Chromium Containing Patents (Class 420/442)
  • Patent number: 5330710
    Abstract: A nickel-base alloy for a glass-contacting member used in an unenergized state and having a composition comprising by weight 25 to 40% of chromium, 10 to 45% of cobalt, optionally 0.1 to 3.0% of titanium and optionally 0.01 to 0.05% of at least one element selected from among rare earth metals with the balance consisting of nickel and unavoidable impurities.
    Type: Grant
    Filed: March 6, 1992
    Date of Patent: July 19, 1994
    Assignee: Doryokuro Kakunenryo Kaihatsu Jigyodan
    Inventors: Toshio Masaki, Noriaki Sasaki, Shin-ichiro Torata, Hiroshi Igarashi, Tetsuya Shimizu, Tomohito Iikubo
  • Patent number: 5330591
    Abstract: A nickel-based alloy useful in the manufacture of a glass fibre centrifuge of which the composition consists essentially of the following elements expressed as percentage by weight:______________________________________ Cr 27.5-29.5% W 6.5-7.8% C 0.69-0.73% Fe 7-10% ______________________________________the remainder substantially being nickel and having in its crystalline structure M.sub.23 C.sub.6 type carbides, M being chromium, at least one equivalent metal, or combination thereof, the M.sub.23 C.sub.6 carbides being substantially secondary.
    Type: Grant
    Filed: April 6, 1992
    Date of Patent: July 19, 1994
    Assignee: Isover Saint-Gobain
    Inventor: Stella Vasseur
  • Patent number: 5312697
    Abstract: A nickel-base alloy suitable for overlaying steel substrates. The alloy and steel have similar thermal conductivities and thermal coefficients of expansion. The alloy broadly initially contains about 15-20% molybdenum, about 5-10% chromium, up to about 2% iron, up to about 5% tungsten and/or niobium, up to about 0.1% carbon, and the balance essentially nickel.
    Type: Grant
    Filed: April 24, 1992
    Date of Patent: May 17, 1994
    Assignee: Inco Alloys International, Inc.
    Inventors: Samuel D. Kiser, Melissa A. Moore, David B. O'Donnell
  • Patent number: 5183636
    Abstract: A novel corrosion inhibiting iron-free filler metal braze composition which has a nominal composition of: from about 5.0% to about 9.0% chromium; from about 3.5% to about 5.5% silicon; from about 2.0% to about 4.0% boron; from about 1.0% to about 6.0% copper; from about 1.0% to about 6.0% molybdenum; from about 1.0% to about 6.0% niobium, tantalum or mixtures thereof and the balance nickel.
    Type: Grant
    Filed: July 1, 1991
    Date of Patent: February 2, 1993
    Assignee: Wall Colmonoy Corporation
    Inventor: Samuel C. DuBois
  • Patent number: 5141571
    Abstract: A hard surfacing alloy which has a Rockwell C hardness of greater than about 50 and which includes tungsten carbide, chromium carbide and bi-metallic chromium and tungsten carbide crystals which are precipitated in the alloy. Alloys of the present invention in their nominal composition comprise from about 12% to about 20% tungsten; from about 13% to about 30% chromium; an effective amount of carbon for forming carbides with the tungsten and chromium and include effective amounts of fluxes and melting point depressants and the like. The balance of the composition is nickel. The alloys include precipitated carbide crystals of chromium, tungsten and bi-metallic mixtures thereof which are interspersed through the hard surfacing alloy and are metallurgically bonded in the metal matrix of the alloy. The alloys have extremely low porosities and therefore are suitable for glass plunger and other applications where low porosity is essential.
    Type: Grant
    Filed: May 7, 1991
    Date of Patent: August 25, 1992
    Assignee: Wall Colmonoy Corporation
    Inventor: Samuel C. DuBois
  • Patent number: 5135588
    Abstract: A Ni-Fe-Cr soft magnetic alloy essentially consisting of 40-50% Ni, 0.5-5% Cr and balance Fe and satisfying the following conditions:50.ltoreq.(Ni%)+4.times.(Cr%).ltoreq.60;S+O+B.ltoreq.0.008%;S.ltoreq.0.003%;O.ltoreq.0.005%; andB.ltoreq.0.005%;has excellent magnetic characteristics for magnetic core materials.
    Type: Grant
    Filed: March 12, 1991
    Date of Patent: August 4, 1992
    Assignee: Nisshin Steel Company Ltd.
