filed: December 7, 2012
    Publication date: June 12, 2014
    Applicant: Avago Technologies General IP (Singapore) Pte. Ltd
    Inventor: Robert Yi
  • Publication number: 20140161399
    Abstract: An example embodiment includes a retention spring. The retention spring includes a central portion, a coupling feature, and a spring arm. The central portion includes a heat sink contact surface configured to contact a detachable heat sink. The coupling feature is configured to mechanically couple the retention spring to an optical component. The spring arm connects the central portion to the coupling feature. The spring arm is configured to elastically deform to allow insertion of the detachable heat sink between the heat sink contact surface and a heat dissipation surface of the optical component and to at least partially retain the detachable heat sink against the heat dissipation surface.
    Type: Application
    Filed: December 11, 2012
    Publication date: June 12, 2014
    Applicant: FINISAR CORPORATION
    Inventor: Cindy Hsin-I Hsieh
  • Patent number: 8746990
    Abstract: A universal modular connector includes a base and a transforming module. The base has a first opening thereon, and the base further has an optical component therein. The transforming module has a circuit board, a plurality of connection terminals, a first signal transforming integrated circuit (IC), and at least one fiber optic connector therein. The transforming module receives external electronic signal through the connection terminals, and transforms the received electronic signal into optical signal via the first signal transforming IC. The transforming module is connected with the base through the first opening, and the optical component of the base receives the transformed optical signal sent by the fiber optic connector of the transforming module. Therefore, the universal modular connector transmits the optical signal externally to an electronic device via the optical component.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: June 10, 2014
    Inventor: Nai-Chien Chang
  • Patent number: 8746988
    Abstract: Provided is a cable with a connector (1) having a form in which a connector is fitted to a cable (6). A housing (2) of the connector is constituted by two case members (2a, 2b). A root portion of the cable (6) is covered with a boot (8) made of a resin, and a flange (8a) is formed in the boot (8). Inside the boot (8), a stop ring (10) made of a metal is arranged. The stop ring (10) allows a transmission line (6a) to be inserted through a main body thereof having a cylinder shape, and a jacket (6b) is covered on its outer side. A flange (10a) is also formed in the stop ring (10), and the flange (10a) and the flange (8a) are inserted into grooves (2c, 2d) in an overlapped state.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: June 10, 2014
    Assignee: Hitachi Metals, Ltd.
    Inventors: Juhyun Yu, Hitoshi Horita, Kouki Hirano
  • Patent number: 8750713
    Abstract: The disclosure relates to optical fiber transmission systems, and in particular, pertains to the transceiver cards in an optical fiber transport system. In particular the disclosure teaches an improved transceiver card architecture that allows high density, flexibility and interchangeability of functionality.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: June 10, 2014
    Assignee: Pivotal Decisions LLC
    Inventors: Samir Satish Sheth, Marvin R. Young, Jeffrey Lloyd Cox, John W. Ayres, III
  • Patent number: 8750656
    Abstract: An optical adapter includes a loading plate and a coupling lens. The coupling lens includes a main body, a first optical reflector, and a second optical reflector. The first optical reflector is positioned on the loading plate. The main body includes a top plate made of transparent material and spaced a predetermined distance from the loading plate. The second optical reflector is positioned on the first top plate. The first loading plate loads a portion of a planar optical waveguide of an optical printed circuit board. An optical signal from the planar optical waveguide is reflected by the first optical reflector to the second optical reflector, then is reflected by the second optical reflector to the outside of the optical adapter.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: June 10, 2014
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Kai-Wen Wu
  • Patent number: 8740477
    Abstract: A hybrid connector is disclosed. The hybrid connector comprises a cable, a plug and a connector housing. The cable has an optical waveguide and conductive wires disposed therein. The plug is connected to the cable. The connector housing is configured to mount on the plug. The connector housing is provided with a connector-side locking portion, an optical connection portion and an electrical connection portion.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: June 3, 2014
    Assignee: Molex Incorporated
    Inventors: Naoyoshi Tamura, Akihiro Shimotsu
  • Patent number: 8737784
    Abstract: A single-core bidirectional optical communication module and a single-core bidirectional optical communication connector are provided which can decrease in size without greatly changing the structure of the past optical connector housing. An optical communication module 1 includes an optical transceiver circuit unit 21 in which a light-emitting element and a light-receiving element are arranged in parallel and an optical path changing component 25 having a structure in which the attachment and detachment direction of an optical fiber cable is perpendicular to the optical transceiver circuit unit 21. An optical communication connector 2 includes a single-core bidirectional optical communication module 1 and an optical connector housing 3 that houses the single-core bidirectional optical communication module 1 so that the optical axis of the optical fiber cable is perpendicular to the optical transceiver circuit unit 21.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: May 27, 2014
