With Housing Patents (Class 385/92)
  • Patent number: 9039303
    Abstract: A compact multi-channel optical may include a multi-channel transmitter optical subassembly (TOSA), a multi-channel receiver optical subassembly (ROSA) and a circuit board configured and arranged to fit within a relatively small space. The multi-channel ROSA is spaced from the circuit board to allow circuit components to be mounted between the circuit board and the ROSA. The multi-channel ROSA may also be inverted and mounted proximate a transceiver top housing portion, for example, using an L-shaped ROSA support, to transfer heat from the ROSA to the transceiver housing portion. The optical transceiver may be used in a wavelength division multiplexed (WDM) optical system, for example, in an optical line terminal (OLT) in a WDM passive optical network (PON).
    Type: Grant
    Filed: May 14, 2013
    Date of Patent: May 26, 2015
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Yi Wang, I-Lung Ho, Justin Lii
  • Patent number: 9039301
    Abstract: An optical transceiver that attenuates the EMI radiation leaked therefrom is disclosed. The optical transceiver includes a top cover and the bottom base to form a cavity into which a TOSA, a ROSA, and a circuit are set. At least one of the top cover and the bottom base provides a combed structure in a rear portion of the optical transceiver, where the combed structure has a plurality of T-shaped fins to attenuate the EMI radiation.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: May 26, 2015
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Daisuke Kawase, Kuniyuki Ishii, Hiroyasu Oomori, Hiromi Kurashima
  • Patent number: 9039304
    Abstract: A connection port provides electrical and/or optical interface capability. The combined electrical and optical interface port may include an optical communication light engine within the connection port itself. The connection port includes a connector housing, an electrical interface assembly, and an optical interface assembly incorporated together. One implementation of the optical communication light engine includes a laser diode to generate optical signals, a photo diode to receive optical signals, and an optical integrated circuit (IC) to control optical interface.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: May 26, 2015
    Inventors: Jamyuen Ko, Hengju Cheng, Simon S. Lee
  • Patent number: 9039300
    Abstract: An optical transceiver easily set within the cage of the host system. The optical transceiver of an embodiment provides a finger surrounding the housing of the optical transceiver. The finger has an rear edge, whose tip is bent downward so as to be received in the first groove of the housing, extending diagonally to the brim of the cage; and a reinforced portion with a U-shaped cross section tightly set within the second groove of the housing.
    Type: Grant
    Filed: July 25, 2012
    Date of Patent: May 26, 2015
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takashi Kondo, Naoto Saito, Hiroshi Kawamura, Hiromi Kurashima
  • Patent number: 9033593
    Abstract: An optical module which includes a housing having a placing portion and an optical input-output portion facing an optical input-output surface of a ferrule; a first fixing portion for fixing the ferrule to the housing in the direction of the Z-axis perpendicular to the placing portion; and a second fixing portion for fixing the ferrule to the housing in the direction of the Y-axis perpendicular to the optical input-output surface, wherein the second fixing portion can change states from the first state to the second state; the first fixing portion fixes the ferrule in the direction of the Z-axis, and does not fix the ferrule in the Z-axis direction when the first fixing portion is at a second position; and the first fixing portion moves from the second position to the first position when the second fixing portion changes its state to a specific state.
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: May 19, 2015
    Assignee: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Yozo Ishikawa, Hideyuki Nasu, Toshinori Uemura
  • Patent number: 9033588
    Abstract: The present disclosure provides a one-piece optical fiber adapter that includes a main body and a hook member. At least one first stop block is positioned on the first wall and at least one second stop block is positioned on the third wall. Two first hooks extend respectively from the second and fourth walls toward a direction of the second opening of the accommodation room. The hook member is positioned within the accommodation room of the main body and includes two second hooks, at least one third hook and at least one fourth hook. The third and fourth hooks extend respectively from the fifth and seventh walls toward a direction of the fourth opening of the accommodation room of the hook member to hook on to the first and second stop blocks, respectively.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: May 19, 2015
    Assignee: EZONTEK TECHNOLOGIES CO., LTD.