    Inventors: Takuji Okiyama, Takuji Hara, Hisao Yasumura, Yutaka Kawai
  • Patent number: 5084795
    Abstract: A metal-in-gap type magnetic head having a small undulation of reproduction output caused by a pseudo-gap and method of manufacture thereof are provided, wherein the magnetic head employs as a back core a ferrite (particularly, a ferrite containing Sn) and employs in a metal portion which constitutes a front core an alloy film (particularly, a composition transition alloy film) having a composition expressed by T-M-X-N, where T is at least one metal element selected from a group consisting of Fe, Co and Ni, M is at least one metal element selected from a group consisting of Nb, Zr, Ti, Ta, Hf, Cr, Mo, W and Mn, X is at least one metalloid element selected from a group consisting of B, Si and Ge, and N is nitrogen.
    Type: Grant
    Filed: February 5, 1990
    Date of Patent: January 28, 1992
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hiroshi Sakakima, Keita Ihara, Koichi Osano
  • Patent number: 5063023
    Abstract: Disclosed is a nickel-base alloy for use under "super oxidizing" environments, for example, concentrated sulfuric acid, fuming nitric acid, chromium acid and mixtures containing chromic acid. The alloy has good strength and may be precipitation hardened. Its thermal stability and weldability are excellent. The alloy has a high degree of resistance to pitting. A nominal composition contains, in percent by weight, about 20 chromium, about 2 copper, about 2 iron, about 2 molybdenum, about 5 silicon and the balance nickel plus normal impurities.
    Type: Grant
    Filed: November 17, 1989
    Date of Patent: November 5, 1991
    Assignee: Haynes International, Inc.
    Inventor: Narasi Sridhar
  • Patent number: 5019459
    Abstract: A high temperture, bimetallic cylinder of either ASTM 193B-16 carbon steel or duplex stainless steel having a wear and corrosion resistant inlay or liner of a nickel-based alloy containing 1.5 to 4.5% carbon, 1.5 to 3.5% silicon, 1.0 to 3.0% boron, up to 7.0% chromium, up to 15% iron, 1.0 to 6.0% cobalt and 30 to 60% tungsten. The inlay is centrifugally cast within the cylinder which is thermally compatible with the inlay such that it retains a high yield strength after casting.
    Type: Grant
    Filed: April 5, 1990
    Date of Patent: May 28, 1991
    Assignee: Xaloy Incorporated
    Inventors: Schiao F. Chou, Willie Roberson
  • Patent number: 5019184
    Abstract: A homogenizaton heat treatment for enhancing crevice and pitting corrosion resistance minimizes the formation of Mu phase in nickel-base alloys of high combined percentages of chromium, e.g., 19 to 23% and molybdenum, e.g., 14 to 17%, particularly together with tungsten. Also described is an advantageous alloy composition containing less than 2.5% iron, low carbon and a titanium to carbon ratio greater than 1 which is particularly adapted to be effectively treated by the homogenization heat treatment.
    Type: Grant
    Filed: January 26, 1990
    Date of Patent: May 28, 1991
    Assignee: Inco Alloys International, Inc.
    Inventors: James R. Crum, Jon M. Poole, Edward L. Hibner
  • Patent number: 4997623
    Abstract: A heat-deformable, austenitic nickel-chromium-iron alloy with high oxidation resistance and thermal strength, comprises17 up to 25 % Fe14 up to 20 % Cr0.5 up to 2.0 % Si0.1 up to 2.0 % Mn0.04 up to 0.10 % C0.02 up to 0.10 % Ca0.010 up to 0.080 % N0.025 up to 0.045 % Ti0.04 up to 0.17 % Zr0.03 up to 0.08 % Yless than 0.010 % Sless than 0.015 % Peach less than 0.1 % Mo, W, Coeach less than 0.05 % Nb, Ta, Al, V, Curest Niwith the feature, that the nitrogen content is adjusted in accordance with the following formula:% N=(0.15 up to 0.30).times.% Zr+(0.30 up to 0.60).times.% Ti.
    Type: Grant
    Filed: March 9, 1990
    Date of Patent: March 5, 1991
    Assignee: VDM Nickel-Technologie AG
    Inventor: Ulrich Brill
  • Patent number: 4981644
    Abstract: Alloy compositions for nickel-base superalloys having the qualities of weldability, castability and forge-ability together with improved high temperature strength and rupture properties are disclosed. The weldability is improved by varying the Al, Ti, Nb and Ta content so as to insure that only the favorable .gamma." precipitates are formed in the alloy. The high temperature properties of the alloy compositions are optimized by controlling the content of the major alloying elements Co and Cr. Preferably the alloy is substantially free of Fe.
