Carbide Containing Patents (Class 419/14)
  • Patent number: 6398843
    Abstract: A dispersion-strengthened material is described which comprises aluminium or aluminium alloy containing a substantially uniform dispersion of ceramic particles to confer dispersion strengthening which is inherently stable at high working temperatures, the ceramic particles having a diameter of less than 400 nm, and preferably in the range 10 nm to 100 nm. Suitable ceramic dispersoids include Al2O3, TiO2, Al3C4, ZrO2, Si3N4, SiC, SiO2.
    Type: Grant
    Filed: May 4, 2000
    Date of Patent: June 4, 2002
    Assignee: Qinetiq Limited
    Inventor: Andrew Tarrant
  • Publication number: 20020059850
    Abstract: A cemented carbide insert of a first grade has at least one cutting point consisting of a cemented carbide of a second grade with different composition and/or grain size with an uneven transition zone between the first and second grade.
    Type: Application
    Filed: November 9, 2001
    Publication date: May 23, 2002
    Inventors: Lars-Ake Engstrom, Helene Ouchterlony
  • Patent number: 6387196
    Abstract: A process for producing a particle-reinforced titanium alloy includes the steps of: heating a titanium alloy in which ceramic particles having a thermodynamically stable property are dispersed in a temperature range of not less than &bgr;-transus temperature; and cooling the titanium alloy to pass through the &bgr;-transus temperature at a cooling rate of 0.1-30° C./second. The process can further include, before the heating step, the step of compressing the titanium alloy in a two phase temperature range of &agr;+&bgr; thereof or in a temperature range of not less than &bgr;-transus temperature.
    Type: Grant
    Filed: October 18, 1999
    Date of Patent: May 14, 2002
    Assignees: Toyota Jidosha Kabushiki Kaisha, Kabushiki Kaisha Chuo Kenkyusho, Aisan Kogyo Kabushiki Kaisha
    Inventors: Toshiya Yamaguchi, Tadahiko Furuta, Takashi Saito, Kouji Sakurai
  • Patent number: 6387149
    Abstract: A metal porous body having a skeleton which has a foam structure, composed of an alloy composed mainly of Fe and Cr and includes a Cr carbide and/or FeCr carbide uniformly dispersed therein. The metal porous bodies are obtained by preparing a slurry mainly composed of an Fe oxide powder of average particle not more than 5 &mgr;m, at least one powder selected from among metallic Cr, Cr alloy and Cr oxide powders, thermosetting resin and a diluent; applying this slurry onto a foamed resin core body; then drying, and then forming a metal porous body by firing in a non-oxidizing atmosphere, including a heat-treatment at 950 to 1350° C. The metal porous bodies thus obtained have excellent heat resistance, corrosion resistance and strength and are useful as electrode base plates, catalyst supports and filter materials, and furthermore, as metallic composite materials.
    Type: Grant
    Filed: June 26, 2000
    Date of Patent: May 14, 2002
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Keizo Harada, Kenichi Watanabe
  • Publication number: 20020048526
    Abstract: An sintered iron-based powder metal body with outstandingly lower re-compacting load and having a high density and a method of manufacturing an iron-based sintered component with fewer pores of a sharp shape and having high strength and high density, the method comprising mixing,
    Type: Application
    Filed: August 21, 2001
    Publication date: April 25, 2002
    Applicant: Kawasaki Steel Corporation
    Inventors: Naomichi Nakamura, Satoshi Uenosono, Shigeru Unami, Masashi Fujinaga, Takashi Yoshimura, Mitsumasa Iijima, Shin Koizumi, Hiroyuki Anma, Yasuo Hatai
  • Publication number: 20020026855
    Abstract: A copper-based sliding material produced by sintering, comprising at least two phases of copper and/or copper alloys which phases have hardness levels different form each other, and hard particles with an average particle size of 0.1 to 10 &mgr;m which are dispersed in at least one phase with the exception of a softest phase in an amount of 0.1 to 10 vol.% of the whole copper-based sliding material, said sliding material satisfying (H2/H1)≧1.2 in which H1 is the Vickers hardness of the softest phase and in which H2 is the Vickers hardness of a phase hardest in hardness including said hard particles.
    Type: Application
    Filed: June 25, 2001
    Publication date: March 7, 2002
    Applicant: DAIDO METAL COMPANY LTD.
    Inventors: Kenji Sakai, Naohisa Kawakami, Satoru Kurimoto, Takashi Inaba, Koichi Yamamoto, Takayuki Shibayama
  • Patent number: 6350294
    Abstract: The present invention relates to powder-metallurgically produced composite material comprising a matrix of a metal with a melting point of at most 1,200° C. and a granular additive which consists of at least two refractory components embedded in said matrix, characterized in that the refractory components are present as mixed crystals or intermetallic phases. In one embodiment of the invention one or a first group of refractory component(s) has a melting point in the range of 1,500 to 2,400° C. and the second or the second group of refractory component(s) has a melting point above 2,400° C. The composite material is produced by heating a pulverized mixture of the refractory components, thus converting it into a mixed crystal or an intermetallic phase, and then combining the powder obtained by cooling and pulverizing with a metal matrix having a melting point of at most 1,200° C. by means of powder-metallurgy.
