Boride Containing Patents (Class 419/12)
  • Patent number: 6336950
    Abstract: An aspect of this invention is an electrode rod for spark alloying, comprising a compact of a first powder of a first component which comprises a metal selected from a group of Fe, Co, Ni, metals of 4a, 5a and 6a of the periodic table and Si, and a second powder of a second component which is capable of self-propagating high temperature synthesis to form with said first component carbide, nitride, boride, silicide or intermetallic compound, said first and second powders being mixed intimately with each other and formed into an axial rod.
    Type: Grant
    Filed: May 5, 2000
    Date of Patent: January 8, 2002
    Assignees: The Ishizuka Research Institute Ltd., Moscow Steel and Alloys Institute, SHS-Center
    Inventors: Mitsue Koizumi, Manshi Ohyanagi, Satoru Hosomi, Evgeny Alexandrovich Levashov, Alexander Gennadievich Nikolaev, Alexander Evgenievich Kudryashov
  • Patent number: 6319336
    Abstract: A permanent magnet alloy having an improved heat resistance comprising, in terms of % by atom, 0.1 to 15 at. % C, 0.5 to 15 at. % B, provided that C and B in total account for 2 to 30 at. %; 40% or less Co (exclusive), 0.5 to 5 at. % in total of Dy and Tb, 8 to 20 at. % R. where R represents at least one element selected from the group consisting of Nd, Pr, Ce, La, Y, Gd, Ho, Er, and Tm; with the balance being Fe and unavoidable impurities.
    Type: Grant
    Filed: March 20, 2000
    Date of Patent: November 20, 2001
    Assignee: Dowa Mining Co., Ltd.
    Inventors: Masami Kamada, Michio Obata, Yuichi Sato
  • Patent number: 6319437
    Abstract: A powder injection molding and infiltration process. A powder of a skeleton material having a relatively high melting point is mixed with a composite binder to form a mold mixture. The composite binder is comprised of at least two binder materials. The mold mixture is molded into a desired shape in a mold device to produce a molded part. The composite binder is then removed to produce voids in the molded part and the voids are filled by infiltrating an infiltrant comprised of an infiltrant material having a relatively low melting point to produce a composite molded part. In a preferred embodiment the skeleton material is TiB2 and the infiltrant material is aluminum and the composite binder is comprised of a plastic and a wax. In this embodiment the wax portion of the composite binder is removed using a solvent and the plastic is removed during the infiltration step. The resulting composite part has a TiB2 skeleton with voids substantially filled with aluminum.
    Type: Grant
    Filed: February 16, 1999
    Date of Patent: November 20, 2001
    Assignee: Hi-Z Technology, Inc.
    Inventors: Norbert B. Elsner, Stanley Zalkind, Ian Sidney R. Clark, Fred Leavitt
  • Patent number: 6274082
    Abstract: A process for producing a shaped article, comprising: preparing a first powder having high strength and rigidity after completion of forming, and a second powder having abrasion resistance and surface hardness after completion of forming; compacting those powders to provide a forming material comprising a base part comprising the first powder and a supplemental part comprising the second powder; and forming the forming material into a shaped article by plastic processing, thereby producing a shaped article in which the base part and the supplemental part have different characteristics. The first powder preferably comprises a rapidly-solidified alloy powder and the second powder preferably comprises at least one member selected from among Al2O3, Si3N4, BN, SiC, Al4C3, Al8B2O15 and B2O or a mixture of the member and the first powder which may be the same one actually used as the first powder or another one having a different compositions from that of the actually used first powder.
    Type: Grant
    Filed: September 2, 1999
    Date of Patent: August 14, 2001
    Assignee: YKK Corporation
    Inventors: Junichi Nagahora, Koju Tachi, Koji Saito, Teruaki Onogi
  • Patent number: 6254659
    Abstract: A permanent magnet has a base composition of SE—Fe—B, wherein SE is at least one rare earth element, including Y, and having the tetragonal phase SE2Fe14B as the principal phase, and additionally having an iron-free and boron-free phase of the general formula SE5(Co, Ga), as a binder alloy. In a method for making such a permanent magnet, a powder of a base ally having the tetragonal phase composition, and a binder alloy having the aforementioned general formula composition, are mixed in a weight ration between 99:1 and 90:10.
    Type: Grant
    Filed: February 26, 1999
    Date of Patent: July 3, 2001
    Assignee: Vacuumschmeleze GmbH
    Inventors: Peter Schrey, Mircea Velicescu
  • Patent number: 6200526
    Abstract: A process for preparing complex-shaped, ceramic-metal composite articles, comprising: (a) contacting a non-wettable powder that is non-wetting to a metal to be used for infiltration with a shaped ceramic body to form a layer of the non-wettable powder on one or more surfaces of the shaped ceramic body, wherein the shaped ceramic body has a region where there is no layer of the non-wettable powder, and (b) infiltration the shaped ceramic body with the metal through the region or regions where there is no layer of the non-wettable powder, such that a complex-shaped ceramic-metal composite comprising one or more metal phases and one or more ceramic phases is formed, wherein the article has substantially the net shape of the shaped ceramic body and undesirable regions of excess metal on the surface and undesirable phases within the complex-shaped ceramic-metal composite article near the surface are located only in the region or regions where there is no layer of the non-wettable powder.