    Inventors: Sung-An Lin, Sung-Chi Lin
  • Patent number: 9028156
    Abstract: An optical module includes a photoelectric conversion element optically connected to an optical fiber, a plate-shaped substrate mounting the photoelectric conversion element, coupling members fixed to both end portions of the substrate so as to sandwich the photoelectric conversion element, and a cover member coupled to the substrate by the coupling members so as to cover at least a portion of the substrate.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: May 12, 2015
    Assignee: Hitachi Metals, Ltd.
    Inventors: Yoshiaki Ishigami, Yoshinori Sunaga, Kinya Yamazaki
  • Patent number: 9028155
    Abstract: An optical module housing that may be easily seated, locked in and removed from a socket, thereby reducing or eliminating potential damage to the module and socket, and methods for making and using the housing are disclosed. The module housing generally includes a chassis, one or more pivots attached to the chassis, a latch configured to secure the housing in a corresponding slot when in a locked position, a slider configured to be in contact with and/or connected to the latch and to move the latch relative to the chassis, the latch and/or the slider being configured to move on and/or around the pivot(s) and a handle configured to be in contact with and/or connected to the slider such that when the handle moves from a first position to a second position, the slider and latch move to the locked and/or an unlocked positions.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: May 12, 2015
    Assignee: Source Photonics, Inc.
    Inventors: Zili Wang, Wayne Wainwright, Mark Heimbuch
  • Patent number: 9031367
    Abstract: An optical element package includes an optical wave guide array, at least one optical assembly and at least one optical transmission member. The optical wave guide array has a reflection groove. The reflection groove includes a reflection surface. The at least one optical assembly is positioned on the optical wave guide array adjacent to the reflection surface. The at least one optical transmission member is positioned on the optical wave guide array, and is optically coupled with the reflection surface. The optical signals emitted by the at least one optical assembly are reflected by the reflection surface and then reaching the at least one optical transmission member for transmission.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: May 12, 2015
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventors: Kai-Wen Wu, Tai-Cherng Yu
  • Publication number: 20150125120
    Abstract: An optical transceiver adapted to an optical connector having an angled physical contact (APC) is disclosed. The optical transceiver installs an optical sub-assembly to receive an external connector. The optical sub-assembly provides an index surface that indexes the inclined direction of the end of the stub abutting against the end surface of the external connector of the type of the APC. The housing provides a saddle with a flat surface on which the index surface of the optical sub-assembly is set.
    Type: Application
    Filed: November 5, 2014
    Publication date: May 7, 2015
    Inventor: Hiromi Kurashima
  • Patent number: 9022628
    Abstract: A compact, high-efficiency, high-power, solid state light source, comprising a high-power solid state light-emitting device, a light guide having a proximal light-receiving end proximate the light-emitting device and a distal light-transmitting end spaced farther from the light-emitting device, and a mechanical light guide fixing device coupled to the light guide near its proximal end, to hold the proximal end of the light guide in position near the light-emitting device.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: May 5, 2015
    Assignee: Optim, Inc.
    Inventors: Robert J. Krupa, Peter G. Lorenz, Thomas V. Root
  • Patent number: 9016958
    Abstract: A pigtail-less optical connector assembly is described that is capable of data rates as high as 10 GHz. The described optical connector assembly connects the optical fiber connector to an optical die element mounted in the connector assembly using optical fiber ribbon and an optical deflecting device. The optical fiber connector is slideable within the connector assembly and is resiliently biased toward a home position. The connector assembly is designed to allow the optical fiber ribbon to flex without damaging the fiber ribbon as the optical fiber connector slides.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: April 28, 2015
    Assignee: Lockheed Martin Corporation
    Inventors: Roger J. Karnopp, Gregory M. Drexler, Kevin J. Thorson
  • Patent number: 9016959
    Abstract: The invention relates to an electro-optical connection module, including a housing, at least one printed circuit board provided in the housing, an optical engine provided on the printed circuit board, the optical engine including at least one of a receiver device configured to transform optical signals received into electrical signals and a transmitter device configured to transform electrical signals received into optical signals, an optical engine port, and an electrical engine port, a pluggable optical port, an optical patch cable assembly connecting the optical engine port and the pluggable optical port for optical signal transmission, and a pluggable electrical port connected to the electrical engine port for electrical signal transmission.