    Type: Grant
    Filed: January 25, 2000
    Date of Patent: February 26, 2002
    Assignee: Louis Renner GmbH
    Inventors: Gerd Renner, Udo Siefken
  • Patent number: 6338907
    Abstract: The invention relates to an abrasive tool comprising a support body and at least one abrasive element connected thereto. Said abrasive element has an abrasive grain which is joined by a sintered metal. The sintered metal used for joining is copper-coated iron and is alloyed with metal borides, metal carbides and/or metal silicides and also with tin.
    Type: Grant
    Filed: April 3, 2000
    Date of Patent: January 15, 2002
    Assignee: Tyrolit Schleifmittelwerke Swarovski K.G.
    Inventor: Wolfgang Strelsky
  • Patent number: 6336950
    Abstract: An aspect of this invention is an electrode rod for spark alloying, comprising a compact of a first powder of a first component which comprises a metal selected from a group of Fe, Co, Ni, metals of 4a, 5a and 6a of the periodic table and Si, and a second powder of a second component which is capable of self-propagating high temperature synthesis to form with said first component carbide, nitride, boride, silicide or intermetallic compound, said first and second powders being mixed intimately with each other and formed into an axial rod.
    Type: Grant
    Filed: May 5, 2000
    Date of Patent: January 8, 2002
    Assignees: The Ishizuka Research Institute Ltd., Moscow Steel and Alloys Institute, SHS-Center
    Inventors: Mitsue Koizumi, Manshi Ohyanagi, Satoru Hosomi, Evgeny Alexandrovich Levashov, Alexander Gennadievich Nikolaev, Alexander Evgenievich Kudryashov
  • Patent number: 6303076
    Abstract: A contact material for forming a contact included in a vacuum interrupter comprises 50 to 70% by weight of a conductive material containing Cu as a principal component, an arc-proof material containing at least either TiC or VC and having a mean particle diameter of 8 &mgr;m or below, and 0.2 to 2.0% by weight of Cr on the basis of the sum of the respective amounts of Cr and Cu or 0.2 to 2/0% by weight of Zr on the basis of the sum of the respective amounts of Zr and Cu. The contact material has a hydrogen content in the range of 0.2 to 50 ppm.
    Type: Grant
    Filed: August 23, 1999
    Date of Patent: October 16, 2001
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Atsushi Yamamoto, Takashi Kusano, Tsutomu Okutomi, Tsuneyo Seki, Makoto Kataoka
  • Patent number: 6303235
    Abstract: There is provided a copper-based sliding alloy excellent in wear resistance and anti-seizure property. A phase of 2 to 30 wt. % lead is dispersed in the copper alloy. This lead phase contains 0.1 to 6 vol. % hard particles such as SiC, SiO2, Si3N4, Al2O3, TiC, WC and TiN having an average particle size of 5 to 25 &mgr;m. Because hard particles are included in the lead phase, wear resistance is excellent and anti-seizure property is improved. The lead phase, which is soft, serves as a cushion and the attack on a mating member by hard particles is reduced. Further, the falling-off of lead is minimized because the lead phase also includes the hard particles.
    Type: Grant
    Filed: April 1, 1999
    Date of Patent: October 16, 2001
    Assignees: Daido Metal Company Ltd., Kayaba Kogyo Kabushiki Kaisha
    Inventors: Naohisa Kawakami, Tsukimitsu Higuchi, Yoshiaki Sato, Takayuki Shibayama, Keizo Mizuno, Kenji Yamanouchi
  • Patent number: 6299658
    Abstract: In a cemented carbide, at least one compound 3 including a carbide, a nitride or carbo-nitride of at least one component selected from IVa, Va and VIa group elements or a solid solution thereof exists in at least some WC crystal grains 1. Preferably the compound 3 is in the form of compound grains 3 comprising a carbide, a nitride or a carbo-nitride of Ti, Zr, Hf or W or a solid solution thereof, having an average grain diameter smaller than 0.3 &mgr;m. The compound grains make up at most 10% of the cross-sectional area of the WC crystal grains that contain the compound grains, while at least 10% of the total cross-sectional area of the cemented carbide is made up of such WC crystal grains that contain the compound grains.
    Type: Grant
    Filed: July 23, 1998
    Date of Patent: October 9, 2001
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Hideki Moriguchi, Akihiko Ikegaya
  • Patent number: 6293986
    Abstract: A hard metal or cermet sintered body and a method of making it wherein a solid phase containing WC and a binder phase are formed together with WC platelets by direct microwave irradiation, utilizing reactive sintering to form the WC at least in part and to produce the platelets.