    Type: Grant
    Filed: September 9, 1988
    Date of Patent: January 1, 1991
    Assignee: General Electric Company
    Inventor: Keh-Minn Chang
  • Patent number: 4981645
    Abstract: The addition of small amounts of rhenium, technitium and their mixtures and, optionally erbium, to a nickel-based superalloy in which the ratio of nickel to chromium is approximately 3-4 to 1, provides enhanced mechanical properties particularly suitable for applications in the manufacture of gas turbine engine components, airframe skins and combustion chambers.
    Type: Grant
    Filed: May 5, 1989
    Date of Patent: January 1, 1991
    Inventor: Stuart Adelman
  • Patent number: 4911768
    Abstract: This material is kind of wear-resistant Nickel-base alloy for hard surfacing which can be substituted for Cobalt-base alloy. The new alloy is mainly comprised of C, Si, Cr, W and Cu and is of a low carbon, high chromium, high silicon, high tungsten and copper type Ni-base alloy. The said Ni-base alloy has excellent high temperature adhesive wear resistance and intercrystalline corrosion resistance properties, which are superior to that of the stellite No. 6 alloy Co-base alloy. In addition, the hardness, abrasive wear resistance, scratch resistance, corrosion resistance, elevated temperature oxidation resistance, heat resistance fatigue, crack resistance, operational applicability and other properties are equal to that of Stellite No. 6 Co-base alloy. The alloy of this invention can be used as a substitute for Co-base alloy in hard surfacing of high temperature, high pressure valves and valves for nuclear industry as well as other easily worn spare parts.
    Type: Grant
    Filed: May 18, 1988
    Date of Patent: March 27, 1990
    Assignees: Harbin Research Institute of Welding, Shanghai Valve Works
    Inventors: Zujue Dong, Guo-Liang Huang, Shi He
  • Patent number: 4891183
    Abstract: A method of improving the elevated temperature oxidation resistance of non-iron base alloys, especially nickel and cobalt base alloys by the addition of dopants to the oxide scale formed on a broad range of non-iron base alloys such as wrought or cast nickel or cobalt base heat resistant alloys.
    Type: Grant
    Filed: December 3, 1986
    Date of Patent: January 2, 1990
    Assignee: Chrysler Motors Corporation
    Inventor: John M. Corwin
  • Patent number: 4854980
    Abstract: A nickel-based glassy alloy composition including Mo and one or more of Nb, Ta, and Zr, exhibiting high hardness and high crystallization temperatures.
    Type: Grant
    Filed: December 17, 1987
    Date of Patent: August 8, 1989
    Assignee: GTE Laboratories Incorporated
    Inventors: Ramaswamy V. Raman, Shih C. Hsu
  • Patent number: 4851058
    Abstract: The hard magnetic properties, including intrinsic coercivity, remanence and energy product of rapidly quenched, rare earth-transition metal alloys has been substantially increased by the addition of suitable amounts of the element boron. The preferred rare earth constituent elements are neodymium and praseodymium, and the preferred transition metal element is iron.
    Type: Grant
    Filed: September 3, 1982
    Date of Patent: July 25, 1989
    Assignee: General Motors Corporation
    Inventor: John J. Croat
  • Patent number: 4842657
    Abstract: Amorphous alloys containing zirconium as an amorphus forming metal and having the formula X.sub..alpha. Z.sub..gamma. wherein X is at least one of Fe, Co and Ni, .alpha. is 80 to 92 atomic %, Z is zirconium, .gamma. is 8 to 20 atomic % and the sum of .alpha. and .gamma. is 100 atomic %, cause very little variation of properties during aging and embrittlement because they contain no metalloid as the amorphous forming element, and they further have excellent strength, hardness, corrosion resistance and heat resistance and maintain superior magnetic properties which are characteristic of iron group elements.
    Type: Grant
    Filed: December 5, 1980
    Date of Patent: June 27, 1989
    Assignee: Shin-Gijutsu Kaihatsu Jigyodan
    Inventors: Tsuyoshi Masumoto, Kiyoyuki Esashi, Masateru Nose
  • Patent number: 4826738
    Abstract: The adherence of protective chromia (chromium oxide) scales on Ni-Cr coatings is substantially improved by limiting the amount of sulfur in the coating composition to below about 5 parts per million by weight. Volatilization of the chromium oxide scale is also reduced by controlling the sulfur content. The coatings of this invention have improved resistance to oxidation and hot corrosion degradation than the coatings of the prior art.