    Type: Grant
    Filed: November 7, 2011
    Date of Patent: April 28, 2015
    Assignee: FCI
    Inventor: Sven Otte
  • Patent number: 9014553
    Abstract: A satellite test signal reflection apparatus for testing transmitters sending out optical signals, the apparatus includes a plate that is at least partially permeable to optical signals. The plate has a base with a first surface with a residual reflective coating and a second surface. The residual reflective coating is configured to split an optical beam, which penetrates the plate in a first direction from the first surface to the second surface, into a reflective optical beam and a transmitted optical beam.
    Type: Grant
    Filed: June 24, 2013
    Date of Patent: April 21, 2015
    Assignee: Tesat-Spacecom GmbH & Co. KG
    Inventor: Andreas Weichert
  • Patent number: 9011025
    Abstract: A modified TO-can assembly is provided that has greater versatility with respect to spatial constraints than known TO-can assemblies and that is suitable for use in a wider range of applications than known TO-can assemblies. The modified TO-can assembly has a receptacle that has been modified to receive an optical fiber through its side instead of through its end. Within the TO-can assembly, the optical path is folded in order to couple the light between the optoelectronic component of the TOSA or ROSA and the end of the optical fiber. The combination of these features provides the modified TO-can assembly with a compact profile that makes it more versatile with respect to spatial constraints and therefore suitable for use in a wider range of applications.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: April 21, 2015
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventor: Laurence R. McColloch
  • Patent number: 9006643
    Abstract: A photoelectric converter includes a circuit board, a laser diode, a plurality of optical sensors mounted on the circuit board, a transmission body, and a first lens set, a second lens set, and a plurality of optical fibers mounted on the transmission body. The transmission body defines a reflection groove and a plurality of optical signal splitting holes. A first sidewall of the reflection groove is inclined relative to the transmission direction of the optical signals. A bottom surface of each optical signal splitting hole is inclined relative to the first sidewall and to the second surface. The optical signals transmitted by the first lens set are reflected by the first sidewall. Most of the reflected optical signals are transmitted to the optical fibers via the second lens set, and a small remaining portion of optical signals are reflected by the bottom surface to the optical sensors.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: April 14, 2015
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: I-Thun Lin
  • Patent number: 9008518
    Abstract: A system includes an optical transmitter package comprising an optical transmitter to generate optical transmission signals based on electrical transmission signals. The system also includes an optical receiver package comprising an optical receiver to generate electrical reception signals based on optical reception signals. The system further includes a printed circuit board (PCB) on which the optical transmitter package and the optical receiver package are mounted. The PCB includes a heat generating circuit component. The optical transmitter package can be mounted to the PCB to subjected to less heat from the heat generating circuit component than the optical receiver package.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: April 14, 2015
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Michael Renne Ty Tan, Glenn C. Simon, Sagi Varghese Mathai
  • Publication number: 20150098681
    Abstract: Various connector housings for securing an optical cable, as well as methods of use and manufacture thereof are disclosed. A single-piece unitary connector housing body may include a first opening formed in a first end of the housing body, a second opening formed in a second end of the housing body, a bore through the housing body extending from the first opening to the second opening, and a back post surrounding the second opening. The first opening may be configured to receive a terminating optical cable and the second opening may be configured to receive a fiber optic cable. The back post may extend from the second opening in a longitudinal direction and may include a plurality of protrusions thereon. A length of the back post may have a concave shape.
    Type: Application
    Filed: October 3, 2013
    Publication date: April 9, 2015
    Applicant: SENKO ADVANCED COMPONENTS, INC.
    Inventors: Kenji IIZUMI, Kim Man WONG
  • Publication number: 20150093083
    Abstract: A pluggable optical transceiver module for inserted into plugging slot includes main body and sliding component. The main body has opposite two side surfaces and two sliding slots. The two sliding slots are located at the two side surfaces. The sliding component includes linkage arm and two extending arms. The two extending arms are connected to the linkage arm. Each extending arm has a second fastening part. The main body is between the two extending arms. The two extending arms are disposed on the two sliding slots to have fastening position and releasing position. Two first fastening parts are fastened to the two second fastening parts when the two extending arms are located at fastening position. The two second fastening parts press the two first fastening parts, respectively, for the two first fastening parts being farther from each other when the two extending arms are located at releasing position.