    Type: Grant
    Filed: August 4, 1999
    Date of Patent: September 25, 2001
    Assignee: Widia GmbH
    Inventors: Klaus Rödiger, Klaus Dreyer, Monika Willert-Porada, Thorsten Gerdes
  • Publication number: 20010022944
    Abstract: A process for the manufacture of compressed articles, particularly cemented-carbide cutting blade inserts, by compacting metallic powder and subsequently sintering the compact, particularly cemented-carbide reversible cutting blade inserts, which have a seating surface and at least one cutting edge extending approximately in parallel with the seating surface which is at a predetermined distance from the seating surface, by means of a press having a die-plate and a top ram and a bottom ram, comprising the steps of:
    Type: Application
    Filed: March 2, 2001
    Publication date: September 20, 2001
    Inventors: Jurgen Hinzpeter, Ulrich Zeuschner, Thomas Pannewitz, Ulf Hauschild, Klaus Peter Russmann
  • Patent number: 6280496
    Abstract: A silicon carbide based composite material includes as a first component, a metal mainly consisting of aluminum or copper, and as a second component, particles mainly consisting of silicon carbide having high purity and few defects. The material is obtained by heating a compact of the raw material powder containing the first and second components at a temperature not lower than the melting point of the metal mainly consisting of aluminum or copper, and by forging and solidifying under pressure. Preferably, the silicon carbide raw material powder is prepared to have high purity by carrying out a preliminary treatment, or the material after forging or a material obtained through a conventional infiltration process is further heated at a temperature lower than the melting point of the first component. In this manner, an improved superior thermal conductivity can be obtained.
    Type: Grant
    Filed: September 8, 1999
    Date of Patent: August 28, 2001
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Chihiro Kawai, Shin-ichi Yamagata, Akira Fukui, Yoshinobu Takeda
  • Patent number: 6274082
    Abstract: A process for producing a shaped article, comprising: preparing a first powder having high strength and rigidity after completion of forming, and a second powder having abrasion resistance and surface hardness after completion of forming; compacting those powders to provide a forming material comprising a base part comprising the first powder and a supplemental part comprising the second powder; and forming the forming material into a shaped article by plastic processing, thereby producing a shaped article in which the base part and the supplemental part have different characteristics. The first powder preferably comprises a rapidly-solidified alloy powder and the second powder preferably comprises at least one member selected from among Al2O3, Si3N4, BN, SiC, Al4C3, Al8B2O15 and B2O or a mixture of the member and the first powder which may be the same one actually used as the first powder or another one having a different compositions from that of the actually used first powder.
    Type: Grant
    Filed: September 2, 1999
    Date of Patent: August 14, 2001
    Assignee: YKK Corporation
    Inventors: Junichi Nagahora, Koju Tachi, Koji Saito, Teruaki Onogi
  • Patent number: 6261329
    Abstract: A diamond sintered body having high wear resistance, chipping resistance, shock resistance and thermal conductivity is provided. The diamond sintered body includes sintered diamond particles and a sintering aid as the remainder. The content of the sintered diamond particles is at least 80% by volume and less than 99% by volume. The sintered diamond particles have a particle size in the range from at least 0.1 &mgr;m to at most 70 &mgr;m. The sintered diamond particles next to each other are directly bonded. The sintering aid includes at least one kind selected from tungsten, iron, cobalt and nickel. The percentage of the tungsten in the sintered body is in the range from at least 0.01% by weight to at most 8% by weight.
    Type: Grant
    Filed: August 10, 1999
    Date of Patent: July 17, 2001
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yasunobu Ogata, Satoru Kukino, Yasuyuki Kanada, Junichi Shiraishi, Tetsuo Nakai
  • Patent number: 6228481
    Abstract: A composite material is composed of a matrix and dispersed components which form a discontinuous three-dimensional network structure in the matrix. It permits the dispersed components to fully exhibit the characteristic properties without any loss of mechanical properties. A process for producing the above-mentioned composite material includes preparing a raw material powder such that granules of desired shape for the matrix are discontinuously covered with components of desired shape for the dispersed phase, molding the raw material powder into a desired shape, and heating the molded article.
    Type: Grant
    Filed: March 20, 1998
    Date of Patent: May 8, 2001
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Katsunori Yamada, Nobuo Kamiya
  • Patent number: 6200526
    Abstract: A process for preparing complex-shaped, ceramic-metal composite articles, comprising: (a) contacting a non-wettable powder that is non-wetting to a metal to be used for infiltration with a shaped ceramic body to form a layer of the non-wettable powder on one or more surfaces of the shaped ceramic body, wherein the shaped ceramic body has a region where there is no layer of the non-wettable powder, and (b) infiltration the shaped ceramic body with the metal through the region or regions where there is no layer of the non-wettable powder, such that a complex-shaped ceramic-metal composite comprising one or more metal phases and one or more ceramic phases is formed, wherein the article has substantially the net shape of the shaped ceramic body and undesirable regions of excess metal on the surface and undesirable phases within the complex-shaped ceramic-metal composite article near the surface are located only in the region or regions where there is no layer of the non-wettable powder.