    Type: Grant
    Filed: May 11, 1999
    Date of Patent: March 13, 2001
    Assignee: The Dow Chemical Company
    Inventors: Richard T. Fox, Aleksander J. Pyzik, Chan Han, Robert T. Nilsson
  • Patent number: 6193928
    Abstract: A process for manufacturing ceramic metal composite bodies, the ceramic metal composite bodies and their use. The process is based on molten infiltration and the simultaneous or delayed exchange reaction of ceramic or metal ceramic un-fired bodies or sintered bodies which may consist of nitrides or carbides as well as metals, with molten metal of additional metals, whereby new nitride, carbide and intermetallic phases are formed which have improved wear and high-temperature characteristics. These ceramic metal composite bodies can be used for tribological applications.
    Type: Grant
    Filed: February 20, 1998
    Date of Patent: February 27, 2001
    Assignee: DaimlerChrysler AG
    Inventors: Steffen Rauscher, Michael Scheydecker, Karl Weisskopf, Tanja Tschirge, Rainer Zimmermann-Chopin
  • Patent number: 6187259
    Abstract: The object of the present invention is to provide rare-earth system sintered magnets such as R—Fe—B system or R—Co system having excellent magnetic properties, unique configuration of a small size, thin wall thickness and intricate geometry. With the method for preparing the present invention, a granulation of alloy powders can be achieved easily, a chemical reaction between rare-earth system and binder substances can be suppressed, so that the residual oxygen and carbon levels in the sintered products can be reduced. Moreover, by this production method, the flowability and lubricant capability during the forming process can be improved. The dimension accuracy and productivity are also enhanced. A certain type of binder is added to rare-earth alloy powders and kneaded into a slurry state. The slurry is then formed into granulated powders by spray-dryer equipment. The thus granulated powders are molded, and sintered through a powder metallurgy technique.
    Type: Grant
    Filed: March 19, 1997
    Date of Patent: February 13, 2001
    Assignee: Sumitomo Special Metals Co., Ltd.
    Inventors: Osamu Yamashita, Yoshihisa Kishimoto, Wataru Takahashi, Nobushige Hiraishi, Yoshiyuki Hashimasa, Masakazu Ohkita
  • Patent number: 6171989
    Abstract: A silver-colored sintered product having excellent corrosion resistance containing titanium, carbon and boron as indispensable constituent elements, and including in the sintered product composition a titanium boride phase or a boride phase which contains titanium as a chief metal element and a titanium carbide phase or a carbide phase which contains titanium as a chief metal element and a method of producing the same. The sintered product has a flexural strength of not smaller than 700 MPa, a Vickers' hardness of not smaller than 9.0 GPa and a fracture toughness of not smaller than 5.0 MPa·m½.
    Type: Grant
    Filed: June 19, 1997
    Date of Patent: January 9, 2001
    Assignee: Kyocera Corporation
    Inventor: Nobuo Yoshida
  • Patent number: 6139765
    Abstract: A magnetic powder and a permanent magnet are provided which have magnetic properties enhanced by magnetic interaction. Disclosed are a magnetic powder comprising a mixture of two or more powders including a magnetic powder A (residual magnetic flux density: BrA, coercive force: HcA) and a magnetic powder B (residual magnetic flux density: BrB, coercive force: HcB) of which the residual magnetic flux densities and the coercive forces have the following relationships: BrA>BrB and HcA<HcB, and a bonded magnet or a sintered magnet produced from the magnetic powder, and a method for mixing magnetic powders and a process for producing a magnet.
    Type: Grant
    Filed: April 25, 1997
    Date of Patent: October 31, 2000
    Assignee: Seiko Epson Corporation
    Inventors: Atsunori Kitazawa, Toshiyuki Ishibashi, Koji Akioka
  • Patent number: 6126710
    Abstract: A method of producing a composite material, in particular for sintered slide bearings and slide bearings.Composite materials for sintered slide bearings consist of at least one ceramic sintered material and at least one metallic sintered material and have a short service life during operation at low speeds of the shaft and in the case of a simultaneously high radial load because the lubricant stored in the bearing cracks. The novel sintered bearing is to have a long service life under such operating conditions.In the novel bearing use is made of ceramic sintered materials which have a high thermal conductivity, e.g. boron nitride.The novel composite material and the novel slide bearing are particularly suited for electric miniature motors comprising a ceramic shaft.
    Type: Grant
    Filed: April 2, 1999
    Date of Patent: October 3, 2000
    Assignee: Maxon Motor GmbH
    Inventor: Bodo Futterer
  • Patent number: 6117204
    Abstract: A sintered Ti alloy material and a process for producing the same, which comprises a matrix mainly comprising a Ti alloy, and TiB dispersed and maintained in said matrix, wherein a composition of the sintered Ti alloy material at least comprises from 0.1 to 8.0% by weight of B, from 3.0 to 30.0% by weight of Mo, 50% by weight or more of Ti, and the balance of unavoidable impurities.