    Type: Application
    Filed: October 2, 2014
    Publication date: April 2, 2015
    Inventors: Chao-Hung Tsai, Chien-Te Lin, Che-Shou Yeh
  • Patent number: 8992096
    Abstract: An optical module package is provided, the optical module package including a housing main body, a cover body, first and second holding members, and a fiber unit. The first and second holding members may form, inside thereof, a unit accommodating part according to the outer size of a fiber unit in a direct opposing state. The housing main body has locking projections set an arrangement interval between two opposing surfaces of outer surface of the first and second holding members arranged to oppose each other, and a space sandwiched between locking projections is set as an accommodating space for the first and second holding members.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: March 31, 2015
    Assignees: SAE Magnetics (H.K.) Ltd, SAE Technologies Development Co. Ltd.
    Inventors: Hiroshi Fukaya, Nai Kang Liang
  • Patent number: 8992100
    Abstract: There is provided a bi-directional optical transmitting and receiving apparatus. The bi-directional optical transmitting and receiving apparatus includes: a package having a cavity and allowing a plurality of lead wires to pass therethrough; a platform mounted on the package and including a through hole formed above the cavity and having sloped surfaces; a reception unit mounted within the cavity and generating an electrical signal corresponding to input light made incident to the cavity through the through hole and outputting the generated electrical signal to at least one of the plurality of lead wires; a transmission unit mounted on the platform and generating output light according to an electrical signal transmitted through at least one of the plurality of lead wires; and a wavelength division multiplexing (WDM) filter mounted on the platform to transfer the output light toward an optical fiber and the input light toward the through hole.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: March 31, 2015
    Assignee: Electronics and Telecommunications Research Institute
    Inventor: Kwon-Seob Lim
  • Publication number: 20150086210
    Abstract: Provided herein is a system that includes a communication link between a first electronic device and a second electronic device. The communication link includes a first flat connector disposed in the first electronic device and a second flat connector disposed in the second electronic device. Each of the flat connectors includes a lens coupled to a fiber optic cable. Data is transferred through the communication link from the first flat connector to the second flat connector over an air gap between the first flat connector and the second flat connector.
    Type: Application
    Filed: September 20, 2013
    Publication date: March 26, 2015
    Inventors: Duane Quiet, Gary Bookhardt, Michael Altenburg
  • Publication number: 20150086208
    Abstract: Direct pin attachment is the most compact method to connect the OSA and the PCBA, due to better performance in general and allows maximum PCBA space for more functionality. However, direct pin attachment can result in concentrated stress in the OSA-PCBA joint area, which can affect the reliability and yield of the module. To overcome the problem, an integrated transceiver cage and housing is provided including a direct pin attachment with reinforcing tabs, which are fixed to the PCBA prior to the pins to transfer any stress between the OSA and PCBA, thereby reducing the amount of stress applied to the pins.
    Type: Application
    Filed: September 26, 2013
    Publication date: March 26, 2015
    Applicant: JDS Uniphase Corporation
    Inventors: Rui ZHOU, Boping Xie
  • Publication number: 20150086164
    Abstract: According to an aspect of the apparatus of the present invention, wind generated by a cooling fan blows in a housing, and a port is optically connected with an optical module via an optical fiber. Further, a shielding wall is provided to an optical fiber arranging member, which supports and guides the optical fiber, so as to prevent the optical fiber from being exposed to the wind.
    Type: Application
    Filed: September 17, 2014
    Publication date: March 26, 2015
    Applicant: FUJIKURA LTD.
    Inventors: Akito NISHIMURA, Kenji KOHARA
  • Patent number: 8985872
    Abstract: An optical-electrical converting module includes a housing and a PCB with electrical terminals, optical-electrical converting components, and a reflector. The housing includes a first end surface and an opposite second end surface, and defines a receiving space including a first opening defined in the first end surface and a second opening defined in the second end surface. The PCB is received in the receiving space, the PCB includes a first end adjacent to the first opening and a second end adjacent to the second opening. The electrical terminals are arranged on the second end and are electrically connected with the optical-electrical converting components. The reflector is mounted on the first end, and includes a first optical surface facing the first opening, a second optical surface facing the optical-electrical converting components, and a reflective surface titled relative to the first optical surface and the second optical surface.