    Type: Grant
    Filed: May 11, 1999
    Date of Patent: March 13, 2001
    Assignee: The Dow Chemical Company
    Inventors: Richard T. Fox, Aleksander J. Pyzik, Chan Han, Robert T. Nilsson
  • Patent number: 6193928
    Abstract: A process for manufacturing ceramic metal composite bodies, the ceramic metal composite bodies and their use. The process is based on molten infiltration and the simultaneous or delayed exchange reaction of ceramic or metal ceramic un-fired bodies or sintered bodies which may consist of nitrides or carbides as well as metals, with molten metal of additional metals, whereby new nitride, carbide and intermetallic phases are formed which have improved wear and high-temperature characteristics. These ceramic metal composite bodies can be used for tribological applications.
    Type: Grant
    Filed: February 20, 1998
    Date of Patent: February 27, 2001
    Assignee: DaimlerChrysler AG
    Inventors: Steffen Rauscher, Michael Scheydecker, Karl Weisskopf, Tanja Tschirge, Rainer Zimmermann-Chopin
  • Patent number: 6187260
    Abstract: A process for making composite materials, namely reinforced Al-metal matrix composites based on either: (I) Al—W intermetallic phase and Al2O3 ceramic whiskers, or (II) Al—Mo intermetallic phase and Al2O3 ceramic whiskers. This process involves the oxidation of aluminum using tungsten oxide in powder form for product I, and that of aluminum and molybdenum oxide in powder form for product II. Product I contains an Al—W intermetallic phase, some sapphire whiskers, and a continuous Al-metal matrix. Product II contains an Al—Mo intermetallic phase, sapphire whiskers, and a continuous Al-metal matrix. The alumina whiskers are formed as a result of two reactions. They are: (i) the oxidation between the pre-mixed Al and the oxide, and (ii) the oxidation of Al with the atmospheric environment in the presence of the oxide, which acts as a catalytic agent for the reaction. These newly invented products are hard, strong and light.
    Type: Grant
    Filed: May 5, 1999
    Date of Patent: February 13, 2001
    Assignee: The Chinese University of Hong Kong
    Inventors: Cai-Dong Qin, Dickon Hang Leung Ng
  • Patent number: 6139765
    Abstract: A magnetic powder and a permanent magnet are provided which have magnetic properties enhanced by magnetic interaction. Disclosed are a magnetic powder comprising a mixture of two or more powders including a magnetic powder A (residual magnetic flux density: BrA, coercive force: HcA) and a magnetic powder B (residual magnetic flux density: BrB, coercive force: HcB) of which the residual magnetic flux densities and the coercive forces have the following relationships: BrA>BrB and HcA<HcB, and a bonded magnet or a sintered magnet produced from the magnetic powder, and a method for mixing magnetic powders and a process for producing a magnet.
    Type: Grant
    Filed: April 25, 1997
    Date of Patent: October 31, 2000
    Assignee: Seiko Epson Corporation
    Inventors: Atsunori Kitazawa, Toshiyuki Ishibashi, Koji Akioka
  • Patent number: 6126710
    Abstract: A method of producing a composite material, in particular for sintered slide bearings and slide bearings.Composite materials for sintered slide bearings consist of at least one ceramic sintered material and at least one metallic sintered material and have a short service life during operation at low speeds of the shaft and in the case of a simultaneously high radial load because the lubricant stored in the bearing cracks. The novel sintered bearing is to have a long service life under such operating conditions.In the novel bearing use is made of ceramic sintered materials which have a high thermal conductivity, e.g. boron nitride.The novel composite material and the novel slide bearing are particularly suited for electric miniature motors comprising a ceramic shaft.
    Type: Grant
    Filed: April 2, 1999
    Date of Patent: October 3, 2000
    Assignee: Maxon Motor GmbH
    Inventor: Bodo Futterer
  • Patent number: 6096111
    Abstract: A homogeneous sintered composite made by press-forming a homogeneous mixture of powders of an agglutinating component, a second component having a melting point higher then the agglutinating component, and an exothermically reactive component to form a compact; heating the compact, then inducing an exothermic reaction of the reactive substance which generates sufficient additional heat to melt the agglutinating component without melting the high melting point component. For electronic microcircuit heat-dissipation applications the agglutinating component is a high thermal conductivity metal, and the high melting point component has a low thermal expansivity, whose proportions are adjusted to match the thermal expansion characteristics of microcircuit material. To reduce porosity, the reacted compact is pressed again while the agglutinating component is still in the liquid phase. For low weight applications the second material has high specific thermal conductivity.
