Including Means Providing Sequential Purification Stages Patents (Class 422/169)
  • Patent number: 8372363
    Abstract: A method for removing mercury in a combustion exhaust gas includes injecting ammonia or urea as a reducing agent into a combustion exhaust gas containing nitrogen oxides, sulfur dioxide, metallic mercury, and hydrogen halides, and then introducing the combustion exhaust gas to a denitration apparatus filled with a denitration catalyst to cause a denitration reaction and oxidize the metallic mercury to produce mercury halide; and introducing the combustion exhaust gas through an air preheater and an electric dust collector to a wet desulfurization apparatus, thereby removing sulfur dioxides and the mercury halide, wherein the ammonia concentration of the combustion exhaust gas at an exit of the denitration apparatus is maintained at 5 ppm or higher, and the mercury halide is adsorbed or precipitated onto combustion ash and collected by the electric dust collector to discharge the mercury halide out of a system.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: February 12, 2013
    Assignee: Babcock-Hitachi Kabushiki Kaisha
    Inventors: Yasuyoshi Kato, Keiichiro Kai, Seiji Ikemoto
  • Patent number: 8359848
    Abstract: An end cap for an exhaust treatment device is disclosed. The end cap has a cylindrical housing with an axial direction, a radial direction substantially orthogonal to the axial direction, a first open end, and a second closed end opposing the first open end in the axial direction. The end cap also has an integral port member extending from an annular surface of the cylindrical housing. The integral port member has a central axis aligned in the radial direction, and an exterior surface of the integral port member tangentially connects to an exterior surface of the cylindrical housing.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: January 29, 2013
    Assignee: Caterpillar Inc.
    Inventors: Philip Stephen Bruza, Darrel Henry Meffert, Michael James Pollard, Timothy John Boland, John Roger Weber, Ronak Dhanendrakumar Shah, Robert Lee Meyer, Jonas Arunas Aleksonis
  • Publication number: 20130022511
    Abstract: PROBLEM TO BE SOLVED: To provide an exhaust purifying catalyst capable of efficiently purifying CO over a wide range of temperatures including a low temperature. MEANS TO SOLVE THE PROBLEM: An exhaust purifying apparatus of an internal combustion engine, comprising a CO oxidation catalyst disposed in the exhaust flow passage of an internal combustion engine and capable of oxidizing and thereby purifying CO in the exhaust, an HC adsorbent material for adsorbing HC in the exhaust, and an NOx adsorbent material for adsorbing NOx in the exhaust, these adsorbent materials being located on the upstream side in the exhaust flow direction with respect to the CO oxidation catalyst and disposed in order from the upstream, wherein the CO oxidation catalyst contains Pd and CeO2 and the amount of Pd supported is from 0.01 to 50 mass % based on CeO2.
    Type: Application
    Filed: March 29, 2011
    Publication date: January 24, 2013
    Inventors: Kotaro Hayashi, Satoshi Nagao, Hideaki Suzuki
  • Publication number: 20130011321
    Abstract: An exhaust gas treatment apparatus comprises an ammonia absorption system and an ammonia conversion system. The ammonia absorption receives ammonia-containing tail gas generated by a semiconductor process, and removes dust from the tail gas, absorbs and decomposes ammonia gas from the tail gas, converts the ammonia gas into aqueous ammonia, and emits the tail gas without the dust and the ammonia to an external environment. The ammonia conversion system receives the ammonia solution from the ammonia absorption system, and converts it into gaseous ammonia, and then converts the gaseous ammonia to produce liquid ammonia by vaporization and cooling-pressurized liquefaction. After that, the liquid ammonia is purified by a purification system to formed hi-purity liquid ammonia.
    Type: Application
    Filed: July 6, 2012
    Publication date: January 10, 2013
    Inventors: HSUEH YUAN LEE, Ding Chung LIOU
  • Patent number: 8343430
    Abstract: A compact two-stage granular moving-bed apparatus comprises a vessel, a flow-corrective element, and a filter material supplying part. The vessel comprises a hollow interior, a gas outlet, a first media outlet and a second media outlet. The flow-corrective element divides the hollow interior into a first channel and a second channel. The filter material supplying part has a first provider for providing a first granular material flowing through the first channel and a second provider for providing a second granular material flowing through the second channel, wherein a vertical level of each first and second provider is adjustable so that a first flow path that an exhaust gas flows through the first granular material and a second flow path that the exhaust gas flow through the second granular material is respectively capable of being controlled.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: January 1, 2013
    Assignee: Institute of Nuclear Energy Research Atomic Energy Council, Executive Yuan
    Inventors: Yau-Pin Chyou, Jiri Smid, Shu-San Hsiau, Chia-Wei Chang, Ta-Ching Huang
  • Publication number: 20120328479
    Abstract: Arranged are a selective reduction catalyst for reacting NOx in exhaust gas 2 with ammonia, an exhaust passage 5 for guiding the exhaust gas 2 to the selective reduction catalyst, and a urea water addition unit 4 incorporated in the exhaust passage 5 for adding urea water 3 into the exhaust gas 2. A portion of the exhaust passage 5 adjacent to an added position of the urea water 3 is constituted by a divisional piece 5a made of material having higher corrosive resistance to a substance produced by addition of the urea water 3 than that of a material constituting the remaining portion of the exhaust passage 5 other than the adjacent portion.