    Type: Grant
    Filed: July 7, 1987
    Date of Patent: May 2, 1989
    Assignee: United Technologies Corporation
    Inventor: John G. Smeggil
  • Patent number: 4822567
    Abstract: Antibiotic alloys adapted for making sanitary articles, such as orthodontic fittings and component parts of water purifying apparatus, the alloy containing cobalt to impart an antibiotic ability hereto, and iron and nickel to enhance the workability thereof so that the alloy can be easily worked into intricate shapes.
    Type: Grant
    Filed: October 29, 1987
    Date of Patent: April 18, 1989
    Assignee: Sankin Kogyo Kabushiki Kaisha
    Inventors: Isamu Kato, Sadayuki Yuhda, Naoki Oda, Masahiro Suganuma
  • Patent number: 4818486
    Abstract: Disclosed is a nickel-base alloy having a low coefficient of thermal expansion and a high degree of corrosion and oxidation resistance for use without a coating. The high strength alloy is not notch sensitive under impact and has very short term ordering to A.sub.2 B structure in aging. The alloy nominally contains, in weight percent, 8 chromium, 25 molybdenum, about 0.003 boron, about 1 iron, about 0.5 manganese, about 0.4 silicon and the balance nickel plus normal impurities.
    Type: Grant
    Filed: January 11, 1988
    Date of Patent: April 4, 1989
    Assignee: Haynes International, Inc.
    Inventors: Michael F. Rothman, Hani M. Tawancy
  • Patent number: 4769094
    Abstract: Amorphous Nickel-base alloys for electrical resistors, which contain, by atomic %, 81-x% Ni, x% Cr, 6% B and 13% Si (z=0.about.25), or 70% Ni, 11% Cr, 19-y% B and y% Si (y=0.about.19 except 13), or 100-z% of 0.864 Ni and 0.136 Cr and z% of 0.316 B and 0.684 Si (x=15.about.25 except 19), and have a relatively high electrical resistivity and a small temperature coefficient of resistivity, are disclosed. Their resistance values can be adjusted by heat treatment and the thermal stability of them after heat treatment is very good in the conventional operating temperature range of electrical components.
    Type: Grant
    Filed: November 25, 1985
    Date of Patent: September 6, 1988
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Tae S. Park, Dong H. Ahn
  • Patent number: 4766042
    Abstract: A plastics processing machine component, such as a lined composite heating cylinder or a hardfaced feed screw, wherein a layer of a hard, corrosion-resistant alloy is joined to a component substrate in the form of the part to be protected. The alloy has a composition, in weight percent, of from about 12 to about 16 percent molybdenum, from about 10 to about 14 percent chromium, up to about 1.2 percent carbon, up to about 3.5 percent silicon, from about 0.5 to about 3.5 percent boron, balance nickel. Such alloys are resistant to corrosion damage from hydrogen chloride and hydrogen fluoride environments, have sufficient fluidity to permit centrifugal casting in the temperature range of 1800.degree. F. to 2250.degree. F., and can be tailored to have hardnesses from about 45 to over 60 R.sub.c.
    Type: Grant
    Filed: February 27, 1987
    Date of Patent: August 23, 1988
    Inventor: Tony U. Otani
  • Patent number: 4749546
    Abstract: A nickel-based alloy containing by weight 13.5% to 14.5% chromium and 1.0% to 1.5% silicon, characterized in that it also contains at least one element selected from the group consisting of molybdenum, tungsten, niobium and tantalum, and optionally also containing up to 0.5% magnesium and/or up to 0.2% cerium. The alloys of the invention possess a comprehensive range of enhanced properties at high temperatures.
    Type: Grant
    Filed: September 10, 1986
    Date of Patent: June 7, 1988
    Assignee: BELL-IRH Proprietary Limited
    Inventor: Noel A. Burley
  • Patent number: 4728493
    Abstract: A chromium based corrosion resistant alloy consisting of by weight percent: Cr-45-60; Ni-25-44; Mo-6.5-12; Cb-2.0-4.5; C-1.5-2.8; and Si-0.4-1.2. The alloy is suitable for weld deposition as a hard-facing on mechanical face seals in contact with sea water and subject to accelerating factors such as galvanic effects.
    Type: Grant
    Filed: April 13, 1987
    Date of Patent: March 1, 1988
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Donald C. Vreeland
  • Patent number: 4710243
    Abstract: A wear-resistant alloy of high permeability having an effective permeabil of at least about 3,000 at 1 KHz, a saturation magnetic flux density of at least about 4,000 G, and a recrystallization texture of {110}<112>+{311}<112> is provided. The alloy is produced by cold working a forged or hot worked ingot of an alloy of a desired composition at a cold working ratio of at least about 50%, heating the cold worked alloy at a temperature which is below the m.p. of the alloy and not less than about 900.degree. C., and cooling the heated alloy from a temperature which is not less than an order-disorder transformation point (about 600.degree. C.) of the alloy. Alternatively, the alloy is produced by reheating the cooled alloy to a temperature which is not over than the order-disorder transformation point, and cooling the reheated alloy.