    Type: Grant
    Filed: May 19, 1998
    Date of Patent: August 1, 2000
    Assignee: Frank J. Polese
    Inventors: Frank J. Polese, Ranganath Saraswati
  • Patent number: 6090343
    Abstract: A method for fabricating a triphasic composite such as a WC/Co/diamond composite with a high volume fraction of diamond in a WC/Co matrix. The method involves sintering of a WC/Co powder compact to develop a porous preform, which displays some rigidity and strength, infiltrating the porous preform with a controlled distribution of carbon, and high pressure/high temperature treatment of the carbon-containing WC/Co preform to transform the carbon to diamond. The distribution of diamond in the composite can be functionally graded to provide a WC/Co core and a diamond-enriched surface, wherein all three phases form an interconnected structure in three dimensions. Such a tricontinuous structure combines high strength and toughness with superior wear resistance, making it attractive for applications in machine tools and drill bits.
    Type: Grant
    Filed: March 25, 1998
    Date of Patent: July 18, 2000
    Assignee: Rutgers University
    Inventors: Bernard H. Kear, Rajendra K. Sadangi, Larry E. McCandlish, Oleg Voronov
  • Patent number: 6071469
    Abstract: There is disclosed a method of sintering cemented carbide bodies including heating said bodies to the sintering temperature in a suitable atmosphere and cooling. If said cooling at least to below 1200.degree. C. is performed in a hydrogen atmosphere of pressure 0.4-0.9 bar and >0.1 bar noble gas, preferably argon cemented carbide bodies with no surface layer of binder phase are obtained. This is an advantage when said bodies are to be coated with wear resistant layers by the use of CVD-, MTCVD- or PVD-technique.
    Type: Grant
    Filed: May 6, 1999
    Date of Patent: June 6, 2000
    Assignee: Sandvik AB
    Inventors: Barbro Rohlin, Margareta P.ang.lsson, Leif kesson
  • Patent number: 6060016
    Abstract: A densified sintered product, such as a rolling cutter adapted for use in a steel tooth rolling cutter earth boring bit, has a layer of a metal powder applied to the external surface of the unsintered compact, the metal powder being melted to form a thin glaze of the melted metal powder on the external surface of the sintered compact, and the sintered compact may then be pneumatically isostatically forged.
    Type: Grant
    Filed: November 11, 1998
    Date of Patent: May 9, 2000
    Assignee: Camco International, Inc.
    Inventors: Adrian Vuyk, Jr., Jeffery E. Daly
  • Patent number: 6042627
    Abstract: An aluminum-boron-carbon abrasive article is comprised of at least three phases selected from the group consisting of: B.sub.4 C; AlB.sub.2 ; AlB.sub.12 ; AlB.sub.12 C.sub.2 ; Al.sub.4 C.sub.3 ; AlB.sub.24,C.sub.4 ; Al.sub.4 B.sub.1-3 C.sub.4 ; AlB.sub.24 C.sub.4 and Al.sub.4 BC. At least a portion of the surface of the abrasive article is comprised of abrasive grains of at least one phase selected from the group consisting of AlB.sub.24 C.sub.4, Al.sub.4 BC and AlB.sub.2, where the abrasive grains have an average grain size that is at least about two times greater than the average grain size of the grains containing boron and carbon within the abrasive article. The aluminum-boron-carbon abrasive article of claim 1 is prepared by heating, under a vacuum or inert atmosphere, a body comprised of at least one boron containing phase and at least one carbon containing phase in the presence of a separate source of aluminum, such as aluminum metal or alloy thereof.
    Type: Grant
    Filed: April 29, 1998
    Date of Patent: March 28, 2000
    Assignee: The Dow Chemical Company
    Inventors: Aleksander J. Pyzik, Uday V. Deshmukh, Robert D. Krystosek
  • Patent number: 6033789
    Abstract: The tool includes at least one cutting edge formed by a compacted mixture of carbide containing alloy steel and an oxide containing ceramic material, preferably zirconium oxide in an amount of 0.01-15 wt % of the mixture, preferably in the region of 1 to 6 wt %, advantageously in the region of 3 wt %. The mixture may additionally include particles of a hard or abrasive material, such as silicon carbide or aluminum carbide or a boride/carbide such as aluminum titanium diboride-titanium carbide.
    Type: Grant
    Filed: September 11, 1997
    Date of Patent: March 7, 2000
    Inventors: Jonathan James Saveker, Trevor David Bonnell
  • Patent number: 6022508
    Abstract: In a method of powder metallurgical manufacturing of a composite material containing particles in a metal matrix, said composite material having a high wear resistance in combination with a high toughness, the powder particles (I) of a first powder of a first metal or alloy having a high content of hard particles (HT) dispersed in the matrix of said first powder particles, are dispersed in a second powder consisting of particles (II) of a second metal or alloy having a low content of hard particles dispersed in the matrix of said second powder particles, wherein a mutual contact between the hard particles and/or between the particles of said first powder is substantially avoided, and the mixture of said first and second powders is transformed to a solid body through hot compaction.