    Assignee: Yazaki Corporation
    Inventor: Hiroki Kawai
  • Publication number: 20140140666
    Abstract: A small form-factor pluggable (SFP) optical transceiver includes a casing configured to accommodate optical and electrical devices. During normal operation, the casing is connected to a switchboard via a connector in the switchboard, and the optical devices are outside the switchboard, thereby exposing optical devices sensitive to high temperature to the outside air, reducing the operational temperature of the optical device portion relative to the heated portion inside the switchboard. Thus, the present SFP optical transceiver advantageously improves operational performance and extends the life of the device. Also, the present SFP optical transceiver having the optical device portion outside the switchboard advantageously improves the cooling performance for the optical device portion.
    Type: Application
    Filed: January 29, 2013
    Publication date: May 22, 2014
    Inventors: Mark HEIMBUCH, Wayne WAINWRIGHT
  • Publication number: 20140140667
    Abstract: A circuit board includes a mounting surface and a number of connecting pads on the mounting surface. Each of the connecting pads defines a mounting area for mounting an element thereon. At least two of the connecting pads are substantially circular-shaped.
    Type: Application
    Filed: April 30, 2013
    Publication date: May 22, 2014
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: KAI-WEN WU
  • Patent number: 8727641
    Abstract: An optical connector includes a substrate, a photoelectric element and a positioning element on the substrate, a lens element, and an optical fiber. The positioning element defines a through hole, in which the photoelectric element is received to allow visual inspection for determining if the photoelectric element is positioned to a designated position in relation to the positioning element, and includes a positioning structure. The lens element includes an incident surface, an emitting surface, a reflecting surface, a locating structure and a first lens formed in the incident surface, and a second lens formed on the emitting surface and optically aligned with the first lens via the reflecting surface. The lens element is precisely positioned on the positioning element by matching the locating structure with the positioning structure, to align the first lens with the photo electric element. The optical fiber is aligned with the second lens.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: May 20, 2014
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Yi Hung
  • Patent number: 8727638
    Abstract: A fiber channel-interchangeable fiber optic connector includes an adapter, two connectors respectively rotatably mounted in respective axle holes at the front side of the adapter, a sub-assembly detachably attached to the adapter to stop the connectors from rotation and hold down the connectors in position, and a cable inserted through the sub-assembly and mounted in the adapter with two optical-fiber cores therein respectively inserted into ferrules of the connectors. Detaching the sub-assembly from the adapter allows rotation of the connectors and the sub-assembly through 180-degrees angle relative to the adapter to interchange the fiber channels.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: May 20, 2014
    Assignee: Alliance Fiber Optic Products Co., Ltd.
    Inventors: Jhih-Ping Lee, Kuo-Fu Hsu
  • Patent number: 8727640
    Abstract: In one exemplary embodiment, an optical coupler of a fiber optic system can include a light-source input cavity packaged in an outer casing. The cavity can receive an optical signal from a light source. An optical collimator packaged in the outer casing such that a receiving end of the optical collimator can receive the light source from the light-source input cavity. The optical collimator can include at least one beam forming stage. The optical collimator can generate a collimated beam output from the optical signal. An optical cavity can receive the collimated beam output of the optical collimator. The optical cavity can be coaxially included in a receiving optical fiber coupled with the outer casing coupled with optical cavity. The optical cavity can receive the collimated beam output of the optical collimator and input the collimated beam into the receiving optical fiber.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: May 20, 2014
    Inventor: Angelica Simone Joseph
  • Patent number: 8721195
    Abstract: The optoelectronic mechanical assembly can have an integrated light source and couple a non-rotary light outlet thereof directly into a tip of a freely rotatable optical fiber. The assembly includes a fixable structure which can house a light source, and a rotary structure which receives the optical fiber and which is mounted to the fixable structure by way of at least one bearing, in a manner to maintain the optical alignment of the optical fiber with the non-rotary outlet. If more than one light source is used, they can be combined into the common outlet by a beam combiner.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: May 13, 2014
    Assignee: Doric Lense Inc.