    Type: Grant
    Filed: December 5, 2013
    Date of Patent: March 24, 2015
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventors: I-Thun Lin, Yi Hung
  • Patent number: 8985873
    Abstract: A connector component is provided as one compatible with conductor coupling and fiber coupling. A receptacle 1 is a connector component to be coupled to a USB connector 3 incorporating a plurality of conductor wires, and a ferrule 4 holding distal ends of optical fibers, and is provided with connections 18 to be connected to the plurality of conductor wires, a light emitting device 23 to emit light toward the ferrule 4, and a light receiving device 24 to receive light emitted from the ferrule 4.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: March 24, 2015
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Wataru Sakurai, Mitsuaki Tamura
  • Patent number: 8985874
    Abstract: Disclosed are optical connectors having lenses along with methods for making the same. In one embodiment, the optical connector includes a fiber body having a front portion with a plurality of fiber guides, and a connector body having a plurality of connector body fiber guides that lead to a plurality of lenses at a front portion of the connector body. The fiber body attaches to the connector body and may align a plurality of optical fibers to the lenses at the front portion of the connector body. One embodiment has the fiber body configured as a crimp body with a barrel at a rear portion for attaching a fiber optic cable.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: March 24, 2015
    Assignee: Corning Cable Systems LLC
    Inventors: Micah Colen Isenhour, Dennis Michael Knecht, James Phillip Luther
  • Patent number: 8989549
    Abstract: Topology-defining card units are used to provide optical interconnections between multiple slots of an equipment subrack. An example card unit is adapted for installation in a slot of an equipment subrack having a plurality of slots and having a backplane. The card unit includes one or more back-side optical connectors configured so as to mate with corresponding optical connector receptacles on the backplane of the equipment subrack when the card unit is installed in the equipment subrack. These one or more back-side optical connectors include a plurality of card-unit optical interfaces. The card unit further includes an optical interconnection network that optically couples each one of the plurality of card-unit optical interfaces to another one of the plurality of card-unit optical interfaces.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: March 24, 2015
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventor: Martin Julien
  • Publication number: 20150078712
    Abstract: A method of manufacturing an optical interconnect includes 3D printing a plurality of non-intersecting and spaced apart optical waveguides from a material that guides electromagnetic waves in the optical spectrum after being cross-linked or polymerized in a region activated by the 3D printing. At least some of the optical waveguides change direction at least once by about 90°. The method further includes encasing at least each end of the optical waveguides with a material having a lower index of refraction than the material from which the optical waveguides are formed by 3D printing, to secure the optical waveguides. A corresponding 3D printing apparatus is also described.
    Type: Application
    Filed: September 17, 2013
    Publication date: March 19, 2015
    Inventors: Robert Brunner, Qing Xu, Stephane Lessard, Martin Julien
  • Patent number: 8974125
    Abstract: In an opto-electronic system having one or more optical transceiver modules and an enclosure, air is forced through the interior of the transceiver module to dissipate heat generated by the opto-electronic and electronic elements.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: March 10, 2015
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventors: Laurence R. McColloch, David J. K. Meadowcroft, Paul Yu
  • Publication number: 20150063763
    Abstract: An optical-electrical composite connector includes a housing that can accommodate an extra portion of an optical fiber. The optical-electrical composite connector further includes a contact portion for electrically contacting with a mating connector, and a dividing member for dividing the housing into a first space and a second space. The optical fiber is disposed in the first space of the housing divided by the dividing member, and at least a part of the optical fiber is bent. At least another part of the optical fiber, which is other than the part accommodated in the first space thereof, is disposed in the second space of the housing divided by the dividing member.
    Type: Application
    Filed: August 20, 2014
    Publication date: March 5, 2015
    Inventors: Yoshiaki SANO, Akira FUNATSU
  • Publication number: 20150063762
    Abstract: An optical module with an improved coupling portion to couple an optical device with an external fiber is disclosed. The coupling portion includes a stub to secure a coupling fiber in a center thereof, a bush to support the stub, a sleeve to receive the stub in a portion thereof and an external ferrule in another portion, and a sleeve cover to cover the sleeve. The coupling portion further includes a latch put between the bush and the cover by being hooked with both the bush and the cover. The latch electrically isolates the bush from the cover even when the bush and the sleeve cover are made of metal.