    Type: Grant
    Filed: September 16, 1998
    Date of Patent: September 12, 2000
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Takashi Saito, Tadahiko Furuta, Hiroyuki Takamiya
  • Patent number: 6099664
    Abstract: The invention provides a method of making a titanium boride metal matrix alloy, by firing a particulate reaction mixture comprising titanium, matrix material and a source of boron (e.g. boron carbide), under conditions such that the titanium and boron react exothermically to form a dispersion of fine particles (preferably greater than 1 micron and less than 10 microns in size) comprising titanium boride (plus titanium carbide where the source of boron is boron carbide) in a predominantly metal matrix. The titanium and matrix are preferably added as a titanium alloy such as ferrotitanium (e.g. eutectic ferrotitanium) or titanium-aluminium. The reaction conditions are preferably selected so that during the reaction a molten zone moves through the body of the reaction mixture, and the average size of the resulting hard particles is uniform throughout the resulting dispersion.
    Type: Grant
    Filed: November 28, 1997
    Date of Patent: August 8, 2000
    Assignee: London & Scandinavian Metallurgical Co., Ltd.
    Inventors: Peter Davies, James Leslie Frederick Kellie, Richard Nigel Mc Kay, John Vivian Wood
  • Patent number: 6096111
    Abstract: A homogeneous sintered composite made by press-forming a homogeneous mixture of powders of an agglutinating component, a second component having a melting point higher then the agglutinating component, and an exothermically reactive component to form a compact; heating the compact, then inducing an exothermic reaction of the reactive substance which generates sufficient additional heat to melt the agglutinating component without melting the high melting point component. For electronic microcircuit heat-dissipation applications the agglutinating component is a high thermal conductivity metal, and the high melting point component has a low thermal expansivity, whose proportions are adjusted to match the thermal expansion characteristics of microcircuit material. To reduce porosity, the reacted compact is pressed again while the agglutinating component is still in the liquid phase. For low weight applications the second material has high specific thermal conductivity.
    Type: Grant
    Filed: May 19, 1998
    Date of Patent: August 1, 2000
    Assignee: Frank J. Polese
    Inventors: Frank J. Polese, Ranganath Saraswati
  • Patent number: 6051077
    Abstract: The present invention is directed to provide a raw material powder for modified permanent magnets capable of enhancing magnetic properties of iron.rare earth element metal.boron permanent magnets and reducing the production cost, and further to provide its production method. The raw material powder is a pulverized powder of sintered mass obtained by sintering in vacuum or in a non-oxidative gas a mixture of an acicular iron powder and an alloy powder containing iron, a rare earth element metal and boron.
    Type: Grant
    Filed: July 16, 1997
    Date of Patent: April 18, 2000
    Assignee: Sanei Kasei Co., Ltd.
    Inventors: Shigenobu Sekine, Hiroji Sato
  • Patent number: 6033789
    Abstract: The tool includes at least one cutting edge formed by a compacted mixture of carbide containing alloy steel and an oxide containing ceramic material, preferably zirconium oxide in an amount of 0.01-15 wt % of the mixture, preferably in the region of 1 to 6 wt %, advantageously in the region of 3 wt %. The mixture may additionally include particles of a hard or abrasive material, such as silicon carbide or aluminum carbide or a boride/carbide such as aluminum titanium diboride-titanium carbide.
    Type: Grant
    Filed: September 11, 1997
    Date of Patent: March 7, 2000
    Inventors: Jonathan James Saveker, Trevor David Bonnell
  • Patent number: 6022508
    Abstract: In a method of powder metallurgical manufacturing of a composite material containing particles in a metal matrix, said composite material having a high wear resistance in combination with a high toughness, the powder particles (I) of a first powder of a first metal or alloy having a high content of hard particles (HT) dispersed in the matrix of said first powder particles, are dispersed in a second powder consisting of particles (II) of a second metal or alloy having a low content of hard particles dispersed in the matrix of said second powder particles, wherein a mutual contact between the hard particles and/or between the particles of said first powder is substantially avoided, and the mixture of said first and second powders is transformed to a solid body through hot compaction.
    Type: Grant
    Filed: August 6, 1997
    Date of Patent: February 8, 2000
    Assignees: Koppern GmbH & Co., KG, Germany, Erasteel Kloster Aktiebolag, Sweden
    Inventor: Hans Berns
  • Patent number: 6001193
    Abstract: A method of producing a hard magnetic alloy compact at low cost, in which an alloy that contains not less than 50% by weight of an amorphous phase and exhibits hard magnetism in a crystallized state is solidified and molded at around its crystallization temperature under applied pressure by utilizing the softening phenomenon occurring during a crystallization process. The resulting compact has high hard magnetic characteristics and can be applied as permanent magnet members such as in motors, actuators, and speakers.
    Type: Grant
    Filed: March 25, 1997
    Date of Patent: December 14, 1999
    Assignees: Alps Electric Co., Ltd., Akihisa Inoue, Tsuyoshi Masumoto
    Inventors: Akinori Kojima, Takao Mizushima, Akihiro Makino, Akihisa Inoue, Tsuyoshi Masumoto
  • Patent number: 5997804
    Abstract: A rare earth permanent magnet consisting essentially, by weight, of 27.0-31.0% of at least one rare earth element including Y, 0.5-2.0% of B, 0.02-0.15% of N, 0.25% or less of O, 0.15% or less of C, at least one optional element selected from the group consisting of 0.1-2.0% of Nb, 0.02-2.0% of Al, 0.3-5.0% of Co, 0.01-0.5% of Ga and 0.01-1.0% of Cu, and a balance of Fe, and a production method thereof. The contents of rare earth element, oxygen, carbon and oxygen in the magnet are regulated within the specific ranges.