    Type: Application
    Filed: March 16, 2011
    Publication date: December 27, 2012
    Applicants: HINO MOTORS, LTD., ISUZU MOTORS LIMITED
    Inventors: Minoru Kowada, Toshiaki Kuroki, Ryoji Suzuki, Hiroshi Uchigata, Toshiyuki Yamada
  • Patent number: 8337790
    Abstract: A method and system for purifying flue gases from power plants fired with fossil fuels has an absorber with at least one contact installation level arranged in an upper region, impinged with a suspension, and flowed through by untreated gas. The lower region has an absorption suspension sump, above which the inflow for the untreated gas is disposed. A separate reaction container includes two chambers separated by a partition wall with an overflow. The first chamber is connected with the sump, receives oxidation air, and has in a lower region an opening for discharging suspension. The second chamber is connected with a lime/limestone suspension container. A gas exhaust hood above the reaction container draws exhaust vapors into an exhaust vapor hood. A line for absorption suspension extends between at least one spraying level of the absorber and the reaction container, and a process water feed lies above the spraying level.
    Type: Grant
    Filed: April 7, 2010
    Date of Patent: December 25, 2012
    Assignee: Babcock Noell GmbH
    Inventors: Helmut Welp, Thomas Schmidt
  • Publication number: 20120312013
    Abstract: A method of heating an engine exhaust gas of an engine, including flowing a first exhaust gas at a first temperature within and along internal flow channels of a catalyst brick, and flowing a second exhaust gas at a second, different, temperature around an exterior of the catalyst brick. Heat may be transferred between the gases and the catalyst brick to achieve various operations.
    Type: Application
    Filed: August 22, 2012
    Publication date: December 13, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventor: James Henry Yager
  • Publication number: 20120315195
    Abstract: The present disclosure relates to an diesel exhaust treatment device including a main body having a central longitudinal axis that extends between first and second ends of the main body. A catalyzed substrate is positioned within an interior of the main body. A side inlet is positioned at a side of the main body for directing exhaust gas into the interior of the main body. A flow distribution element is positioned within the interior of the main body at a location between the side inlet and an upstream face of the substrate. The flow distribution element extends across a direction of exhaust flow through the main body and is mounted at a side of the main body that is opposite the side inlet.
    Type: Application
    Filed: February 7, 2012
    Publication date: December 13, 2012
    Applicant: Donaldson Company, Inc.
    Inventors: Jared D. Blaisdell, Josh J. Kundert, Bruce Bernard Hoppenstedt
  • Patent number: 8329126
    Abstract: The present invention, in some embodiments, provides catalyst modules and/or catalytic reactors having increased effective catalyst cross-sectional areas. In some embodiments, a catalyst module comprises a fluid stream inlet side comprising a plurality of first catalyst bodies and a plurality of first ducts and a fluid stream outlet side comprising a plurality of second catalyst bodies and a plurality of second ducts, wherein the first ducts are a fluid stream inlet to the second catalyst bodies and the second ducts are a fluid stream outlet for the first catalyst bodies.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: December 11, 2012
    Assignee: Cormetech, Inc.
    Inventors: Jeremy Thomas Freeman, Eric Baker Howell
  • Patent number: 8329125
    Abstract: Recirculation of treated flue gas either independently or as a substitute for ambient air at specific points of ingress in a flue gas treatment system is provided to stabilize approach temperature and related parameters such as reagent consumption and pollution admission rate preventing both the accumulation of particulate matter and excessive corrosion associated with ambient air ingress. This recirculation provides a desired turbulence within remote regions of the flue gas treatment system to reduce the amount of particulate matter that may otherwise settle and accumulate in the absorber vessel or other areas of the system thereby causing particulate matter to be conveyed to the particulate removal device.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: December 11, 2012
    Assignee: Primex Process Specialists, Inc.