    Type: Application
    Filed: May 22, 2013
    Publication date: March 5, 2015
    Inventor: Takeshi Okada
  • Patent number: 8967881
    Abstract: A pluggable ONU transceiver module comprises a top shell, a bottom shell configured to mate with the top shell to form a cavity, and a PCB disposed within the cavity. A plurality of pins are coupled to the PCB and are configured to be inserted into a protruding socket of a host device through the bottom shell. The protruding socket is mounted on a PCB of the host device. The pluggable ONU transceiver module further comprises one or more guiding features integrated with the bottom shell and configured to ensure that the pins are inserted correctly into the protruding socket, and means for positioning the top shell at a predetermined height above the PCB of the host device to allow coupling of the top shell to a heatsink of the host device.
    Type: Grant
    Filed: November 4, 2013
    Date of Patent: March 3, 2015
    Assignee: Finisar Corporation
    Inventor: Tat Ming Teo
  • Patent number: 8967887
    Abstract: Disclosed is a high speed flex circuit electronic interface in combination with a sealed optical connectorization approach for optical coupling. In a preferred embodiment, at a front end of the connector a wedge seal ring or “press ring” is pressed into the end of a slide tube, both of which are, in a preferred embodiment, made of metal such as stainless steel. The wedge end shape of the press ring in this preferred embodiment allows it to be easily pushed into the inside diameter of the slide tube, expanding the slide tube to create a radial surface seal maintained by the hoop stress developed in the slide tube initiated by the press ring, thereby creating a hermetic seal on a cylindrical portion of the flange assembly connector. A flex-circuit sealed back-end of the connector uses, in a preferred embodiment, polymer to polymer or polymer to metal bonding to create a hermetic seal on the back end.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: March 3, 2015
    Assignee: Tyco Electronics Corporation
    Inventors: Terry Patrick Bowen, Richard J. Perko
  • Patent number: 8967884
    Abstract: An optical transceiver with two circuit boards is disclosed. The optical transceiver includes two OSAs, two circuit boards, and a holder put between two circuit boards. The circuit boards are assembled with the holder made of resin by the snap-in, and this intermediate product is set within the housing of the transceiver. The cover of the transceiver is also assembled by the snap-in without using screws and so on.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: March 3, 2015
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takashi Kondou, Hiromi Kurashima, Hiroyasu Oomori
  • Patent number: 8961041
    Abstract: A connector assembly (100) includes an insulative housing having a base portion and a tongue portion extending forwardly from the base portion, the tongue portion having a top surface and a bottom surface, with a mounting cavity recessed downwardly from the top surface of the tongue portion; an optical module (5) accommodated in the mounting cavity and capable of moving therein along a front-to-back direction; and at least two magnetic elements (91, 92) disposed along the front-to-back direction and arranged in same polarities facing to each other, one of the magnetic elements (92) mounted to the optical module, and the other of the magnetic elements (91) assembled to the insulative housing.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: February 24, 2015
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventors: Ping-Sheng Su, Jun Chen, Qing Wang
  • Patent number: 8961038
    Abstract: An opto-electronic device includes an optical engine module and an electrical socket. The optical engine module includes an optical engine, an optical transmission interface for coupling with an optical device and an electrical transmission interface, the electrical transmission interface having electrical pads. The electrical socket includes a plurality of BGA terminals, each terminal having a module-connecting end and a board-connecting end. The electrical transmission interface is removeably assembled in the electrical socket and the electrical pads contact the module-connecting ends of the electrical socket.
    Type: Grant
    Filed: January 21, 2014
    Date of Patent: February 24, 2015
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventors: Jim Zhao, Yuan-Chieh Lin, An-Jen Yang, Pei Tsao, Yin-Tse Kao, Ashish Raheja
  • Patent number: 8956058
    Abstract: The invention concerns a device for releasing a transceiver, fixed in a housing via a connection, from the housing, wherein the device is releasably connectable and insertable into a plug contour of the transceiver via first means and wherein the device has second means for releasing the connection between the transceiver and the housing.
    Type: Grant
    Filed: April 29, 2010
    Date of Patent: February 17, 2015
    Assignee: MC Technology GmbH
    Inventor: Werner Rösch
  • Patent number: 8950950
    Abstract: There is provided an optical-electrical hybrid module including a substrate on which a plurality of optical communication modules are arranged, the plurality of optical communication modules transmitting or receiving an optical signal through an optical fiber cable and performing conversion between the optical signal and an electrical signal. A shield case covering the optical communication modules includes a surface inclined in a direction away from a position in which the optical fiber cable is mounted to each optical communication module.