    Type: Grant
    Filed: May 21, 1997
    Date of Patent: December 7, 1999
    Assignee: Hitachi Metals Ltd.
    Inventors: Kimio Uchida, Masahiro Takahashi, Fumitake Taniguchi
  • Patent number: 5993733
    Abstract: A synchronizing ring 10 having an annular structural part 11 and a frictional layer 12 is manufactured by filling a mold 20 with a material for the structural part or a material for the frictional layer and compacting the material filled in the mold 20, filling the mold with a material for the frictional layer or a material for the structural part and compacting the material filled into the mold to unify the structural part and the frictional layer, and sintering the unified structural part 11 and frictional layer 12 in a sintering furnace. The frictional layer 12 can be combined with the structural part 11 without forcibly mounting the frictional layer 12 on the structural part 11. The material for the frictional layer need not be presintered, and the frictional layer can be formed by a single sintering cycle.
    Type: Grant
    Filed: January 23, 1997
    Date of Patent: November 30, 1999
    Assignee: Dynax Corporation
    Inventor: Satoshi Kawai
  • Patent number: 5976458
    Abstract: The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.
    Type: Grant
    Filed: January 3, 1996
    Date of Patent: November 2, 1999
    Assignee: Philip Morris Incorporated
    Inventors: Vinod K. Sikka, Seetharama C. Deevi, Grier S. Fleischhauer, Mohammad R. Hajaligol, A. Clifton Lilly, Jr.
  • Patent number: 5937268
    Abstract: A sintered sliding member having not only excellent in wear resistance but also low in attacking property against a mated member. To obtain the member, 0.1 to 3.5 wt. % h-BN and 0.1 to 3.5 wt. % graphite are mixed in a matrix material of iron-based powder containing chromium, and a resultant powder mixture is compacted to form a compact. The compact is sintered while bringing the compact into contact with copper or copper alloy so that the copper or copper alloy is infiltrated simultaneously with the sintering. In this way, the copper phase is filled in the iron-based matrix and the h-BN is distributed in the copper phase. Graphite reacts with chromium to be precipitated as chromium carbide in and/or near boundaries defined between the matrix and the copper phase.
    Type: Grant
    Filed: February 4, 1997
    Date of Patent: August 10, 1999
    Assignee: Daido Metal Company Ltd.
    Inventors: Kouki Ozaki, Koichi Yamamoto, Takayuki Shibayama
  • Patent number: 5933701
    Abstract: The invention relates to ZrB.sub.2 /Cu composites, and more specifically to methods of making ZrB.sub.2 /Cu composite electrodes and methods of using ZrB.sub.2 /Cu composite electrodes. ZrB.sub.2 powder is contacted with a polymer and shaped to a desired form. The polymer is vaporized and the ZrB/.sub.2 powder is sintered. The sintered ZrB.sub.2 is contacted with Cu and heated above the melting point of Cu which causes the Cu to infiltrate the ZrB.sub.2, forming the ZrB.sub.2 /Cu composite electrode.
    Type: Grant
    Filed: January 19, 1998
    Date of Patent: August 3, 1999
    Assignee: Texas A & M University System
    Inventors: Brent E. Stucker, Walter L. Bradley, Philip T. Eubank, Bedri Bozkurt, Somchintana Norasetthekul
  • Patent number: 5930581
    Abstract: The invention is a complex-shaped article, comprising an article prepared by joining at least one multi-phase ceramic-metal part and at least one shaped part of another material, wherein the theoretical density of the at least one ceramic-metal part is greater than 80 percent.In another aspect, the invention is a process for preparing complex-shaped articles, comprising:(a) forming at least one ceramic-metal part;(b) forming at least one shaped part of another material; and(c) joining the at least one shaped ceramic-metal part with the at least one shaped part of another material such that a complex-shaped article is formed.The invention is a less costly and time-consuming process for preparing complex-shaped composite articles wherein the articles are formed of two or more selected materials wherein one of the materials is a ceramic-metal composite.
    Type: Grant
    Filed: December 24, 1996
    Date of Patent: July 27, 1999
    Assignee: The Dow Chemical Company
    Inventors: David W. Born, Richard T. Fox, Donald J. Perettie
  • Patent number: 5913255
    Abstract: A method of producing a radially anisotropic sintered R-Fe-B-based magnet wherein R is at least one rare earth element including Y, in which a green body stack comprising a plurality of compact bodies are formed in series by the same die. The density of the compact body is regulated to 3.1 g/cm.sup.3 or more, and increased at the final compacting step to a density at least 0.2 g/cm.sup.3 higher than that before the final compacting step. By so regulating the density of the green body, the cracking during the sintering process at the binding portion, an interface between the stacked compact bodies, can be minimized while retaining high magnetic properties of the resulting magnet.
    Type: Grant
    Filed: August 7, 1997
    Date of Patent: June 15, 1999
    Assignee: Hitachi Metals Ltd.