    Type: Grant
    Filed: July 29, 1985
    Date of Patent: December 1, 1987
    Assignee: The Foundation: The Research Institute of Electric and Magnetic Alloys
    Inventors: Hakaru Masumoto, Yuetsu Murakami
  • Patent number: 4702887
    Abstract: A corrosion and wear resistant nickel based alloy having unique high molybdenum content with additions of bismuth and tin or bismuth, tin and antimony dispersed as second phase particles. The resulting alloy is particularly suited for wear ring applications in pumps for corrosive fluids.
    Type: Grant
    Filed: February 27, 1986
    Date of Patent: October 27, 1987
    Assignee: Ingersoll-Rand Company
    Inventor: John A. Larson
  • Patent number: 4692305
    Abstract: A novel alloy is disclosed which is characterized by high resistance to wear and corrosion. The alloy consists essentially of 2 to 25% chromium, 5 to 30% molybdenum, 3 to 15% tungsten, 2 to 8% copper, 2 to 8% boron, and 0.2 to 2% carbon; the balance being incidental impurities and at least 30% of a metal selected from the group consisting of nickel, cobalt and combinations thereof, with the total of molybdenum and tungsten being at least 16%. The alloy is preferably in the form of a powder for thermal spraying, and coating produced thereby generally have an amorphous structure.
    Type: Grant
    Filed: November 5, 1985
    Date of Patent: September 8, 1987
    Assignee: Perkin-Elmer Corporation
    Inventors: Subramaniam Rangaswamy, John H. Harrington
  • Patent number: 4668310
    Abstract: Amorphous alloys having high strength, high hardness, high crystallization temperature, high saturation magnetic induction, low coercive force, high magnetic permeability and particularly low deterioration of magnetic properties with lapse of time, have a composition formula ofT.sub.a X.sub.b Z.sub.c or T.sub.a' X.sub.b' Z.sub.c' M.sub.d,whereinT is at least one of Fe, Co and Ni,X is at least one of Zr, Ti, Hf and Y,Z is at least one of B, C, Si, Al, Ge, Bi, S and P,a is 70-98 atomic %,b is not more than 30 atomic %,c is not more than 15 atomic %,sum of a, b and c is 100 atomic %,M is at least one Mo, Cr, W, V, Nb, Ta, Cu, Mn, Zn, Sb, Sn, Be, Mg, Pd, Pt, Ru, Os, Rh, Ir, Ce, La, Pr, Nd, Sm, Eu, Gd, Tb and Dy,a' is 70-98 atomic %,b' is not more than 30 atomic %,c' is not more than 15 atomic %,d is not more than 20 atomic %, andsum of a', b', c' and d is 100 atomic %.
    Type: Grant
    Filed: March 14, 1983
    Date of Patent: May 26, 1987
    Assignees: Hitachi Metals, Ltd., Hitachi, Ltd.
    Inventors: Mitsuhiro Kudo, Shinji Takayama, Yoshizo Sawada, Yasunobu Ogata
  • Patent number: 4626408
    Abstract: An alloy prepared by reducing the sulfur content of ASTM UNS N06600 (Trademark Inconel Alloy 600) to an extremely small value and adding specified amounts of Nb and N, and an alloy prepared by reducing the oxygen content of Inconel Alloy 600 and adding specified amounts of Nb, N, B and Mg show a mechanical strength equivalent or superior to that of Inconel Alloy 600 and excellent hot workability, and further has intergranular corrosion resistance and integranular stress corrosion cracking resistance which are far more excellent than those of Inconel Alloy 600.
    Type: Grant
    Filed: September 20, 1984
    Date of Patent: December 2, 1986
    Assignees: Nippon Yakin Kogyo Kabushiki Kaisha, Babock-Hitachi Kabushiki Kaisha
    Inventors: Koichiro Osozawa, Rikio Nemoto, Yoshito Fujiwara, Tomoaki Okazaki, Yasuhiro Miura, Kiyoshi Yamauchi
  • Patent number: 4624832
    Abstract: New nickel alloys are described which are useful for eyeglass frames, which alloys in addition to good resistance to corrosion also have good workability properties. They contain 5 to 20 percent copper and 5 to 30 percent zinc. Optionally, they can also be alloyed in small amounts other metals such as manganese, silicon, beryllium, cobalt, aluminum, niobium, tantalum, or titanium.
