Combined Patents (Class 422/187)
  • Publication number: 20150119232
    Abstract: Disclosed is a method for separating a chlorine-containing species from an aqueous solution of the chlorine-containing species in a catalytic hydrocarbon conversion process that includes the step of oxidizing a spent chloride-containing hydrocarbon conversion catalyst, the spent hydrocarbon conversion catalyst including a hydrocarbon residue formed thereon. The oxidizing forms a flue gas including chlorine-containing species, water, and oxides of carbon. The method further includes contacting the flue gas with a water scrubbing stream to dissolve at least a portion of the chlorine-containing species in the water scrubbing stream to form an aqueous acid solution and contacting the aqueous acid solution with a hygroscopic liquid to generate dehydrated hydrogen chloride gas.
    Type: Application
    Filed: October 24, 2013
    Publication date: April 30, 2015
    Applicant: UOP LLC
    Inventors: Mark D. Moser, David A. Wegerer
  • Patent number: 9017635
    Abstract: The present invention relates to a continuous manufacturing apparatus for a carbon nanotube having gas separation units and a continuous manufacturing method for a carbon nanotube using the same. According to the present invention, the present invention has an effect to provide the continuous manufacturing apparatus of the carbon nanotube and continuous manufacturing method using the same, in which it makes possible to perform a rapid processing; has excellent productivity and excellent conversion rate of carbon source; can significantly reduce the cost of production; can reduce energy consumption because a reactor size can be decreased as compared with capacity; and a gas separation unit that not generate a waste gas.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: April 28, 2015
    Assignee: LG Chem, Ltd.
    Inventors: Kwang-Hyun Chang, Jin-Do Kim, Kwang-Woo Yoon
  • Patent number: 9017618
    Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: April 28, 2015
    Assignee: Ener-Core Power, Inc.
    Inventors: Boris A. Maslov, Douglas Hamrin
  • Publication number: 20150112102
    Abstract: Method and system for removal of heavy metal ions from a rich hydrate inhibitor stream, wherein the method comprises •a) adding a selective heavy metal reactant to the rich hydrate inhibitor stream, forming a fluid stream comprising heavy metal salt particles, •b) separating the obtained fluid stream in three streams a hydrocarbon stream, a recovered rich hydrate inhibitor stream, and a slurry comprising the heavy metal salt particles, •c) separating remaining hydrate inhibitor from the slurry thereby obtaining a concentrated rest comprising the heavy metal salt particles.
    Type: Application
    Filed: May 29, 2013
    Publication date: April 23, 2015
    Inventor: Kristian Jensen
  • Publication number: 20150110685
    Abstract: A method and apparatus for method of continuously producing 1,1,1,2,3-pentafluoropropane with high yield is provided. The method includes (a) bringing a CoF3-containing cobalt fluoride in a reactor into contact with 3,3,3-trifluoropropene to produce a CoF2-containing cobalt fluoride and 1,1,1,2,3-pentafluoropropane, (b) transferring the CoF2-containing cobalt fluoride in the reactor to a regenerator and bringing the transferred CoF2-containing cobalt fluoride into contact with fluorine gas to regenerate a CoF3-containing cobalt fluoride, and (c) transferring the CoF3-containing cobalt fluoride in the regenerator to the reactor and employing the transferred CoF3-containing cobalt fluoride in Operation (a). Accordingly, the 1,1,1,2,3-pentafluoropropane can be continuously produced with high yield from the 3,3,3-trifluoropropene using a cobalt fluoride (CoF2/CoF3) as a fluid catalyst, thereby improving the reaction stability and readily adjusting the optimum conversion rate and selectivity.
    Type: Application
    Filed: December 30, 2014
    Publication date: April 23, 2015
    Inventors: ook jae Cho, Jae Kug Ryu, Bong Seok Kim, Donghyun Kim, Byounghun Park, su jin Park, Jin-A Jung, Daewoo Kim
  • Publication number: 20150108400
    Abstract: There is provided a method and an apparatus for preparing graphite oxide, in accordance with the present disclosure, when an oxidizer is added by stages into a sequencing batch oxidizer mixer connected in multiple stages at a constantly low temperature, the oxidizer is mixed therein while suppressing an oxidation reaction. During an oxidation reaction of graphite, in a risky range of overheating and explosion, a tube type reactor equipped within a heat exchanger is used to accurately control a local temperature and the oxidizer can permeate between layers of the graphite with increased efficiency under ultrasonication. In an additional reaction range out of the risky range, a continuous stirred tank reactor is used to mature the oxidation reaction, so that a risk of explosion during manufacturing of graphite oxide can be reduced and a great amount of graphite oxide can be mass-produced economically.