    Inventors: Akira Kikuchi, Shigeho Tanigawa
  • Patent number: 5905937
    Abstract: A method of making an intermetallic-bonded ceramic composite involves combining a particulate brittle intermetallic precursor with a particulate reactant metal and a particulate ceramic to form a mixture and heating the mixture in a non-oxidizing atmosphere at a sufficient temperature and for a sufficient time to react the brittle intermetallic precursor and the reactant metal to form a ductile intermetallic and sinter the mixture to form a ductile intermetallic-bonded ceramic composite.
    Type: Grant
    Filed: January 6, 1998
    Date of Patent: May 18, 1999
    Assignee: Lockheed Martin Energy Research Corporation
    Inventors: Kevin Plucknett, Terry N. Tiegs, Paul F. Becher
  • Patent number: 5897830
    Abstract: A consumable billet for melting and casting a metal matrix composite component is made of a consolidated powder metal matrix composite having a titanium or titanium alloy matrix reinforced with particles. The preferred billet is a blended and sintered powder metal composite billet incorporating titanium carbide or titanium boride into a Ti--6Al--4V alloy.
    Type: Grant
    Filed: December 6, 1996
    Date of Patent: April 27, 1999
    Assignee: Dynamet Technology
    Inventors: Stanley Abkowitz, Susan M. Abkowitz, Paul F. Weihrauch, Harold L. Heussi, Walter Zimmer
  • Patent number: 5870663
    Abstract: The invention relates to ZrB.sub.2 /Cu composites, and more specifically to methods of making ZrB.sub.2 /Cu composite electrodes and methods of using ZrB.sub.2 /Cu composite electrodes. ZrB.sub.2 powder is contacted with a polymer and shaped to a desired form. The polymer is vaporized and the ZrB.sub.2 powder is sintered. The sintered ZrB.sub.2 is contacted with Cu and heated above the melting point of Cu which causes the Cu to infiltrate the ZrB.sub.2, forming the ZrB.sub.2 /Cu composite electrode.
    Type: Grant
    Filed: August 2, 1996
    Date of Patent: February 9, 1999
    Assignee: The Texas A&M University System
    Inventors: Brent E. Stucker, Walter L. Bradley, Philip T. Eubank, Bedri Bozkurt, Somchintana Norasetthekul
  • Patent number: 5858124
    Abstract: A high-resistance rare earth magnet having a metal structure in which a rare earth magnet phase is dispersed throughout a compound phase comprising at least one compound selected from the group consisting of fluorides and oxides of Li, Na, Mg, Ca, Ba and Sr. The fluorides and oxides are effective for increasing the electrical resistance of a rare earth magnet to a level sufficient for practical use while maintaining high magnetic properties of the magnet.
    Type: Grant
    Filed: October 30, 1996
    Date of Patent: January 12, 1999
    Assignee: Hitachi Metals, Ltd.
    Inventors: Minoru Endo, Mitsuaki Mochizuki, Nobuhiko Fujimori
  • Patent number: 5854434
    Abstract: A high-modulus iron-based alloy containing at least one boride dispersed in an iron or iron-alloy matrix. The boride may be one of a Group IVa element, or a complex boride of at least one Group Va element and iron. A mixture of an iron or iron-alloy powder and a powder of at least one boride containing a Group IVa or Va element is compacted and sintered to make a shaped high-modulus iron-based alloy product.
    Type: Grant
    Filed: January 21, 1997
    Date of Patent: December 29, 1998
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Takashi Saito, Kouji Tanaka
  • Patent number: 5848348
    Abstract: The present disclosure is directed to the fabrication of a highly wear layer either directly upon an article or tool support structure or body, or as a wear resistant insert or element which is subsequently attached to the tool body. The wear material is formed by sintering particulate material using the absorption of microwave energy as a means of heating. The disclosure also encompasses post manufacture annealing, using heating by microwave radiation, of both highly wear resistant inserts and composite articles which consist of a wear resistant layer and a body. The wear resistant material, whether fabricated directly upon an article or fabricated separately and subsequently affixed to an article, provides an abrasive wear surface and greatly increases the life of the article. Microwave sintered wear resistant surfaces for mills, drills, grinders, brakes, bearings, saw blades and other articles and assemblies are disclosed.
    Type: Grant
    Filed: October 15, 1996
    Date of Patent: December 8, 1998
    Inventor: Mahlon Denton Dennis
  • Patent number: 5834663
    Abstract: In the manufacture of a rare earth sintered magnet of the Nd.sub.2 Fe.sub.14 B system, closed voids are formed in the magnet in a predetermined fraction to minimize shrinkage. Unlike open voids or pores in conventional semi-sintered magnets, the closed voids do not incur magnet corrosion since they do not communicate to the magnet exterior. By minimizing shrinkage during sintering in this way, a ring or plate-shaped thin wall anisotropic magnet can be prepared without machining for shape correction, achieving a cost reduction and a productivity improvement. Since a high density compact has a high deflective strength, it is easy to handle, minimizing cracking and chipping between the compacting and sintering steps.