    Inventor: Stewart Nicholson
  • Patent number: 8329128
    Abstract: A gas stream containing carbon dioxide and sulfur dioxide is cleaned by removing, in a sulfur removal stage, sulfur dioxide from the gas stream. Sulfur dioxide is removed from the gas stream by bringing the gas stream into direct contact with ammonia. The used ammonia may be recycled. In a carbon dioxide removal stage, carbon dioxide is removed from the gas stream depleted in sulfur dioxide by bringing the gas stream into contact with an ammoniated liquid. Following sulfur dioxide and carbon dioxide removal, in an ammonia removal stage, ammonia from the gas stream is removed. Ammonia is removed from the gas stream by bringing the gas stream into direct contact with an acidic liquid to absorb into the acidic liquid, ammonia from the gas stream. The used acidic liquid may be recycled.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: December 11, 2012
    Assignee: ALSTOM Technology Ltd
    Inventors: Sanjay Kumar Dube, David James Muraskin
  • Publication number: 20120294771
    Abstract: A particulate filter may include a first layer composed of a first hydrocarbon trap absorbing hydrocarbon contained in an exhaust gas at a low temperature and a second layer composed of a first oxidizing catalyst oxidizing the hydrocarbon contained in the exhaust gas. The hydrocarbon absorbed at the first layer may be released at a high temperature, and the released hydrocarbon may be oxidized at the second layer to raise a temperature of the exhaust gas. An exhaust system may include an oxidation catalyst and the particulate filter. The oxidation catalyst may be a diesel oxidation catalyst comprising a third layer composed of a second hydrocarbon trap absorbing the hydrocarbon contained in the exhaust gas at a low temperature and a fourth layer composed of a second oxidizing catalyst oxidizing the hydrocarbon contained in the exhaust gas.
    Type: Application
    Filed: November 18, 2011
    Publication date: November 22, 2012
    Applicant: Hyundai Motor Company
    Inventor: Sungmu Choi
  • Patent number: 8302388
    Abstract: After adjusting an exhaust gas temperature at an exit of a heat recovery unit (11) of an exhaust gas treating apparatus to not more than a dew point temperature of sulfur trioxide (SO3), a heavy metal adsorbent is supplied from a heavy metal adsorbent supply unit (16) disposed in an exhaust gas at an entrance of a precipitator (4) or an intermediate position within the precipitator (4), and the exhaust gas containing the heavy metal adsorbent is supplied into the precipitator (4). Preferably at this stage, the heavy metal adsorbent is supplied into the exhaust gas at the entrance of the precipitator (4) 0.1 seconds after the exhaust gas temperature at the exit of the heat recovery unit (11) has been adjusted to not more than the dew point temperature of SO3.
    Type: Grant
    Filed: December 24, 2007
    Date of Patent: November 6, 2012
    Assignee: Babcock-Hitachi Kabushiki Kaisha
    Inventors: Kazuki Kobayashi, Hirofumi Kikkawa, Hiroshi Ishizaka, Hiroshi Takezaki, Hiroyuki Nosaka
  • Publication number: 20120275976
    Abstract: Recirculation of treated flue gas either independently or as a substitute for ambient air at specific points of ingress in a flue gas treatment system is provided to stabilize approach temperature and related parameters such as reagent consumption and pollution admission rate preventing both the accumulation of particulate matter and excessive corrosion associated with ambient air ingress. This recirculation provides a desired turbulence within remote regions of the flue gas treatment system to reduce the amount of particulate matter that may otherwise settle and accumulate in the absorber vessel or other areas of the system thereby causing particulate matter to be conveyed to the particulate removal device.
    Type: Application
    Filed: April 27, 2011
    Publication date: November 1, 2012
    Applicant: PRIMEX PROCESS SPECIALISTS, INC.
    Inventor: Stewart Nicholson
  • Publication number: 20120269708
    Abstract: Using a method and installation for separating acid components, dust and tar from hot gases of gasification installations, an economical method using a corresponding installation is to be created, which enables acid compounds HF, HCl, H2S, dust and tar to be reliably separated in the highest possible temperature range. The aim is achieved in that the media flow leaving the gasification at above 700° C. is fed with additives to a desulfurization process and subsequently to a combined cyclone 9 having associated filter cartridges 17 in a common vessel 8, and the gas is withdrawn for further use downstream of the filter cartridges.
    Type: Application
    Filed: November 13, 2010
    Publication date: October 25, 2012
    Applicant: THYSSENKRUPP UHDE GMBH
    Inventors: Domenico Pavone, Ralf Abraham
  • Patent number: 8293197
    Abstract: A system for reducing nitrogen oxides from an exhaust fluid is provided. The system includes an exhaust source, a hydrocarbon reductant source, a first injector in fluid communication with the hydrocarbon reductant source, where the first injector receives a first hydrocarbon reductant stream from the hydrocarbon reductant source, and expels the first portion of the hydrocarbon reductant stream. The system further includes a first catalyst that receives the exhaust stream and the first hydrocarbon reductant stream, a second injector in fluid communication with the hydrocarbon reductant source, where the second injector receives a second hydrocarbon reductant stream from the hydrocarbon reductant source, and expels the second hydrocarbon reductant stream, and a second catalyst disposed to receive an effluent from the first catalyst and the second portion of the hydrocarbon reductant stream.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: October 23, 2012
    Assignee: General Electric Company
    Inventors: Benjamin Hale Winkler, Dan Hancu, Ashish Balkrishna Mhadeshwar
  • Patent number: 8293200
    Abstract: A method of heating a used absorption liquid resulting from a carbon dioxide absorption stage in which a CO2 comprising gas stream is contacted with an absorption liquid comprising ammonia, wherein the used absorption liquid is subjected to heat exchange, in a heat exchanger, with a fluid of a desulfurization stage in which a SO2 comprising flue gas is contacted with a reagent composition comprising an alkaline compound.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: October 23, 2012
    Assignee: ALSTOM Technology Ltd
    Inventors: Sanjay Kumar Dube, David James Muraskin
  • Patent number: 8282715
    Abstract: Carbon dioxide-containing feed stream such as flue gas is treated to produce a high-purity carbon dioxide stream by a series of steps including removing SOx and NOx with activated carbon, carrying out subambient-temperature processing to produce a product stream and a vent stream, and treating the vent stream by pressure swing adsorption or by physical or chemical absorption to produce a product stream which is recycled to the feed stream.