    Inventor: Sead Doric
  • Patent number: 8721194
    Abstract: The present invention provides an optical transceiver module, comprising: a circuit substrate; a z-axis positioning base connected to the circuit substrate that, wherein the z-axis positioning base comprises two first sides respectively provided on two lateral sides of the optical transceiver sub-module, a second side provided between and connecting the two first sides, an opening corresponding in position to a side of the optical transceiver sub-module that faces away from the second side, and a step difference provided on each of the two first sides and the second side; a fiber-optic lens element provided on the z-axis positioning base and comprises a cover and a fiber-optic lens sub-module, wherein the cover comprises a recess and step differences surrounding the recess and respectively corresponding in position to the step differences provided on the z-axis positioning base, so as for the cover to be fitted on the z-axis positioning base.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: May 13, 2014
    Assignee: LuxNet Corporation
    Inventors: Yun-Cheng Huang, Chi-Min Ting, Tsing-Chow Wang, Chung Hsin Fu
  • Patent number: 8721190
    Abstract: An optoelectrical connector is composed of a plug to which a wire and an optical fiber are assembled and a receptacle to which the plug is inserted and connected. A receptacle includes insulation sleeves and conductive contacts in openings of receptacle housings, and plugs include a ferrule assembled bodies which are composed of an insulation ferrule which holds an optical fiber and a conductive cylindrical member which holds the ferrule and to which a wire is assembled, in an opening of the plug housing. When the plugs are inserted into the receptacle, the contacts and the cylindrical member contact with each other and the ferrules are inserted into the sleeves. Parts which serve electrical connection are not exposed.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: May 13, 2014
    Assignee: Japan Aviation Electronics Industry Limited
    Inventors: Yuichi Koreeda, Osamu Hashiguchi
  • Patent number: 8721192
    Abstract: An optical connecting structure has an optical fiber, a pressing member having a circular outer cross section, and an optical member, wherein the optical member has an optical element, an optical fiber stopper structure, and an optical fiber holding groove, wherein the optical fiber stopper structure is positioned between the optical element and the optical fiber holding groove, wherein the optical fiber is inserted along the optical fiber holding groove so as to contact with the optical fiber stopper structure, and wherein the pressing member is arranged on the optical fiber holding groove mutually perpendicular, the pressing member presses the upper surface of the optical fiber to a direction of a bottom of the optical fiber holding groove, and the optical fiber and the optical element are thereby optically connected.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: May 13, 2014
    Assignee: Hitachi Chemical Co., Ltd.
    Inventors: Nobuo Miyadera, Toshihiro Kuroda, Shigeru Koibuchi, Kyouichi Sasaki
  • Patent number: 8721193
    Abstract: In one example embodiment, an electronic module comprises a plurality of components and flex circuit connectors each electrically connected to respective components of the electronic module. The electronic module may be an optical subassembly of an optical transceiver. Moreover, one of the flex circuit connectors may be physically connected to another of the flex circuit connectors.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: May 13, 2014
    Assignee: Finisar Corporation
    Inventors: Maziar Amirkiai, Hongyu Deng
  • Patent number: 8714839
    Abstract: In a receptacle cage, a front EMI fingers in a tubular shape serving as a first shield member is provided on the entire periphery of a substantially rectangular module slot. In addition, a gap between outer peripheral surfaces of an upper case as well as a lower plate of an optical module connected to a receptacle connector in a receptacle connector accommodating portion and an inner surface of the cage is shielded by a top EMI fingers serving as a second shield member and side EMI fingers serving as third shield members. Moreover, the lower plate comes into contact with a bottom wall portion which is grounded.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: May 6, 2014
    Assignee: Yamaichi Electronics Co., Ltd.