    Type: Grant
    Filed: August 6, 1997
    Date of Patent: February 8, 2000
    Assignees: Koppern GmbH & Co., KG, Germany, Erasteel Kloster Aktiebolag, Sweden
    Inventor: Hans Berns
  • Patent number: 6019813
    Abstract: The present invention relates to cobalt metal agglomerates consisting of peanut-shaped primary particles with average particle sizes in the range from 0.5 to 2 .mu.m, to a process for the production thereof and to the use thereof.
    Type: Grant
    Filed: April 24, 1998
    Date of Patent: February 1, 2000
    Assignee: H.C. Starck GmbH & Co. KG
    Inventors: Astrid Gorge, Katrin Plaga, Armin Olbrich, Dirk Naumann, Wilfried Gutknecht, Josef Schmoll
  • Patent number: 6019937
    Abstract: A process of forming a sintered article of powder metal comprising blending graphite, Si carbide and lubricant, with pre-alloyed iron base powder; pressing said blended mixture to a shaped article; sintering said article in a reduced atmosphere; forced cooling said sintered article.
    Type: Grant
    Filed: November 27, 1998
    Date of Patent: February 1, 2000
    Assignee: Stackpole Limited
    Inventors: Rohith Shivanath, Karol Kucharski, Peter Jones
  • Patent number: 6015447
    Abstract: The present invention relates to cobalt metal agglomerates consisting of peanut-shaped primary particles, to a process for the production thereof and to the use thereof.
    Type: Grant
    Filed: November 21, 1997
    Date of Patent: January 18, 2000
    Assignee: H.C. Starck GmbH & Co. KG
    Inventors: Astrid Gorge, Juliane Meese-Marktscheffel, Dirk Naumann, Armin Olbrich, Frank Schrumpf
  • Patent number: 5993730
    Abstract: One or more organic or inorganic metal salts or compounds of at least one of the groups IV, V and VI of the periodic system, particularly V, Cr, Mo and W, optionally together with one or more organic iron group metal salts, are dissolved in at least one polar solvent and complex bound with at least one complex former comprising functional groups in the form of OH or NR.sub.3, (R=H or alkyl). Hard constituent powder and optionally soluble carbon source are added to the solution. The solvent is evaporated and the remaining powder is heat treated in an inert and/or reducing atmosphere. As a result, coated hard constituent powder is obtained, which after addition of a pressing agent and optionally with other coated hard constituent powders and/or carbon to obtain the desired composition, can be compacted and sintered according to standard practice.
    Type: Grant
    Filed: October 13, 1998
    Date of Patent: November 30, 1999
    Assignee: Sandvik AB
    Inventors: Mats Waldenstrom, Rolf Svensson
  • Patent number: 5989731
    Abstract: In a composite material manufactured by connecting a sintered body to a surface of a metal substrate, the connection strength under a high temperature is increased, stress relaxation in the composite material is attained, and the strength, wear resistance and corrosion resistance are improved. The sintered body has a multilayer structure having layers with different compositions, i.e. compositions that vary or differ in a direction perpendicular to the connection surface, and the volume relation between the respective layers of the sintered body and the substrate is (substrate volume.times.0.2).gtoreq.(sintered body volume/number of layers), while the thickness of each layer is at least 0.2 mm and not more than 5 mm.
    Type: Grant
    Filed: November 7, 1996
    Date of Patent: November 23, 1999
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yoshifumi Arisawa, Michio Otsuka, Hideki Moriguchi
  • Patent number: 5985440
    Abstract: Sintered silver-iron material for electrical contacts, with properties comparable with those of silver-nickel materials, is obtained by using iron powder having more than 0.25% carbon by weight and microhardness higher than 200 HV 0.025 and sintering in a hydrogen-free protective gas.
    Type: Grant
    Filed: February 27, 1997
    Date of Patent: November 16, 1999
    Assignee: Degussa Aktiengesellschaft
    Inventors: Wolfgang Weise, Willi Malikowski, Roger Wolmer, Peter Braumann, Andreas Koffler
  • Patent number: 5980813
    Abstract: Novel compositions and methods are provided for use in the stepwise, layer by layer fabrication of three-dimensional objects, in which a build material contains a metal having a covalent bond to a non-metal, and the layers are processed to produce the three-dimensional object at least in part through a chemical reaction which alters the covalent bond of the metal. In a first aspect of the invention the build material includes a metal that is covalently bound to a polymeric precursor. In another aspect of the invention, the build material includes a metal, Me, that is covalently bound to a first ligand, L.sub.1. Following deposition of the build material, the first ligand undergoes a redox reaction with a second ligand, L.sub.2, thereby breaking the covalent bond of the metal. In more preferred embodiments of this class, L.sub.1 and L.sub.2 react to form a gas, and the metal reacts to form an oxide such as MeSO.sub.x, MeNO.sub.x, MeCO.sub.x and so forth.