    Type: Grant
    Filed: June 5, 2012
    Date of Patent: October 9, 2012
    Assignee: Praxair Technology, Inc.
    Inventors: Nick Joseph Degenstein, Minish Mahendra Shah, Bernard Thomas Neu
  • Patent number: 8282837
    Abstract: The invention proposes a method of destruction of volatile organic and inorganic compounds in wastewater, this method includes following stages: stripping the aforementioned volatile compounds in a stripping-chemisorption column; preliminary heating the gaseous medium containing these volatile compounds in a first heat regenerator; thermal, flare or thermo-catalytic oxidation of the volatile compounds in circulating gaseous medium; cooling the gaseous medium in a second heat regenerator; chemisorption of acidic gases from the gaseous medium in the stripping-chemisorption column with stripping at the same time additional amount of the volatile compounds from the wastewater. After specific period, direction of the gaseous medium flow is alternated. The proposed method can be executed at elevated temperature. The invention includes as well systems realizing the proposed method.
    Type: Grant
    Filed: May 13, 2010
    Date of Patent: October 9, 2012
    Assignee: Elcon Recycling Center (2003) Ltd.
    Inventor: Alexander Levin
  • Patent number: 8273861
    Abstract: Methods and reagents for photo-initiated carbonylation with carbon-isotope labeled carbon monoxide using alkyl/aryl iodides with carbanion precursors pretreated by a base are provided. The resultant carbon-isotope labeled ketones, and pharmaceutical acceptable salts and solvates are useful as radiopharmaceuticals, especially for use in Positron Emission Tomography (PET). Associated kits and method for PET studies are also provided.
    Type: Grant
    Filed: August 29, 2006
    Date of Patent: September 25, 2012
    Assignee: GE Healthcare Limited
    Inventors: Bengt Langstrom, Oleksiy Itsenko, Tor Kihlberg
  • Publication number: 20120230875
    Abstract: After absorbing oxygen together with carbon dioxide in an absorber 103, absorbing liquid 104a is supplied to oxygen collecting units 13 and 14. The oxygen collecting units 13 and 14 include silver to collect the oxygen in the absorbing liquid 104a and eliminate the oxygen from the absorbing liquid 104a. A regenerating unit 15 separates and recovers the oxygen collected in one of the two oxygen collecting units 13 and 14 to regenerate the oxygen collecting unit when the other oxygen collecting unit is supplied with the absorbing liquid 104a. A continuous operation can be achieved by switching and using the two oxygen collecting units 13 and 14.
    Type: Application
    Filed: November 4, 2010
    Publication date: September 13, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Takashi Ogawa, Manabu Sakurai, Yukio Ohashi, Hideo Kitamura
  • Publication number: 20120219481
    Abstract: A system and method for extracting carbon dioxide from an industrial source of flue gas at atmospheric pressure. The system comprises means for conditioning the flue gas for entry into a compressor unit; the compressor unit being adapted compressing the conditioned flue gas; a heater unit for heating the compressed flue gas; an expander unit for expanding the heated compressed flue gas for generating power; and a separator unit for separating Carbon Dioxide from the heated compressed flue gas.
    Type: Application
    Filed: July 20, 2010
    Publication date: August 30, 2012
    Inventors: Mark Geoffrey Sceats, Julian Westley Dinsdale
  • Publication number: 20120213661
    Abstract: A decontamination system useful for treating articles that have been exposed to nuclear, chemical or biological (NBC) agents may comprise a decontamination unit, a catalytic oxidation (CATOX) reactor connected to decontaminate off gases from the decontamination unit and a selector valve The selector valve may be configured to allow output gases from the CATOX reactor to pass to an exhaust during steady-state operation of the CATOX reactor and to allow said output gases to re-enter the CATOX reactor during warm-up of the CATOX reactor. Warm-up of the CATOX reactor may be quickly achieved as a result of recycling the output gases through the preheater during warm-up.
    Type: Application
    Filed: February 23, 2011
    Publication date: August 23, 2012
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventor: DAVID LOEFFELHOLZ
  • Publication number: 20120213674
    Abstract: The invention relates to a catalyst for purifying the exhaust gases from diesel engines, in particular an oxidation catalyst which is particularly well suited for the purification of exhaust gases from heavy goods vehicles when further exhaust gas purification units such as a particle filter and/or a nitrogen oxide reduction catalyst are installed downstream thereof. The catalyst contains two catalytically active coatings which have different compositions and of which only one is in direct contact with the outflowing exhaust gas. The coating (1) which is in direct contact with the outflowing exhaust gas is platinum-rich and contains a total amount of noble metal (platinum and palladium) which is greater than that in the coating (2) which is not in direct contact with the outflowing exhaust gas.