    Type: Application
    Filed: December 23, 2014
    Publication date: April 23, 2015
    Inventors: Byoung Kyu Ji, Jung Young Choi, Cheol Min Shin, Shi Choon Lee
  • Publication number: 20150112107
    Abstract: The present invention relates to a process for the preparation of an olefinic product, such as one or both of ethylene and propylene, from an oxygenate feedstock, such as methanol, and an apparatus therefore, said process comprising: treating an effluent stream with a carbonyl compound absorbent stream comprising an aqueous solution of bisulphite having a pH in the range of from 4 to 8, to provide an olefinic product stream comprising olefin and a loaded carbonyl compound absorbent stream comprising an aqueous solution of at least one carbonyl adduct comprising one or both of C2+ aldehyde adduct and ketone adduct and optionally unreacted bisulphite, said liquid absorbent stream and loaded carbonyl compound absorbent stream in a carbonyl compound absorbent circuit separate from the effluent separation circuit.
    Type: Application
    Filed: December 21, 2012
    Publication date: April 23, 2015
    Inventors: Rajaram Ramesh, Jeroen Van Westrenen
  • Publication number: 20150110684
    Abstract: In various implementations, methanol is produced using a (CO+H2) containing synthesis gas produced from a combined POX plus EHTR or a combined ATR plus EHTR at a pressure of 70 bar to 100 bar at the correct stoichiometric composition for methanol synthesis so that no feed gas compressor is required for the feed to the methanol synthesis reactor loop.
    Type: Application
    Filed: May 28, 2014
    Publication date: April 23, 2015
    Inventor: Rodney J. Allam
  • Publication number: 20150111120
    Abstract: A power generator includes a power generator cavity adapted to receive a fuel cartridge, a protrusion disposed with in the cavity to engage a check valve of the fuel cartridge, a fuel cell to convert hydrogen and oxygen to electricity and to generate water vapor, and a passage to transport hydrogen from the cavity to the fuel cell and water vapor to the cavity.
    Type: Application
    Filed: October 23, 2013
    Publication date: April 23, 2015
    Applicant: Honeywell International Inc.
    Inventor: Steven J. Eickhoff
  • Patent number: 9011803
    Abstract: Methods and systems for producing silane that use electrolysis to regenerate reactive components therein are disclosed. The methods and systems may be substantially closed-loop with respect to halogen, an alkali or alkaline earth metal and/or hydrogen.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: April 21, 2015
    Assignee: SunEdison, Inc.
    Inventors: Puneet Gupta, Henry F. Erk, Alexis Grabbe
  • Patent number: 9011790
    Abstract: A reactor for carrying out a three-phase reaction of a liquid phase, a gaseous phase, and a catalyst over a fixed catalyst bed is disclosed. The liquid and gaseous phases are passed through the reactor via a mixing and distribution device positioned over the fixed catalyst bed. The mixing and distribution device includes a trough distributor for the liquid phase, having trough-shaped channels, outlet tubes in the trough-shaped channels for the liquid phase, a distributor plate below the trough distributor, and vertical nozzles, having one or more openings for the gaseous phase and one or more openings, arranged below the openings for the gaseous phase. For entry of the liquid phase, the nozzles are installed so that, at a predetermined liquid feed rate, the surface of the liquid on the distributor plate is below the openings for the gaseous phase and above the openings for the liquid phase.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: April 21, 2015
    Assignee: BASF SE
    Inventors: Stefan Iselborn, Andreas Daiss, Reiner Geier, Marcus Bechtel, Michael Wille, Benjamin Hepfer, John Sauter
  • Publication number: 20150101792
    Abstract: A carbonaceous material liquefaction apparatus which uses a nozzle assembly to supply a pressurised liquid towards a carbonaceous material as a high velocity liquid. A supply line (46, 39) supplies the high pressure liquid to the nozzle assembly (38). The high velocity liquid reacts with the carbonaceous material (35) in a reaction zone (40) to produce a processed carbonaceous material. A product return line (34, 42) returns the processed carbonaceous material and entrained liquid to a processing plant. The processing plant comprises a heat exchanger (44) to transfer heat from the product return line to the supply line, a high pressure pump (48) to provide the high pressure liquid to the supply line, a separator (52) in the product return line downstream of the heat exchanger to separate gas (54) and oil (56) product from the entrained liquid, at least part of the liquid (58) being recycled (64) to the high pressure pump. The reaction can be carried out in-situ or in an above ground reaction chamber (70).