    Type: Grant
    Filed: March 25, 1997
    Date of Patent: November 10, 1998
    Assignee: TDK Corporation
    Inventors: Akira Fukuno, Hideki Nakamura, Gouichi Nishizawa
  • Patent number: 5819154
    Abstract: Disclosed is a sintered iron alloy, a method of manufacturing the same, a powdered mixture used for manufacturing the same and a method of modifying the surface of the iron alloy. The sintered iron alloy is produced by compacting a powdered mixture comprising: boron or boron compound which is selected from the group consisting of boron oxide, boron sulfide, boron halide, boron hydride, boric acid, borate and tetrafluoroborate; 0.1 to 2.0% by weight of graphite; and iron, and sintering it. Alternatively, the iron alloy is produced by impregnating a modifier containing boron or boron compound, into a green compact, a presintered compact or sintered body which contains iron and carbon, and heating it.
    Type: Grant
    Filed: December 6, 1996
    Date of Patent: October 6, 1998
    Assignee: Hitachi Powdered Metal Co., Ltd.
    Inventors: Bo Hu, Tadayuki Tsutsui, Kei Ishii, Hideo Shikata, Jun Sakai
  • Patent number: 5812926
    Abstract: A hard facing alloy is applied to a surface of a substrate by making a mixture of at least two constituents whose net composition is the desired hard facing alloy composition. The constituents have different solidus temperatures, at least one of which is above a processing temperature of the substrate and another of which is below the processing temperature of the substrate. In one preferred approach, the mixture is prepared by pressing and lightly sintering the constituents in the form of powders, so that the mixture retains its shape and can be attached to the substrate surface. Then the substrate is heated to the processing temperature and maintained for a time sufficient to permit interdiffusion of the several different phases toward a homogeneous hard facing alloy composition uniformly through a major portion of the volume.
    Type: Grant
    Filed: September 3, 1991
    Date of Patent: September 22, 1998
    Assignee: General Electric Company
    Inventors: Joseph Carl Wukusick, Roger Johnson Perkins, deceased, Murray Sawyer Smith, Jr.
  • Patent number: 5774780
    Abstract: A process for the production of a shaped part which is produced from a high-melting point metal powder with crystalline sinter-activating additives. The process includes the steps of preparing, compressing and sintering the metal powder. Prior to the sintering step, the final contour of the shaped part is substantially shaped. The process is primarily directed for the production of shields for radiation protection, as melting crucibles or as electrodes.
    Type: Grant
    Filed: November 22, 1995
    Date of Patent: June 30, 1998
    Assignee: Bayerische Metallwerke GmbH
    Inventor: Oliver Prause
  • Patent number: 5762843
    Abstract: Methods for making, methods for using and articles having cermets, preferably cemented carbides and more preferably tungsten carbide, having at least two regions exhibiting at least one property that differs are discussed. Preferably, the cermets further exhibit a portion that is binder rich and which gradually or smoothly transitions to at least a second region. The multiple-region cermets are particularly useful in compressively loaded application wherein a tensile stress or fatigue limit might otherwise be excessive for monolithic articles. The cermets are manufactured by juxtaposing and densifying at least two powder blends having different properties (e.g., differential carbide grain size, differential carbide chemistry, differential binder content, differential binder chemistry, or any combination of the preceding).
    Type: Grant
    Filed: December 23, 1994
    Date of Patent: June 9, 1998
    Assignee: Kennametal Inc.
    Inventors: Ted R. Massa, John S. Van Kirk, Robert R. McNaughton, Jr.
  • Patent number: 5741596
    Abstract: An oxidation protection coating for metal substrate surfaces. The coating, according to a preferred embodiment, comprises an initial or first layer of a glass-ceramic, such as a barium aluminosilicate composed chiefly of baria, silica and alumina; or mullite, composed of silica-alumina or, alternatively, baria-silica. Titanium dioxide, nickel oxide or SnO.sub.2 can be added. The next layer of the coating is comprised of alumina or silicon carbide. The third or final layer is comprised of a thin layer of silica or a high-silica material, e.g., a silica containing 4% B.sub.2 O.sub.3. For a thicker third layer, particles of a dark solid, such as boron silicide, ferrous oxide, ferric oxide, nickel oxide, manganese dioxide, carbon or silicon carbide, can be incorporated. The three-layer coating provides high emittance and low catalytic activity for the recombination of oxygen and nitrogen, as well as being a hydrogen diffusion barrier.
    Type: Grant
    Filed: February 21, 1989
    Date of Patent: April 21, 1998
    Assignee: Boeing North American, Inc.
    Inventors: Raymund P. Skowronski, David Kramer
  • Patent number: 5722033
    Abstract: A method of extruding a boron carbide-aluminum alloy metal matrix composite includes heating the ingots of the composite to temperatures of about 570.degree. C., holding the ingots at about 570.degree. C. to soften the ingots, placing the ingots in a heated extrusion chamber, and extruding the softened ingots at pressures about 15% to 20% higher than typical pressures used to extrude aluminum alloys. A method of casting a boron carbide-aluminum alloy metal matrix composite includes heating ingots of the composite to about 700.degree. C. to melt the ingots, gently stirring the melt, removing dross from the melt, vigorously stirring the melt with an impeller without creating a vortex, degassing the melt with an argon diffuser wand, and continuously removing froth formed during degassing until the rate of froth formation is reduced and the melt gently bubbles.