    Type: Application
    Filed: November 12, 2009
    Publication date: August 23, 2012
    Applicant: UMICORE AG & CO. KG
    Inventors: Frank-Walter Schuetze, Stéphanie Frantz, Gerald Jeske, Christoph Hengst
  • Patent number: 8241603
    Abstract: A multi-stage UCSRP process and system for removal of sulfur from a gaseous stream in which the gaseous stream, which contains a first amount of H2S, is provided to a first stage UCSRP reactor vessel operating in an excess SO2 mode at a first amount of SO2, producing an effluent gas having a reduced amount of SO2, and in which the effluent gas is provided to a second stage UCSRP reactor vessel operating in an excess H2S mode, producing a product gas having an amount of H2S less than said first amount of H2S.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: August 14, 2012
    Assignee: Gas Technology Institute
    Inventors: Arunabha Basu, Howard S. Meyer, Scott Lynn, Dennis Leppin, James R. Wangerow
  • Patent number: 8240138
    Abstract: An aftertreatment system is provided for reducing particulate matter emission and chemical emissions in diesel engine exhaust gas. The system includes a diesel particulate filter including a plurality of diesel particulate filter units configured to engage respective cross-sectional regions of the diesel engine exhaust gas including particulate matter. Each diesel particulate filter unit includes a plurality of channels aligned in a flow direction of the diesel engine exhaust gas. The channels are selectively configured with a distinct cross-sectional area density. Additionally, each diesel particulate filter unit includes a plurality of walls separating adjacent channels of the plurality of channels, where the walls have a respective thickness. A plurality of pores are configured to vacate a distinct ratio of the area of the walls.
    Type: Grant
    Filed: August 14, 2007
    Date of Patent: August 14, 2012
    Assignee: General Electric Company
    Inventors: Shuguang Lu, Roy Primus, William Douglas Glenn
  • Patent number: 8241597
    Abstract: A system and method for removing pollutants and greenhouse gases SO2, NO2, and CO2 from a flue gas stream, includes: a) contacting natural seawater with a flue gas for a given period of time to remove SO2 from the flue gas; b) contacting treated alkaline water to the flue gas to remove CO2 and NOx from the flue gas and generate oxygen and carbon particles; and c) collecting or emitting the flue gas after step b). The method and the system of the invention are significantly more economical and convenient and do not cause harm to the environments. The invention also exhibits a novel and unique feature that elemental carbon and oxygen are generated as final products and can be recovered as an energy source.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: August 14, 2012
    Assignee: Ecospec Global Technology Pte. Ltd.
    Inventor: Hwee Hong Chew
  • Patent number: 8236276
    Abstract: A sulfur recovery system for recovering sulfur from a sulfur plant feed stream including a first sulfur removal system and a second sulfur removal system. The system includes a sulfur plant feed inlet to the first sulfur removal system, the sulfur plant feed inlet being capable of providing a sulfur plant feed stream at a first pressure. One or more oxidizing gas inlets are arranged and disposed to combine at least one oxidizing gas stream with the sulfur plant feed stream to form a combustion gas for combustion in the first sulfur removal system at a second pressure. A flow restriction device is operably configured to control an operating pressure in one or both of the first sulfur removal system and the second sulfur removal system. A gas processing plant and method for recovering sulfur from a sulfur plant feed stream are also disclosed.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: August 7, 2012
    Assignee: Fluor Enterprises, Inc.
    Inventors: Xianming Jimmy Li, Elmo Nasato, Jung Soo Choe
  • Publication number: 20120189500
    Abstract: A system for treating an exhaust stream issued by a power plant processes the exhaust stream in a methanol reactor. The exhaust stream contains CO and/or CO2, and can be a full stack or a partial stack exhaust stream. The methanol reactor is a pellet style of methanol reactor, and can be a foam or an alpha alumina oxide foam reactor. A plasma chamber generates H2 for reacting in the methanol reactor. A portion of the exhaust stream issued by the power plant is consumed in the plasma chamber. An algae reactor converts sequestered CO2 to O2. The algae is exposed to the exhaust stream to extract nutrients therefrom and thereby augment growth of the algae. The plasma chamber receives at a high temperature region thereof CO that is reduced to its elemental state. Cooling of the exhaust stream and precipitates the methanol to be re-burned as a fuel.