    Type: Application
    Filed: December 19, 2014
    Publication date: April 16, 2015
    Inventor: Peter John O'Dowd
  • Publication number: 20150104356
    Abstract: A system and method for removing organic carboxylates from a mono ethylene glycol (“MEG”) stream includes a reaction vessel; means for cooling and diluting the MEG stream being routed to the reaction vessel; means for acidifying the cooled and diluted MEG stream during its residence time within the reaction vessel; and means for removing an acetic-rich overhead stream from the reaction vessel. The acidification of the cooled and diluted MEG stream occurs under a vacuum. The reaction vessel may be located downstream of a calcium removal vessel and receive a filtered bottom stream from that vessel, or it may be a single reaction vessel that cycles between a calcium removal mode and an acetate removal mode, with the pressure of the single vessel being greater during the calcium removal mode than during the acetate removal mode.
    Type: Application
    Filed: October 10, 2013
    Publication date: April 16, 2015
    Applicant: Cameron Solutions, Inc.
    Inventor: Brian E. Messenger
  • Publication number: 20150105590
    Abstract: A process for preparing cyclohexanol and cyclohexanone by cyclohexane oxidation includes steps of: non-catalyticly oxidizing cyclohexane with molecular oxygen in the air to obtain an oxidation mixture containing CHHP as a main product; performing a homogenous catalytic decomposition of the CHHP to obtain cyclohexanol and cyclohexanone; and rectifying to obtain products of the cyclohexanol and the cyclohexanone, wherein the step of performing the homogenous catalytic decomposition involves a homogeneous catalytic decomposition reaction and distillation vessel which removes water via azeotropic rectification to reduce a water content of a decomposition liquid to be below 100 ppm. A device therefor includes the homogeneous catalytic decomposition reaction and distillation vessel for performing the homogenous catalytic decomposition of the CHHP.
    Type: Application
    Filed: May 17, 2012
    Publication date: April 16, 2015
    Inventor: Zaosheng Xiao
  • Publication number: 20150101379
    Abstract: This invention relates to an improved urea-nitrogen stabilizer composition and methods, systems and apparatti for making thereof. The nitrogen stabilizer composition is incorporated into molten urea to result in a composition that contains less biuret, NMP, nitrogen stabilizer and/or impurities and provides an effective solid fertilizer. These compositions are useful in odor control.
    Type: Application
    Filed: August 25, 2014
    Publication date: April 16, 2015
    Inventors: Kurt D. Gabrielson, Allen Sutton
  • Publication number: 20150104357
    Abstract: The present invention provides a porous silica aerogel composite membrane and method for making the same and a carbon dioxide sorption device. The porous silicon oxide aerogel composite membrane includes a porous aluminum oxide membrane having a plurality of macro pores with an average diameter larger than 50 nm and a porous silica aerogel membrane formed on at least one side of the porous aluminum oxide membrane and the macro pores of surface layers of the porous aluminum oxide membrane where the porous silica aerogel membrane has a plurality of meso pores with an average diameter of 2˜50 nm and is derived from methyltrimethoxysilane precursor by a sol-gel synthetic method.
    Type: Application
    Filed: April 9, 2014
    Publication date: April 16, 2015
    Applicant: CHUNG YUAN CHRISTIAN UNIVERSITY
    Inventors: Yi-Feng Lin, Chia-Chieh Ko, Kuo-Lun Tung, Chien-Hua Chen, Kai-Shiun Chang
  • Patent number: 9005344
    Abstract: The present application is directed to a hydrophobic membrane assembly (28) used within a gas-generating apparatus. Hydrogen is separated from the reaction solution by passing through a hydrophobic membrane assembly (28) having a hydrophobic lattice like member (36) disposed within a hydrogen output composite (32) further enhancing the ability of the hydrogen output composite's ability to separate out hydrogen gas and prolonging its useful life.