    Type: Grant
    Filed: July 1, 1996
    Date of Patent: February 24, 1998
    Assignee: Alyn Corporation
    Inventor: Robin A. Carden
  • Patent number: 5708956
    Abstract: Ceramic-ceramic and ceramic-metal composite materials are disclosed which contain at least two ceramic phases and at least one metallic phase. At least one of these ceramic phases is a metal boride or mixture of metal borides and another of the ceramic phases is a metallic nitride, metallic carbide, or a mixture of metallic nitride and a metallic carbide.
    Type: Grant
    Filed: October 2, 1995
    Date of Patent: January 13, 1998
    Assignee: The Dow Chemical Company
    Inventors: Stephen D. Dunmead, Michael J. Romanowski
  • Patent number: 5697042
    Abstract: Methods for making, methods for using and articles comprising cermets, preferably cemented carbides and more preferably tungsten carbide, having at least two regions exhibiting at least one property that differs are discussed. Preferably, the cermets further exhibit uniform or controlled wear to impart a self-sharpening character to an article. The multiple-region cermets are particularly useful in wear applications. The cermets are manufactured by juxtaposing and densifying at least two powder blends having different properties (e.g., differential carbide grain size or differential carbide chemistry or differential binder content or differential binder chemistry or any combination of the preceding).
    Type: Grant
    Filed: December 21, 1995
    Date of Patent: December 9, 1997
    Assignee: Kennametal Inc.
    Inventors: Ted R. Massa, John S. Van Kirk, Edward V. Conley
  • Patent number: 5690752
    Abstract: A permanent magnet is obtained by pulverizing, molding and sintering a starting material containing an alloy ingot. The alloy ingot contains not less than 90% by volume of columnar crystals each having a columnar crystal grain size of 0.1 to 50 .mu.m along a short axis thereof and a columnar crystal grain size of larger than 100 .mu.m and not larger than 300 .mu.m along a long axis thereof, and is obtained by uniformly solidifying by a single roll method a molten alloy containing 25 to 31% by weight of a rare earth metal, 0.5 to 1.5% by weight of boron and iron under cooling conditions of a cooling rate of higher than 500.degree. C./sec. and not higher than 10,000.degree. C./sec. and a supercooling degree of 50.degree. to 500.degree. C.
    Type: Grant
    Filed: July 27, 1995
    Date of Patent: November 25, 1997
    Assignee: Santoku Metal Industry Co., Ltd.
    Inventors: Kazuhiko Yamamoto, Yuichi Miyake, Chikara Okada
  • Patent number: 5674562
    Abstract: This invention relates generally to a novel directed metal oxidation process which is utilized to produce self-supporting bodies. In some of the more specific aspects of the invention, a parent metal (e.g., a parent metal vapor) is induced to react with at least one solid oxidant-containing material to result in the directed growth of a reaction product which is formed from a reaction between the parent metal and the solid oxidant-containing material. The inventive process can be utilized to form bodies having substantially homogeneous compositions, graded compositions, and macrocomposite bodies. In a preferred embodiment, the reaction product may be chemically modified or a different reaction product may be coated thereon. Specifically, once a first reaction product is formed on a solid oxidant-containing material, the formed body may be exposed to a vapor-phase parent metal different from the first parent metal.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: October 7, 1997
    Assignee: Lanxide Technology Company, LP
    Inventors: Terry Dennis Claar, Vilupanur Alwar Ravi, Michael Allan Richmond, Philip Joseph Roach, Barry Robert Rossing
  • Patent number: 5669059
    Abstract: An improved metal matrix composite which, in a preferred embodiment disclosed herein, utilizes boron carbide as the ceramic additive to a base material metal. The metal matrix composite of the present invention begins with the preparation of the boron carbide powder by particle size selection in a jet mill. The resulting powder and metal powder are then mixed by blending of powder of all the various elements such as by means of a conventional blender to uniformly mix powdered substances and avoid stratification and settling. After the particles have been sufficiently mixed, they are degassed and then placed into a die and then into a cylindrical container where the particulates are subjected to extremely high pressures transforming the elements into a solid ingot. It is from these ingots that the extrusion tubes or other articles of manufacture may then be made.
    Type: Grant
    Filed: September 29, 1995
    Date of Patent: September 16, 1997
    Assignee: Alyn Corporation
    Inventor: Robin A. Carden
  • Patent number: 5666635
    Abstract: This invention, using finely ground powders obtained by either a ingot grinding method, a Ca reduction diffusion method or a strip casting method, proposes a fabrication method for high-performance R--Fe--B permanent magnets with excellent press packing characteristics, a high degree of orientation of the magnetization direction of each crystallite and a total sum of A, (BH)max (MGOe) and B, iHc (kOe), A+B greater than 59.5. Here, cast alloys or ground alloys are coarse ground by mechanical grinding or by a H.sub.2 absorption and decomposition method, and then fine ground by either mechanical grinding or by a jet mill grinding process to yield R--Fe--B fine powders with an average particle size of 1.0 .mu.m.about.10 .mu.m. These powders are then packed into a mold at a packing density of 1.4.about.3.5 g/cm.sup.