    Type: Application
    Filed: May 11, 2010
    Publication date: July 26, 2012
    Inventors: James Charles Juranitch, Thomas R. Juranitch
  • Patent number: 8225597
    Abstract: A system and method for NOx reduction is described, with a catalytic unit including a first zeolite catalyst with a first NOx conversion performance in a first temperature range and a second NOx conversion performance, lower than said first NOx conversion performance, in a second temperature range. The catalytic unit also comprises a second zeolite catalyst with a third NOx conversion performance, lower than said first NOx conversion performance, in the first temperature range and a fourth NOx conversion performance, higher than said second and third NOx conversion performances in the second temperature range, said first temperature range being higher than said second temperature range. The system further includes a controller configured to adjust an amount of reducing agent added to the NOx reducing system responsive to a temperature of the catalytic unit.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: July 24, 2012
    Assignee: Ford Global Technologies, LLC
    Inventors: James W. Girard, Giovanni Cavataio, Christine Kay Lambert, Rachel Alison Snow
  • Publication number: 20120183446
    Abstract: A suspension solution filter sieve basket for use in a flue gas desulfurization includes holes which widen in a flow direction of a suspension solution.
    Type: Application
    Filed: September 20, 2010
    Publication date: July 19, 2012
    Inventors: Georg Neubauer, Jakob Wilhelm, Detlef Weber
  • Patent number: 8216344
    Abstract: Carbon dioxide-containing feed stream such as flue gas is treated to produce a high-purity carbon dioxide stream by a series of steps including removing SOx and NOx with activated carbon, carrying out subambient-temperature processing to produce a product stream and a vent stream, and treating the vent stream by pressure swing adsorption or by physical or chemical absorption to produce a product stream which is recycled to the feed stream.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: July 10, 2012
    Assignee: Praxair Technology, Inc.
    Inventors: Nick Joseph Degenstein, Minish Mahendra Shah, Bernard Thomas Neu
  • Publication number: 20120159935
    Abstract: One embodiment of the invention may include a method comprising providing a product comprising a substrate comprising a perovskite catalyst, NOx stored in or on the substrate and particulate matter in or on the substrate; releasing at least some of the stored NOx and oxidizing the released NOx to form NO2, and reacting the NO2 with carbon in the particulate matter to form at least one of CO or CO2.
    Type: Application
    Filed: December 22, 2010
    Publication date: June 28, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Wei Li, David B. Brown, Chang H. Kim, Gongshin QI, Steven J. Schmieg
  • Patent number: 8206669
    Abstract: A feed gas comprising CO2, H2S and H2 is treated to produce an H2-enriched product and a CO2 product. The feed gas is separated by pressure swing adsorption to provide a stream of the H2-enriched product, and two streams of sour gas depleted in H2 and enriched in H2S and CO2 relative to the feed gas. One of the streams of sour gas is processed in an H2S to elemental sulfur conversion system, in which H2S in the sour gas is converted to elemental sulfur order to obtain a stream of sweetened gas, from which the CO2 product is formed. The other of said streams of sour gas is processed in an oxidation system, in which H2S in the sour gas is oxidized to SOx(SO2 and SO3) which is introduced into the H2S to elemental sulfur conversion system.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: June 26, 2012
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Charles Linford Schaffer, Andrew David Wright, Kevin Boyle Fogash, Jeffrey William Kloosterman, Vincent White
  • Patent number: 8202819
    Abstract: A catalyst system to be used in an automobile exhaust gas purification apparatus which exerts excellent purification capability to a nitrogen oxide, even when hydrocarbon concentration varies, by subjecting exhaust gas discharged from an automotive internal engine to contacting with a catalyst, an exhaust gas purification apparatus using the same, and an exhaust gas purification method. A catalyst system etc.
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: June 19, 2012
    Assignees: Daiichi Kigenso Kagaku Kogyo Co., Ltd., N.E. Chemcat Corporation
    Inventors: Akira Kohara, Yoshiro Hirasawa, Katsuaki Katoh
  • Patent number: 8192706
    Abstract: A method for purifying waste gases of an at least partially burnt solid fuel to reduce pollutants such as SOx and/or HCl and NOx. The waste gas flows into a moving bed reactor from below through a lower and upper layer of an adsorption and/or absorption agent already polluted with NOx, SOx and/or HCl. SOx and/or HCl components are adsorbed from the waste gas into the NOx loaded adsorption and/or absorption agent. Thereafter, the waste gas is mixed with an ammonium-containing compound and flows through an upper horizontal gas inflow and bulk material removal tray of the moving bed reactor into the upper layer of the adsorption and/or absorption agent already polluted with NOx and small quantities of SOx and/or HCl. During the throughflow of the upper layer, NOx components are adsorbed from the waste gas onto the adsorption/absorption agent.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: June 5, 2012
    Inventor: Horst Grochowski
  • Patent number: 8192529
    Abstract: An air quality control system (AQCS) (4) useful for processing a gas stream (DG), such as a flue gas stream emitted from a fossil fuel fired boiler (2), combustion process or the like, for at least partial removal of acidic and like contaminants. The air quality control system (4) includes a plurality of integrated components (12) equipped with both a dry scrubber system (8) and a fabric filter (10). The air quality control system (4) such as described possesses increased “turn down” capabilities thus increasing the efficiency thereof.