    Type: Grant
    Filed: June 25, 2013
    Date of Patent: February 10, 2015
    Assignee: Sony Corporation
    Inventors: Hirohito Miyazaki, Tsuyoshi Ogawa, Kazuyoshi Yamada
  • Patent number: 8950954
    Abstract: A side-edge mountable parallel optical communications module and an optical communications system that incorporates one or more of the modules are provided. In the optical communications system, one or more of the side-edge mountable parallel optical communications modules are side-edge mounted in respective edge card connectors, which, in turn, are mounted on a surface of a motherboard PCB. Because the modules are relatively thin and because the spacing, or pitch, between the modules can be kept very small, the system can have a very high mounting density, and consequently, a very high bandwidth.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: February 10, 2015
    Assignee: Avago Technologies General IP ( Singapore) Pte. Ltd.
    Inventors: Fang Wang, David J. K. Meadowcroft, Andrew G. Engel
  • Patent number: 8950951
    Abstract: The present invention discloses an optical sub-assembly (OSA) comprising: a base; at least one photoelectric component; and a housing. The base includes an alignment part including an upper surface and a side surface; the side surface includes a first surface and a second surface; and the first and second surfaces have different curvatures and/or constitute a discontinuous surface. Said photoelectric component is set upon the upper surface for optically connecting to a fiber. Said housing includes a window and an interior surface in which the window is for inserting the fiber, and the interior surface is for defining an accommodation room and includes a third surface and a fourth surface. The accommodation room is capable of containing at least some of the alignment part; meanwhile, the third surface closely meets the first surface and the fourth surface closely meets the second surface.
    Type: Grant
    Filed: November 11, 2013
    Date of Patent: February 10, 2015
    Assignee: Optomedia Technology Incorporation
    Inventor: Tung-Lou Lin
  • Patent number: 8944658
    Abstract: A panel illumination light source positioning and holding mechanism and method of operation and installation is disclosed for a light panel comprising a panel having on a front side thereof a front film forming an illumination surface, and an insertion hole through the panel to the film, the positioning and holding mechanism may comprise a hollow insertion portion extending into the insertion hole, the hollow insertion portion receiving an LED assembly; a locking mechanism locking the insertion portion in place after insertion into the insertion hole; a light pipe reception and holding mechanism, with a light pipe inserted into the light pipe reception and holding mechanism. The positioning and holding mechanism may also comprise a parallel extending portion holding the LED.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: February 3, 2015
    Assignee: The Boeing Company
    Inventors: Jagdish T. Madhav, Mark L Cloud
  • Patent number: 8939659
    Abstract: A connector component is provided as one compatible with conductor coupling and fiber coupling. A receptacle 1 is a connector component to be coupled to a USB connector 3 incorporating a plurality of conductor wires, and a ferrule 4 holding distal ends of optical fibers, and is provided with connections 18 to be connected to the plurality of conductor wires, a light emitting device 23 to emit light toward the ferrule 4, and a light receiving device 24 to receive light emitted from the ferrule 4.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: January 27, 2015
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Wataru Sakurai, Mitsuaki Tamura
  • Patent number: 8939656
    Abstract: An optical module includes a housing, an optical adapter attached to an end portion of the housing, and an optical transmitter assembly mounted in the housing. The optical transmitter assembly includes a TOSA including a plurality of light-emitting elements for outputting optical signals, and a circuit board electrically connected to the TOSA. The TOSA further includes a TOSA base having opposing side surfaces on which the plurality of light-emitting elements are oppositely arranged so as to form at least one pair. The TOSA base includes a light outputting surface having an optical component mounting portion formed thereon, and the optical component mounting portion mounts an optical multiplexer including a plurality of filters.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: January 27, 2015
    Assignee: Hitachi Metals, Ltd.