    Inventor: Toshiyasu Ito
  • Patent number: 8714840
    Abstract: An optical module includes an electromagnetic wave absorption member. The electric connection member includes a floating portion which is in a floating state spaced apart from the housing and at a position away from a mounting portion by which the electric connection member is mounted on the housing in the direction opposite to the direction that the optical module is inserted into a cage. At least a portion of the electromagnetic wave absorption member is arranged between the housing and the floating portion. The floating portion is brought into contact with an inner side of the cage so as to establish the electrical connection with the inner side of the cage when the housing is inserted into the cage.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: May 6, 2014
    Assignee: Oclaro Japan, Inc.
    Inventors: Hiroo Matsue, Akira Kuwahara, Hideki Sato, Hiroyoshi Isii, Fumihide Maeda
  • Patent number: 8708578
    Abstract: An apparatus, in accordance with particular embodiments, includes an interface configured to establish connections within a copper network. The apparatus also includes a receptacle configured to receive a conventional small form-factor pluggable (SFP) module or a compact SFP module and to direct the SFP modules to a first connector. The first connector connects either of the SFP modules to the node. A pin of the first connector is configured to receive a module detection signal and to transmit data to the compact SFP module. The apparatus also includes a low pass filter coupled to the pin of the first connector that passes the module detection signal to the node. The apparatus is further configured to establish two duplex connections with an optical fiber network if the compact SFP module is connected and to establish one duplex connection with the optical fiber network if the conventional SFP module is connected.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: April 29, 2014
    Assignee: Cisco Technology, Inc.
    Inventors: Liang-Ping Peng, Norman Tang, David Lai
  • Publication number: 20140112628
    Abstract: Fiber optic cable sub-assemblies having a fiber optic cable including at least one optical fiber attached to a circuit board are disclosed. The circuit board includes an active optical component in operable communication with the optical fiber for forming an active optical cable (AOC) assembly. A strain relief device attaches an end portion of the fiber optic cable to the circuit board, thereby forming the cable sub-assembly. Methods of assembling the fiber optic cable sub-assembly are also disclosed and include the step of attaching an end portion of the fiber optic cable to the circuit board.
    Type: Application
    Filed: October 18, 2012
    Publication date: April 24, 2014
    Inventors: John Austin Keenum, Brett Allen Menke, Edward Joseph Reed, Rodger Alan Tenholder, Gary Richard Trott
  • Publication number: 20140112668
    Abstract: A stamped metal optic is provided that is a unitary, or integrally formed, part that includes at least a bench for holding at least one optoelectronic component and a reflector for folding an optical pathway. The stamped metal optic is formed of a piece of metal that is shaped using known metal stamping techniques. The stamped metal optic preferably has at least one fiducial mark formed therein that is used for placement of the optoelectronic device on the bench to ensure that the optoelectronic device is precisely aligned with the reflector. Because metal objects can be formed relatively inexpensively with high precision using known stamping techniques, the stamped metal optics can be manufactured with high precision at relatively low cost.
    Type: Application
    Filed: October 23, 2012
    Publication date: April 24, 2014
    Applicant: Avago Technologies General IP (Singapore) Pte. Ltd .