    Type: Grant
    Filed: February 10, 2010
    Date of Patent: June 5, 2012
    Inventors: Lawrence H. Gatton, Jr., Alan W. Ferguson, Per H. F. Landmer
  • Publication number: 20120121475
    Abstract: The invention provides a fluid injector assembly for the injection of a fluid including an injector body having distal and proximal ends, a fluid inlet disposed towards the proximal end, a fluid outlet disposed towards the distal end, and a fluid pathway extending therebetween the inlet and the outlet. An injector needle is rotatably disposed at least partially in the injector body and is moveable between an open and closed position. The proximal end of the injector needle has a tip that is configured to sealably close the fluid outlet. The fluid injector assembly includes a first threaded region that cooperates with a corresponding threaded region on the needle, and first and second cooperating coupling members that are arranged axially of the injector needle. The first coupling member is attached to a motor, and the second coupling member is attached to a distal end of the injector needle.
    Type: Application
    Filed: November 12, 2010
    Publication date: May 17, 2012
    Inventor: Hermanus van Niekerk
  • Publication number: 20120121489
    Abstract: The invention relates to a method for removing pollutants and greenhouse gases SO2, NOx, and CO2 from a flue gas stream, comprising the steps of: a) contacting natural seawater with a flue gas in a counter flow, co-current flow or cross flow direction for a given period of time to remove SO2 from the flue gas; b) contacting treated alkaline water to the flue gas in a counter flow, co-current flow or cross flow direction to remove CO2 and NOx from the flue gas and generate oxygen and carbon particles; and c) collecting or emitting the flue gas after step b). The invention also relates to a system for removing pollutants and greenhouse gases SO2, NOx, and CO2 from a flue gas stream. The method and the system of the invention are significantly more economical and convenient and do not cause harm to the environments. The invention also exhibits a novel and unique feature that elemental carbon and oxygen are generated as final products and can be recovered as an energy source.
    Type: Application
    Filed: June 3, 2009
    Publication date: May 17, 2012
    Inventor: Hwee Hong Chew
  • Publication number: 20120114531
    Abstract: A silicon oxide removal apparatus for removing silicon oxide contained in an inert gas discharged from a silicon single crystal manufacturing apparatus, including at least: a contact means for bringing the inert gas discharged from the silicon single crystal manufacturing apparatus into contact with a strongly alkaline solution; and a neutralizing means for neutralizing an alkaline material contained in the inert gas brought into contact with the strongly alkaline solution. As a result, there is provided a silicon oxide removal apparatus and a facility for recycling an inert gas for use in a silicon single crystal manufacturing apparatus that can more effectively remove the silicon oxide contained in the inert gas discharged from the silicon single crystal manufacturing apparatus at low cost and enable recycle of the inert gas in which the silicon oxide has been effectively removed.
    Type: Application
    Filed: May 27, 2010
    Publication date: May 10, 2012
    Applicant: Shin-etsu Handotai Co., Ltd.
    Inventors: Takashi Higuchi, Tadahiko Horiuchi
  • Patent number: 8166750
    Abstract: An exhaust gas system for purifying exhaust gases of an internal combustion engine, particularly a diesel engine in a motor vehicle, conducts the exhaust gas in a specific flow direction. A catalytic converter, particularly for converting hydrocarbons and carbon monoxides contained in the exhaust gas, an oxidation catalytic converter, particularly for converting nitrogen monoxide contained in the exhaust gas and a particulate trap for collecting particulates contained in the exhaust gas, are disposed successively in the flow direction. The exhaust gas system ensures a highly efficient conversion of harmful substances contained in the exhaust gas, and a particularly positive effect with respect to the regeneration of the particulate trap also occurs.
    Type: Grant
    Filed: August 4, 2004
    Date of Patent: May 1, 2012
    Assignee: Emitec Gesellschaft fuer Emissionstechnologie mbH
    Inventor: Rolf Brück
  • Publication number: 20120093695
    Abstract: A honeycomb structure includes a porous silicon carbide honeycomb fired body and a silicon-containing oxide layer. The porous silicon carbide honeycomb fired body has at least one cell wall defining a plurality of cells extending along a longitudinal direction of the silicon carbide honeycomb fired body. The plurality of cells is provided in parallel with one another. The silicon carbide honeycomb fired body contains silicon carbide particles. The silicon-containing oxide layer is provided on a surface of each of the silicon carbide particles. The silicon-containing oxide layer has a thickness of from about 5 nm to about 100 nm measured with an X-ray photoelectron spectroscopy.
    Type: Application
    Filed: October 12, 2011
    Publication date: April 19, 2012
    Applicant: IBIDEN CO., LTD.