    Type: Grant
    Filed: November 2, 1984
    Date of Patent: November 25, 1986
    Assignee: Degussa Aktiengesellschaft
    Inventors: Horst Heidsiek, Gernot Jackel, Horst Becker
  • Patent number: 4623387
    Abstract: Amorphous alloys containing zirconium as an amorphous forming metal and having teh formula X.sub..alpha. Z.sub..gamma. wherein X is at least one of Fe, Co and Ni, .alpha. is 80 to 92 atomic %, Z is zirconium, .gamma. is 8 to 20 atomic % and the sum of .alpha. and .gamma. is 100 atomic %, cause little variation of properties during aging and embrittlement because they contain no metalloid as the amorphous forming element, and they further have excellent strength, hardness, corrosion resistance and heat resistance and maintain superior magnetic properties which are characteristic of iron group elements.
    Type: Grant
    Filed: February 5, 1985
    Date of Patent: November 18, 1986
    Assignee: Shin-Gijutsu Kaihatsu Jigyodan
    Inventors: Tsuyoshi Masumoto, Kiyoyuki Esashi, Masateru Nose
  • Patent number: 4592890
    Abstract: Disclosed is an alloy that is a combination by weight percent of 78 to 84 percent nickel, 11 to 15 percent chromium, 3 to 5 percent vanadium, and 1 to 2 percent beryllium. Any balance of other elements make up less than 7 percent with aluminum, manganese, silicon, tin, lanthanum, cerium, praseodymium, neodymium, samarium, gadolinium, molybdenum, niobium, tantalum, tungsten, titanium, iron, boron, and carbon specifically disclosed. The alloy is, in particular, a dental casting alloy or dental veneering alloy, and dental prostheses containing the alloy is a feature of the disclosure.
    Type: Grant
    Filed: August 8, 1983
    Date of Patent: June 3, 1986
    Assignee: Dentsply Research & Development Corp.
    Inventors: Arthur P. Burnett, Wayne C. Bollinger
  • Patent number: 4585620
    Abstract: There is disclosed a wear-resistant alloy which comprises, in terms of weight ratio, 10 to 45% of chromium, 3 to 15% of niobium, 4 to 20% of molybdenum, 0.01 to 2.0% of boron, and nickel as the remainder.The wear-resistant alloy having a novel composition of the present invention is suitable for face portions of valves used in various plants such as a chemical plant and an atomic power plant, parts of jet pumps and sliding parts for various machines.
    Type: Grant
    Filed: June 9, 1982
    Date of Patent: April 29, 1986
    Assignee: Tokyo Shibaura Denki Kabushiki Kaisha
    Inventors: Hisato Kamohara, Tatsuyoshi Aisaka, Mituo Kawai
  • Patent number: 4582536
    Abstract: The present invention provides a method for consolidating rapidly solidified, transition metal alloys which includes the step of compacting a plurality of alloy bodies at a temperature ranging from about 0.90-0.99 Tm (melting temperature in .degree.C.) for a time period ranging from about 1 min to 24 hours. The alloy bodies contain at least two transition metal elements and consist essentially of the formula (Fe,Co and/or Ni).sub.bal (W, Mo, Nb and/or Ta).sub.a (Al and/or Ti).sub.b (Cr).sub.c (B and/or C).sub.d (Si and/or P).sub.e, wherein "a" ranges from about 0-40 at. %, "b" ranges from about 0-40 at. %, "c" ranges from about 0-40 at. %, "d" ranges from about 5-25 at. %, and "e" ranges from about 0-15 at. %. The alloy bodies also have a substantially homogeneous and optically featureless structure.
    Type: Grant
    Filed: December 7, 1984
    Date of Patent: April 15, 1986
    Assignee: Allied Corporation
    Inventor: Derek Raybould
  • Patent number: 4556607
    Abstract: Coatings are disclosed (a) which are useful by themselves to substantially improve the surface properties of substrates to which they are applied and (b) which are useful as subcoats to substantially improve the bonding of coatings of nitrides, carbides and borides of titanium, hafnium and zirconium to such substrates. The coatings which are disclosed are novel materials characterized by a microcrystalline, single-phase, solid solution structure comprising:(a) about 20 to 70% by weight of at least one element from the group consisting of cobalt and nickel;(b) about 8 to 35% by weight of chromium;(c) about 3 to 20% by weight of at least one element from the group consisting of molybdenum and tungsten; and(d) about 0.5 to 10% by weight of at least one element from the group consisting of carbon, nitrogen and boron.