    Inventor: Laurence R. McColloch
  • Patent number: 8705908
    Abstract: An optical transmission module has an optical wiring for transmitting light, and an optical element for irradiating a light incidence plane of the optical wiring with light and a control circuit component for driving light emission of the optical element based on an externally input electric signal, or an optical element for receiving light emitted from a light emitting surface of the optical wiring and converting to an electric signal and a control circuit component for amplifying the electric signal output from the optical element and outputting to the outside. A plurality of boards overlapped and stacked so as to form a step with each other is arranged. A first board stacked at one end in a stacking direction of the plurality of boards is mounted with the optical wiring and the optical element so as to sandwich both surfaces in the stacking direction, and a board surface on the first board side of a second board stacked at another end is mounted with the control circuit component.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: April 22, 2014
    Assignee: OMRON Corporation
    Inventors: Hiroshi Sameshima, Naru Yasuda
  • Patent number: 8702316
    Abstract: Circuits, apparatus, and methods that provide a connector system that can supply both power and data to a mobile computing or other type of device using a single connection. Further examples also provide a power and data adapter that can provide power and data to a mobile computing device using a single cable. Further examples provide an easy disengagement when a cable connected to the connector is pulled. One such example provides a magnetic connector that uncouples without binding when its cord is pulled. Another example prevents power from being provided at a connector insert until the connector insert is placed in a connector receptacle.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: April 22, 2014
    Assignee: Apple Inc.
    Inventors: John C. DiFonzo, Chris Ligtenberg, Michael Culbert
  • Patent number: 8702325
    Abstract: A connector assembly includes a plug connector (1000) electrically and optically connecting with a receptacle connector (2000). The plug connector (1000) includes a first insulative housing; a terminal module supported by the first insulative housing, the terminal module including a plurality of terminals combined with an insulator; at least one optical member (8) mounted to the first insulative housing; the optical member and the terminal module arranged at opposite sides of the first insulative housing. The receptacle connector (2000) includes a second insulative housing; a contact module supported by the second insulative housing, the contact module including a plurality of contacts combined with a contact seat; at least one optical module (208) mounted to the second insulative housing; and wherein the contact module is adapted for mating with the terminal module transmitting electrical signal; wherein the optical member is adapted for mating with the optical module transmitting optical signal.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: April 22, 2014
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Jerry Wu
  • Patent number: 8696219
    Abstract: An optical connector includes a connector housing and an optics device. A plurality of optical fibers are retained in a fiber port of the connector. The fiber port has two fiber guide arrays oriented at an angle with respect to each other. Portions of the fibers between the two fiber guide arrays flex as the optics device and connector housing are assembled together. The resilient force of the flexed fibers maintains the fiber ends seated within the fiber guide arrays to facilitate further handling, such as applying an adhesive to further secure the fiber ends in the connector.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: April 15, 2014
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventor: Laurence R. McColloch
  • Patent number: 8696217
    Abstract: The present invention provides a semiconductor laser module in which a coupling efficiency does not easily vary even though a displacement amount varies by the effect of welding. The semiconductor laser module comprises: a semiconductor laser element 2 for emitting a laser light whose cross-sectional shape at an emission end face is elliptical; an optical fiber 3 arranged to receive the laser light from the semiconductor laser element 2; a package 4 for housing the semiconductor laser element 2 and the optical fiber 3; a first fastening means 117 for fastening the optical fiber 3 to the package 4; and a second fastening means 7 for fastening the semiconductor laser element 2 to the package 4, wherein the semiconductor laser element 2 and the optical fiber 3 are fastened such that a minor axis of the elliptical shape of the laser light becomes parallel to a line connecting both ends of the optical fiber 3, said both ends being restricted by the first fastening means 117.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: April 15, 2014
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Hidehiro Taniguchi, Jun Miyokawa
  • Patent number: 8696216
    Abstract: An optical module has a support board, an optical transmission path, and at least a single optical element having a light receiving function or a light emitting function provided on the support board. A light emission surface of the optical transmission path or a light incidence surface of the optical transmission path is arranged such that the optical element and the optical transmission path are optically coupled to each other, with respect to a light receiving surface or a light emitting surface of the optical element. The optical element is sealed by a sealing agent. A gap is provided between the optical transmission path and the surface of the sealing agent on the light receiving surface or the light emitting surface of the optical element.
    Type: Grant
    Filed: April 12, 2007
    Date of Patent: April 15, 2014
    Assignee: OMRON Corporation
    Inventors: Akihiko Sano, Hiroto Nozawa, Toshiaki Okuno, Junichi Tanaka, Naru Yasuda, Hayami Hosokawa