    Inventors: Ryuta Takahashi, Hiroshi Ikuno
  • Patent number: 8939658
    Abstract: A small form-factor pluggable (SFP) optical transceiver includes a casing configured to accommodate optical and electrical devices. During normal operation, the casing is connected to a switchboard via a connector in the switchboard, and the optical devices are outside the switchboard, thereby exposing optical devices sensitive to high temperature to the outside air, reducing the operational temperature of the optical device portion relative to the heated portion inside the switchboard. Thus, the present SFP optical transceiver advantageously improves operational performance and extends the life of the device. Also, the present SFP optical transceiver having the optical device portion outside the switchboard advantageously improves the cooling performance for the optical device portion.
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: January 27, 2015
    Assignee: Source Photonics, Inc.
    Inventors: Mark Heimbuch, Wayne Wainwright
  • Publication number: 20150023637
    Abstract: An optical module includes a first ferrule, a second ferrule that is aligned with the first ferrule via a positioning pin, a housing including a support part that supports the second ferrule, and a ferrule clip that is fastened to the housing and presses the first ferrule toward the second ferrule.
    Type: Application
    Filed: June 19, 2014
    Publication date: January 22, 2015
    Inventors: Satoshi Moriyama, Osamu Daikuhara
  • Patent number: 8936402
    Abstract: An optical communications system is provided in which module locating pins of the system mate with inwardly-shaped corners formed on parallel optical transceiver modules of the system when the parallel optical transceiver modules are mounted on a mid-plane mounting structure of the system. The inwardly-shaped corners of the parallel optical transceiver modules are complementary in shape to portions of the module locating pins. The mating of the module locating pins with the inwardly-shaped corners of the modules operates to passively position the modules at intended spatial locations relative to each other and relative to the mid-plane mounting structure. The inwardly-shaped corners consume very little space in the modules and the pins consume very little space in the optical communications system. Consequently, the pitch between adjacent parallel optical transceiver modules can be kept very small and the mounting density of the modules on the mid-plane mounting structure can be very high.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: January 20, 2015
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventor: Laurence R. McColloch
  • Patent number: 8936405
    Abstract: A multi-channel optical receiver module, includes a light-receiving element array, the light-receiving element array including multiple light-receiving elements; an amplifier disposed adjacent the light-receiving element array, the amplifier amplifying an output of a light-receiving element; a wiring relay submount disposed adjacent the amplifier; two wires for carrying a differential signal and being wired in parallel to one another and being connected between the wiring relay submount and the amplifier; an output pin; and another wire, the another wire being connected between the output pin and the wiring relay submount.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: January 20, 2015
    Assignee: Hitachi Metals, Ltd.
    Inventors: Kenichi Tamura, Masahiko Kobayashi
  • Publication number: 20150016785
    Abstract: Guiding convexed and concaved parts provided on inner side surfaces of a female connector housing have inclining surfaces inclining with respect to a direction perpendicular to the inner side surfaces; whereas guided convexed and concaved parts provided on outer side surfaces of a male connector housing have inclining surfaces facing the inclining surfaces of the guiding convexed and concaved parts.
    Type: Application
    Filed: September 30, 2014
    Publication date: January 15, 2015
    Inventors: Toshikuni Kondo, Noritsugu Enomoto
  • Patent number: 8931966
    Abstract: An optical triplexer and/or optical line terminal (OLT) compatible with 1.25 and 10 Gb/s passive optical networks is disclosed. The triplexer/OLT includes an optical fiber, first and second laser diodes, a photodiode, and first and second lenses. A hemispherical lens may be at an end face of the photodiode or receiver subassembly housing. A first optical splitter is mounted between the first and second lenses, and a second optical splitter is mounted between the optical fiber and the second laser diode. The first lens and first laser diode, and the second lens and second laser diode share respective common linear optical axes. The present triplexer/OLT advantageously accords with an interface standard IEEE802.3av-2009 PRX30. In addition, the present triplexer can advantageously implement analog receiving and digital transceiving, save optical fiber resources, and provide high efficiency coupling. Thus, requirements for high power output and smaller housing outlines can be served.
    Type: Grant
    Filed: December 30, 2011
    Date of Patent: January 13, 2015
    Assignee: Source Photonics, Inc.
    Inventors: Chien-Hsiung Chiu, Hung-Yuan Chen, Chih-Lung Nien, Che-Jen Chang, Shih-Pin Ko, Pei-Keng Fu, Tsai-Wei Chen