    Type: Grant
    Filed: March 28, 1984
    Date of Patent: December 3, 1985
    Inventor: Suri A. Sastri
  • Patent number: 4551396
    Abstract: The use of an alloy composed of 15 to 19% by weight of Cr, 5 to 32.5% by weight of Mo, 0.3 to 10% by weight of Si, up to 10% by weight of Al and up to 4.5% by weight of Ti, the remainder being Ni, as a sliding material for seals on rotary regenerative heat exchangers with a ceramic core is described. The sliding material is suitable especially for use in temperature ranges up to about 1100.degree. C.
    Type: Grant
    Filed: September 4, 1984
    Date of Patent: November 5, 1985
    Assignee: Daimler-Benz Aktiengesellschaft
    Inventors: Klaus Wiegard, Karlheinz Kinast, Wolfgang Kleinekathofer, Eggert Tank
  • Patent number: 4543135
    Abstract: A nickel based high melting point, homogeneous, ductile brazing foil composition consists essentially of about 17 to 20 atom percent chromium, about 4 to 10 atom percent boron, about 10 to 16 atom percent silicon, the balance being nickel and incidental impurities. The composition is such that the total of nickel and chromium ranges from about 74 to 84 atom percent.
    Type: Grant
    Filed: November 15, 1982
    Date of Patent: September 24, 1985
    Assignee: Allied Corporation
    Inventors: Debasis Bose, Alfred Freilich
  • Patent number: 4517017
    Abstract: Disclosed is a temperature sensitive amorphous magnetic alloy which shows a Curie point of not higher than 200.degree. C. and whose composition is represented by the formula:(M.sub.1-a Ni.sub.a).sub.100-z X.sub.zwhereinM=Co or Fe;X=at least one of P, B, C and Si;0.2.ltoreq.a.ltoreq.0.8 when M is Co, or 0.4.ltoreq.a.ltoreq.0.9 when M is Fe; and15.ltoreq.z.ltoreq.30.
    Type: Grant
    Filed: February 8, 1982
    Date of Patent: May 14, 1985
    Assignee: Tokyo Shibaura Denki Kabushiki Kaisha
    Inventors: Koichiro Inomata, Shinichi Murata
  • Patent number: 4470848
    Abstract: High temperature resistance of Fe-Cr-Ni alloy compositions to oxidative and/or sulfidative conditions is provided by the incorporation of about 1-8 wt. % of Zr or Nb and results in a two-phase composition having an alloy matrix as the first phase and a fine grained intermetallic composition as the second phase. The presence and location of the intermetallic composition between grains of the matrix provides mechanical strength, enhanced surface scale adhesion, and resistance to corrosive attack between grains of the alloy matrix at temperatures of 500.degree.-1000.degree. C.
    Type: Grant
    Filed: July 26, 1983
    Date of Patent: September 11, 1984
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Ken Natesan, David J. Baxter
  • Patent number: 4459262
    Abstract: A cobalt-or nickel-base alloy, which is especially suited for the preparation of dental prostheses, because it is sufficiently corrosion- and wear-resistant, cold-formable, and colorfast and has good castability, the possesses the strength properties of the noble metal alloys known from dental technology. The alloy contains in addition to the base metal 10-50% (wt.) chromium and 0.2-4.5% (wt.) gallium. The new alloys can additionally contain 0.05-0.08% (wt.) lanthanum, 0.03-0.1% (wt.) neodymium, and 1.0-6.0% (wt.) molybdenum.Due to its elasticity and low density the alloy is particularly suited for firm, i.e. firmly anchored dental prostheses. However, it is also best suited for the production of base plates, anchoring clamps and clamping systems of removable dental prostheses.Since the alloy does not contain any noble metal, the ingredients can be easily procured and the production costs are only a fraction of the costs of noble metal alloys.
    Type: Grant
    Filed: November 1, 1982
    Date of Patent: July 10, 1984
    Assignee: Fogtechnikai Vallalat
    Inventor: Jozsef Komar Kalmar
  • Patent number: 4450210
    Abstract: In composition of a Ni-Ti type clad material, specified amount inclusion of Cu and Cr in the Ni base metallic sheath assures ideal coordination in annealing suitability and plastic workability between the sheath and the core with enhanced mechanical properties and resistance against corrosion of the product.