    Type: Grant
    Filed: June 26, 1998
    Date of Patent: November 9, 1999
    Assignee: SRI International
    Inventors: Subhash C. Narang, Susanna C. Ventura, Sunity Sharma, John S. Stotts
  • Patent number: 5976458
    Abstract: The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.
    Type: Grant
    Filed: January 3, 1996
    Date of Patent: November 2, 1999
    Assignee: Philip Morris Incorporated
    Inventors: Vinod K. Sikka, Seetharama C. Deevi, Grier S. Fleischhauer, Mohammad R. Hajaligol, A. Clifton Lilly, Jr.
  • Patent number: 5976455
    Abstract: A metal cutting insert includes a cemented carbide body having a cutting edge and a hole therein for receiving a fastening screw. The hole includes female screw threads for being screw threaded to the fastening screw. The insert is made by a process involving injection molding and sintering steps.
    Type: Grant
    Filed: February 19, 1997
    Date of Patent: November 2, 1999
    Assignee: Sandvik AB
    Inventors: Goran Pantzar, Bjorn H.ang.kansson, Stefan Roman, Per-Anders Holmstrom
  • Patent number: 5972286
    Abstract: The invention relates to the field of ceramic and hard metal industries and concerns a process for manufacturing hard metal parts, in particular th having a complex geometry, such as those used for example as machining tools and wear elements. The object of the invention is to create a process which allows the manufacture of hard metal parts with a complex geometry by using a stable dispersed hard metal-binder suspension, wherein the binder is a thermoplastic binder having a viscosity of 3 to 6 mPa s, and without using an organic solvent to eliminate the binder. For that purpose, a process is disclosed wherein a hard metal powder having an average grain size smaller than 2.0 .mu.m is mixed with a liquefied thermoplastic binder, with viscosity of the mixture being set upon a value of at least 100 mPa s and up to 4,000 mPa s during the whole production and treatment process.
    Type: Grant
    Filed: June 26, 1998
    Date of Patent: October 26, 1999
    Assignee: Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V.
    Inventors: Reinhard Lenk, Claus Richter, Waldemar Hermel
  • Patent number: 5964967
    Abstract: A treatment process for a composite comprising a matrix of a precipitation hardenable aluminum alloy and a particulate or short fiber ceramic reinforcement. The process includes hot and/or cold working the composite, subjecting the composite to a controlled heating step in which the composite is raised from ambient temperature to a temperature of from 250 to 450.degree. C. at a rate of temperature increase less than 1000.degree. C. per hour, and subjecting the resulting heat treated composite to a solution treating step.
    Type: Grant
    Filed: September 19, 1994
    Date of Patent: October 12, 1999
    Assignees: The Secretary of State for Defence in Her Britannic Majesty's Government of the United Kingdom of Great Britain and Northern Ireland, Defence Research Agency
    Inventors: Timothy Frederick Bryant, Simon Brian Dodd, Stephen Mark Flitcroft, William Sinclair Miller, Roger Moreton, Christopher John Peel
  • Patent number: 5936169
    Abstract: A high vanadium, powder metallurgy cold work tool steel article and method for production. The nickel, chromium, vanadium, and carbon plus nitrogen contents of the steel are controlled during production to achieve a desired combination of corrosion resistance, metal to metal wear resistance, and hardenability.
    Type: Grant
    Filed: October 16, 1997
    Date of Patent: August 10, 1999
    Assignee: Crucible Materials Corporation
    Inventors: Kenneth E. Pinnow, William Stasko, John Hauser
  • Patent number: 5932055
    Abstract: Direct Metal Fabrication of metal parts is accomplished with a continuous thermal process in which partial reduction of the "green form" part leaves a thin carbon film that maintains the part's structural integrity. The remaining carbon catalyzes a eutectic reducing element to diffuse throughout the part forming organo-metallic bonds that bind the homogenized metal alloy. Supersolidus liquid phase sintering (SLPS) densities the alloy to provide a final part of parent material quality. The DMF process can be used in magnetographic printing to imprint an image.