    Inventors: Misako IWAKURA, Kohei Ota, Toshihide Ito
  • Patent number: 8142744
    Abstract: An air pollution control system includes an emission treatment system configured to receive flue gas, to reduce at least one pollutant therefrom, and to output emission treated flue gas. A first air heater in fluid communication with the emission treatment system includes a heat exchanger for heating forced air introduced thereto above a base temperature and thereby cooling emission treated flue gas from the emission treatment system to a stack discharge temperature. A second air heater in fluid communication with the first air heater to receive heated forced air therefrom includes a heat exchanger for heating forced air introduced thereto to a preheat temperature for combustion in a boiler and thereby cooling flue gas introduced from a boiler to the second air heater to an emission treatment temperature. The second air heater is in fluid communication with the emission treatment system to introduce cooled flue gas thereto.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: March 27, 2012
    Assignee: Babcock Power Environmental Inc.
    Inventors: Richard F. Abrams, Mark R. Lewis, Jeffrey Penterson
  • Patent number: 8141351
    Abstract: A pre-catalyst device configured to be disposed upstream of a main aftertreatment device of an engine exhaust system. An oxidizing material is disposed on an inlet face of the pre-catalyst device, where the oxidizing material is configured to oxidize engine exhaust before the engine exhaust reaches the main aftertreatment device of the engine exhaust system.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: March 27, 2012
    Assignee: Cummins Filtration IP, Inc.
    Inventors: Chetan Ponnathpur, Thomas M. Yonushonis, Javier Franco
  • Patent number: 8124017
    Abstract: The invention provides a system for regenerative selective catalytic reduction including a catalyst chamber that contains a catalyst for reducing NOX in a gas stream passing therethrough. The system also includes a reactant injector, first and second heat exchangers, and a valve manifold adapted to direct a substantially continuous gas stream through the heat exchangers and catalyst chamber in such a manner as to flow through the catalyst chamber in the same flow direction during each cycle of the system. The invention also provides a process of regenerative selective catalytic reduction wherein the gas stream through the catalyst chamber flows in the same flow direction during each cycle of the process.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: February 28, 2012
    Assignee: Babcock Power Environmental Inc.
    Inventors: John R. Harold, James D. Dougherty
  • Publication number: 20120020857
    Abstract: A reductant dosing system is disclosed. The reductant dosing system may have a supply of reductant, a reductant nozzle, and a pump with an inlet and an outlet. The reductant dosing system may also have a first passage connecting the supply with the inlet of the pump, and a first control valve disposed in the first passage. The reductant dosing system may further have a second passage connecting the outlet of the pump with the reductant nozzle, and a second control valve disposed in the second passage. The reductant dosing system may additionally have a third passage connecting the second control valve to the first passage at a location downstream of the first control valve, and a fourth passage connecting the second control valve with the supply.
    Type: Application
    Filed: July 21, 2010
    Publication date: January 26, 2012
    Inventors: Raymond Upano ISADA, Yongxiang Li
  • Publication number: 20120020843
    Abstract: The invention relates to a method for producing a catalytic composition, wherein the catalytic composition has a high activity and selectivity with regard to the oxidation of CO and a reduced activity with regard to the oxidation of NO. The invention also relates to the catalyst produced using the method according to the invention. Finally, the invention is directed towards an exhaust-gas cleaning system which comprises the catalyst according to the invention.
    Type: Application
    Filed: January 27, 2010
    Publication date: January 26, 2012
    Applicant: Sud-Chemie AG
    Inventors: Andreas Bentele, Klaus Wanninger, Gerd Maletz, Martin Schneider
  • Patent number: 8101146
    Abstract: A system for reducing ammonia (NH3) emissions includes (a) a first component comprising a first substrate containing a three-way catalyst, wherein the first component is disposed upstream of a second component comprising a second substrate containing an ammonia oxidation catalyst, wherein said ammonia oxidation catalyst comprises a small pore molecular sieve supporting at least one transition metal; and (b) an oxygen-containing gas input disposed between the components. For example, a CHA Framework Type small pore molecular sieve may be used. A method for reducing NH3 emission includes introducing an oxygen-containing gas into a gas stream to produce an oxygenated gas stream; and exposing the oxygenated gas stream to an NH3 oxidation catalyst to selectively oxidize at least a portion of the NH3 to N2.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: January 24, 2012
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Joseph M. Fedeyko, Hai-Ying Chen, Arthur J. Reining
  • Patent number: 8097055
    Abstract: A system for treating exhaust gas from an engine is disclosed. The system may include a housing with a first longitudinal axis, an inlet port, and an outlet port. The housing may define a first flow path. A fluid treatment element may be arranged in the flow path. The system may also include a conduit defining a second longitudinal axis and forming a second flow path. The conduit may have first and second tubular portions generally aligned with the second longitudinal axis. The first tubular portion may have a first cross-section, and the second tubular portion may have a second cross-section. An inner diameter of the second cross-section may be less than an inner diameter of the first cross-section. The centerpoint of the first inner diameter may be offset from the centerpoint of the second inner diameter in a direction generally parallel to the first longitudinal axis.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: January 17, 2012
    Assignee: Caterpillar Inc.
    Inventors: Thomas V. Staley, Loran J. Hoffman, Ryan M. Duffek, Richard A. Crandell