    Type: Grant
    Filed: September 6, 1995
    Date of Patent: September 9, 1997
    Assignee: Sumitomo Special Metals Co., Ltd.
    Inventors: Yuji Kaneko, Naoyuki Ishigaki
  • Patent number: 5650021
    Abstract: It is an object of the present invention to provide a method of producing sintered- or bond- rare earth element.iron.boron magnets obtainable easily and superior in magnetic properties with stable performance. The method of producing sintered rare earth element.iron.boron magnets according to the present invention is characterized by that it comprises steps of mixing in a scheduled ratio an acicular iron powder coated with a coating material, a rare earth element powder coated with a coating material and a boron powder coated with a coating material, and subjecting the mixture to compression molding followed by sintering of the molded mixture in the presence of a magnetic field. The method of producing bond rare earth element.iron.
    Type: Grant
    Filed: September 25, 1995
    Date of Patent: July 22, 1997
    Assignees: Kawasaki Teitoku Co., Ltd., Komeya Inc., Sanei Kasei Co., Ltd.
    Inventor: Yasunori Takahashi
  • Patent number: 5641921
    Abstract: This invention is directed toward a material which is used to coat or create a surface for machine cutting tools, all types of drill bit teeth, saw teeth, bearing surfaces valve seats, nozzles and the like, thereby producing surfaces which are highly abrasion and erosion resistant. Furthermore, this invention includes some of the possible methods for producing such a material given that the methods and apparatus required provide a significant cost reduction over those required for producing prior art surface materials with similar abrasion and erosion resistant properties. More specifically, the material set forth can be formed at relatively low temperatures and relatively low pressures by sintering mixtures for a relatively short period of time.
    Type: Grant
    Filed: August 22, 1995
    Date of Patent: June 24, 1997
    Assignee: Dennis Tool Company
    Inventors: Mahlon Denton Dennis, Barton Hampshire
  • Patent number: 5641363
    Abstract: In the manufacture of a rare earth sintered magnet of the Nd.sub.2 Fe.sub.14 B system, closed voids are formed in the magnet in a predetermined fraction to minimize shrinkage. Unlike open voids or pores in conventional semi-sintered magnets, the closed voids do not incur magnet corrosion since they do not communicate to the magnet exterior. By minimizing shrinkage during sintering in this way, a ring or plate-shaped thin wall anisotropic magnet can be prepared without machining for shape correction, achieving a cost reduction and a productivity improvement. Since a high density compact has a high deflective strength, it is easy to handle, minimizing cracking and chipping between the compacting and sintering steps.
    Type: Grant
    Filed: December 27, 1994
    Date of Patent: June 24, 1997
    Assignee: TDK Corporation
    Inventors: Akira Fukuno, Hideki Nakamura, Gouichi Nishizawa
  • Patent number: 5637816
    Abstract: A metal matrix composite comprising an iron aluminide binder phase and a ceramic particulate phase such as titanium diboride, zirconium diboride, titanium carbide and tungsten carbide is made by heating a mixture of iron aluminide powder and particulates of one of the ceramics such as titanium diboride, zirconium diboride, titanium carbide and tungsten carbide in a alumina crucible at about 1450.degree. C. for about 15 minutes in an evacuated furnace and cooling the mixture to room temperature. The ceramic particulates comprise greater than 40 volume percent to about 99 volume percent of the metal matrix composite.
    Type: Grant
    Filed: August 22, 1995
    Date of Patent: June 10, 1997
    Assignee: Lockheed Martin Energy Systems, Inc.
    Inventor: Joachim H. Schneibel
  • Patent number: 5614684
    Abstract: A method for the production of a superplastic Mg-based composite material comprises preparing a composite material consisting of ceramic particles formed of at least one compound selected from among TiC, AlN, Si.sub.3 N.sub.4, and TiB.sub.2 and a matrix formed of a magnesium alloy, dispersing the ceramic particles in the matrix, hot extruding the composite material, and then hot rolling the resultant extrudate; and a superplastic Mg-based composite material produced by the method.
    Type: Grant
    Filed: October 3, 1995
    Date of Patent: March 25, 1997
    Assignee: Agency of Industrial Science and Technology, Ministry of International Trade & Industry
    Inventors: Suk-Won Lim, Tsunemichi Imai, Yoshinori Nishida, Takao Choh
  • Patent number: 5603070
    Abstract: Metal carbide supported polycrystalline diamond (PCD) compacts having improved shear strength and impact resistance properties, and a method for making the same under high temperature/high pressure (HT/HP) processing conditions. A sintered polycrystalline cubic boron nitride (PCBN) compact interlayer is provided to be bonded at a first interface to a sintered PCD compact layer, and at a second interface to a cemented metal carbide support layer comprising particles of a metal carbide in a binder metal. The supported compact is characterized as having a substantially uniform sweep through of the binder metal from the cemented metal carbide support layer, which sweep through bonds the sintered PCD compact layer to the sintered PCBN interlayer, and the sintered PCBN interlayer to the cemented metal carbide support layer.
    Type: Grant
    Filed: February 2, 1996
    Date of Patent: February 11, 1997
    Assignee: General Electric Company
    Inventors: David B. Cerutti, Henry S. Marek