    Type: Grant
    Filed: November 11, 1997
    Date of Patent: August 3, 1999
    Assignee: Rockwell Science Center LLC
    Inventors: Kenneth J. Newell, Ira B. Goldberg
  • Patent number: 5930581
    Abstract: The invention is a complex-shaped article, comprising an article prepared by joining at least one multi-phase ceramic-metal part and at least one shaped part of another material, wherein the theoretical density of the at least one ceramic-metal part is greater than 80 percent.In another aspect, the invention is a process for preparing complex-shaped articles, comprising:(a) forming at least one ceramic-metal part;(b) forming at least one shaped part of another material; and(c) joining the at least one shaped ceramic-metal part with the at least one shaped part of another material such that a complex-shaped article is formed.The invention is a less costly and time-consuming process for preparing complex-shaped composite articles wherein the articles are formed of two or more selected materials wherein one of the materials is a ceramic-metal composite.
    Type: Grant
    Filed: December 24, 1996
    Date of Patent: July 27, 1999
    Assignee: The Dow Chemical Company
    Inventors: David W. Born, Richard T. Fox, Donald J. Perettie
  • Patent number: 5922978
    Abstract: A pressable powder is formed by a method comprising mixing, in essentially deoxygenated water, a first powder selected from the group consisting of a transition metal carbide and transition metal with an additional component selected from the group consisting of (i) a second powder comprised of a transition metal carbide, transition metal or mixture thereof; (ii) an organic binder and (iii) combination thereof and drying the mixed mixture to form the pressable powder, wherein the second powder is chemically different than the first powder. The pressable powder may then be formed into a shaped part and subsequently densified into a densified part, such as a cemented tungsten carbide.
    Type: Grant
    Filed: March 27, 1998
    Date of Patent: July 13, 1999
    Assignee: OMG Americas, Inc.
    Inventor: Daniel F. Carroll
  • Patent number: 5905937
    Abstract: A method of making an intermetallic-bonded ceramic composite involves combining a particulate brittle intermetallic precursor with a particulate reactant metal and a particulate ceramic to form a mixture and heating the mixture in a non-oxidizing atmosphere at a sufficient temperature and for a sufficient time to react the brittle intermetallic precursor and the reactant metal to form a ductile intermetallic and sinter the mixture to form a ductile intermetallic-bonded ceramic composite.
    Type: Grant
    Filed: January 6, 1998
    Date of Patent: May 18, 1999
    Assignee: Lockheed Martin Energy Research Corporation
    Inventors: Kevin Plucknett, Terry N. Tiegs, Paul F. Becher
  • Patent number: 5900560
    Abstract: A high vanadium, powder metallurgy cold work tool steel article and method for production. The nickel, chromium, vanadium, and carbon plus nitrogen contents of the steel are controlled during production to achieve a desired combination of corrosion resistance, metal to metal wear resistance, and hardenability.
    Type: Grant
    Filed: July 29, 1998
    Date of Patent: May 4, 1999
    Assignee: Crucible Materials Corporation
    Inventors: Kenneth E. Pinnow, William Stasko, John Hauser
  • Patent number: 5897830
    Abstract: A consumable billet for melting and casting a metal matrix composite component is made of a consolidated powder metal matrix composite having a titanium or titanium alloy matrix reinforced with particles. The preferred billet is a blended and sintered powder metal composite billet incorporating titanium carbide or titanium boride into a Ti--6Al--4V alloy.
    Type: Grant
    Filed: December 6, 1996
    Date of Patent: April 27, 1999
    Assignee: Dynamet Technology
    Inventors: Stanley Abkowitz, Susan M. Abkowitz, Paul F. Weihrauch, Harold L. Heussi, Walter Zimmer
  • Patent number: 5889219
    Abstract: A sintered body having diamond grains dispersed and held in a matrix of cemented carbide or cermet is obtained by direct resistance heating and pressurized sintering. The sintering is performed at a liquid phase generating temperature in a short time, so that the diamond grains are not directly bonded to each other. Thus, a superhard composite member that has excellent hardness and wear resistance can be obtained without employing an ultra high-pressure vessel.
    Type: Grant
    Filed: November 12, 1996
    Date of Patent: March 30, 1999
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Hideki Moriguchi, Yoshifumi Arisawa, Michio Otsuka
  • Patent number: 5887241
    Abstract: A method for shaping a consolidated, substantially oxygen-free, equiaxed MoSi.sub.2 /SiC composite body having an average grain size of 10 .mu.m or less, a SiC content of 2 to 60 v/o and relatively low strength and relatively high ductility comprising subjecting the composite body to plastic deformation under conditions of forming temperature and rate of deformation such that grain growth is substantially avoided, the MoSi.sub.2 /SiC composite body being obtained by providing particles of molybdenum, silicon and carbon in a proportion relative to each other required to produce a composite powder of MoSi.sub.2 and SiC having a composition in that segment of the ternary diagram of FIG. 1 designated A, and subjecting the particles to mechanical alloying under conditions and for a time sufficient to produce the composite powder, followed by consolidation of the composite powder.
    Type: Grant
    Filed: December 11, 1996
    Date of Patent: March 23, 1999
    Assignee: University of Florida
    Inventors: S. Jayashankar, Kyung-Tae Hong, Michael J. Kaufman