    Type: Grant
    Filed: October 21, 1982
    Date of Patent: May 22, 1984
    Assignee: Nippon Gakki Seizo Kabushiki Kaisha
    Inventors: Masayuki Takamura, Kazuo Kurahashi
  • Patent number: 4446121
    Abstract: An economical metallic material for absorption and desorption of hydrogen comprising an alloy having the general formula represented by AB.sub.x, wherein A is Ca or a metallic material which is an alloy including Ca, B is Ni or a metallic material which is an alloy including Ni, and x is in the range of 3.8-6.3, and exhibiting a hydrogen dissociation equilibrium pressure (or plateau pressure, pressure of the plateau region of hydrogen dissociation pressure-hydride composition isotherm) below 1 atm at normal temperatures.The material of the invention very easily absorbs large amounts of hydrogen and efficiently releases it at other predetermined temperatures, pressure and electrochemical conditions, whereby it is able to store hydrogen safely, usefully and economically.
    Type: Grant
    Filed: April 22, 1982
    Date of Patent: May 1, 1984
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Takaharu Gamo, Yoshio Moriwaki, Toshio Yamashita
  • Patent number: 4440720
    Abstract: A magnet alloy useful for a magnetic recording and reproducing head consist f by weight of 70 to 86% of nickel, more than 1% and less than 14% of niobium, and 0.001 to 3% of beryllium as main ingredients and 0.01 to 10% of total amount of subingredients selected from the group consisting of not more than 8% of molybdenum, not more than 7% of chromium, not more than 10% of tungsten, not more than 7% of titanium, not more than 7% of vanadium, not more than 10% of manganese, not more than 7% of germanium, not more than 5% of zirconium, not more than 2% of rare earth metal, not more than 10% of tantalum, not more than 1% of boron, not more than 5% of aluminum, not more than 5% of silicon, not more than 5% of tin, not more than 5% of antimony, not more than 10% of cobalt and not more than 10% of copper, a small amount of impurities and the remainder iron and having initial permeability of more than 3,000, maximum permeability of more than 5,000, and Vickers hardness of more than 130.
    Type: Grant
    Filed: September 9, 1981
    Date of Patent: April 3, 1984
    Assignee: The Foundation: The Research Institute of Electric and Magnetic Alloys
    Inventors: Hakaru Masumoto, Yuetsu Murakami
  • Patent number: 4430297
    Abstract: Disclosed is a hard wear resistant nickel based alloy including a carbide-former, preferably niobium, and essentially cobalt free but which has similar properties to cobalt, chromium, tungsten, carbon alloys. Typically the alloy has a composition, in parts by weight, Cr-34 C-1.2, Mo-10, Fe-3, Si-1, Nb-3, Ni-balance. The alloys of the invention are suitable for surface or welding consumables, and as articles for making hardfacing depositions.
    Type: Grant
    Filed: January 7, 1980
    Date of Patent: February 7, 1984
    Assignee: Cabot Corporation
    Inventor: Paul Crook
  • Patent number: 4410490
    Abstract: New nickel and cobalt base alloys containing tungsten and carbon are disclosed. The alloys are subjected to rapid solidification processing (RSP) technique which produces cooling rates between 10.sup.5 .degree. to 10.sup.7 .degree. C./sec. The as-quenched ribbon, powder, etc. consists predominantly of amorphous phase. The amorphous phase is subjected to suitable heat treatments so as to produce a transformation to a microcrystalline alloy which includes carbides; this heat treated alloy exhibits high hardness combined with toughness for many applications wherein superhard materials are required.
    Type: Grant
    Filed: July 12, 1982
    Date of Patent: October 18, 1983
    Assignee: Marko Materials, Inc.
    Inventors: Ranjan Ray, Viswanathan Panchanathan
  • Patent number: 4379121
    Abstract: Disclosed is a brazing filler metal composition comprising, by weight, about 3.0% to 4.0% chromium, about 1.0%-2.0% boron; about 2.0%-2.5% silicon; about 1.0%-2.0% iron; about 5.0%-6.0% phosphorus; a maximum of about 0.06% carbon and the remainder nickel. Further disclosed is a vacuum brazing process utilizing said filler metal composition.
    Type: Grant
    Filed: July 9, 1981
    Date of Patent: April 5, 1983
    Assignee: Avco Corporation
    Inventors: John H. McMurray, Jule Miller
  • Patent number: 4367083
    Abstract: A nickel-base alloy, particularly suitable for high temperature molten glass environments, and articles manufactured from the alloy, preferably by casting, are disclosed.
    Type: Grant
    Filed: November 6, 1981
    Date of Patent: January 4, 1983
    Assignee: Owens-Corning Fiberglas Corporation
    Inventor: David J. Gaul