    Type: Grant
    Filed: January 3, 2014
    Date of Patent: April 14, 2015
    Assignees: Societe Bic, The Commissariat a L'energie Atomique et Aux Energies Alternatives (CEA)
    Inventors: Andrew J. Curello, Michael Curello, Constance R. Stepan
  • Patent number: 9005553
    Abstract: The present invention provides an apparatus for solidifying and converting carbon dioxide into carbonate, comprising: an alkali component extraction reactor for extracting an alkali metal component from a raw slag; a carbonation reactor for injecting carbon dioxide into an alkali metal component solution containing the extracted alkali metal component to produce a carbonate precipitate from the alkali metal component solution; a first filtration device connected between the alkali component extraction reactor and the carbonation reactor to separate a post-treatment slag, from which the alkali component is extracted, from the alkali metal component solution; and a second filtration device connected between an inlet of the alkali component extraction reactor and an outlet of the carbonation reactor to separate the carbonate from the alkali metal component solution after the carbonation reaction.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: April 14, 2015
    Assignees: Hyundai Motor Company, Kia Motors Corporation, Hyundai Steel Company
    Inventors: Tae Young Kim, Sung Yeup Chung, Ki Chun Lee, Dong Cheol Park, Min Ho Cho, Seok Gyu Sonh
  • Patent number: 9005537
    Abstract: A continuous high capacity system for converting a combination of natural gas and coal into liquid fuel, using a pug for blending less than 200 micron diameter particulate with a plasticizing agent; a sealing auger for forming an agglomerated material and sealing, a cutting device, a vacuum chamber to remove air from the cut material, a second sealing auger for forming a de-aerated agglomerated material and sealing, a second cutting device, a gas injection chamber for impregnating the de-aerated cut material with natural gas, an extruder forming an extrudate, a heating chamber to evolve at least one gas; a pressure sensor and temperature sensors in the heating chamber, a cooling chamber providing controlled pressure and controlled temperature cooling of the evolved gasses, wherein the cooling chamber liquefies sequentially at least 50 percent of the evolved gasses forming a liquid.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: April 14, 2015
    Inventor: George Francis Cudahy
  • Publication number: 20150098889
    Abstract: This invention relates to a carbon dioxide absorbing composition including a tertiary alkanolamine, and to a method and apparatus for absorbing carbon dioxide using the same, wherein in a process and apparatus for absorbing and recovering carbon dioxide from a gas mixture including carbon dioxide, a solid-phase bicarbonate crystal including high-concentration carbon dioxide is crystallized from a carbon dioxide absorbing composition having absorbed carbon dioxide and is then selectively separated, thereby efficiently recovering and regenerating carbon dioxide.
    Type: Application
    Filed: October 3, 2014
    Publication date: April 9, 2015
    Inventors: Taesung JUNG, Jong-Nam KIM, Hee Tae BEUM, Sang-Sup HAN, Cheol-Ho MOON, Chang-Sin JO
  • Publication number: 20150099908
    Abstract: Devices and methods for preparing oxygen-containing liquid fuel by bio-oil catalytic conversion. A device includes a biomass fast thermal cracking system for preparing bio-oil, a bio-oil oil-water separating system for separating the bio-oil into oil phase bio-oil and water phase bio-oil that is output to an oil phase bio-oil chemical chain hydrogen production system, and a water phase bio-oil catalytic hydrogenation system. The hydrogen production system outputs produced hydrogen to the water phase bio-oil catalytic hydrogenation system to prepare a liquid fuel. A method includes the steps: thermally cracking the biomass to prepare bio-oil, separating the water phase and the oil phase, producing hydrogen from the oil phase bio-oil through a chemical chain method so as to provide a hydrogen source for the water phase bio-oil to carry out two-stage catalytic hydrogenation in a slurry bed, and separating and purifying the hydrogenated products to obtain an oxygen-containing liquid fuel.
    Type: Application
    Filed: December 5, 2012
    Publication date: April 9, 2015
    Inventors: Rui Xiao, Huiyan Zhang, Yong Zhang, Dekui Shen
  • Publication number: 20150098872
    Abstract: A commercially viable modular ceramic oxygen transport membrane reforming reactor for producing a synthesis gas that improves the thermal coupling of reactively-driven oxygen transport membrane tubes and catalyst reforming tubes required to efficiently and effectively produce synthesis gas.
    Type: Application
    Filed: October 7, 2014
    Publication date: April 9, 2015
    Inventors: Sean M. Kelly, Gervase Maxwell Christie, Lee J. Rosen, Charles Robinson, Jamie R. Wilson, Javier E. Gonzalez, Uttam R. Doraswami
  • Publication number: 20150099902
    Abstract: The present invention relates to an apparatus, which can be part of a pre-treatment system in a plant for the production of fuels, e. g. bio-ethanol, derived from plant biomass, e. g. first generation crops, such as grain, sugarcane and corn or second generation crops such as lignocellulosic biomass. The invention relates to an apparatus for processing, such as fluffing and mixing, at least two media, such as a solid, e. g. biomass, and a fluid, e. g. steam, so as to rendering the first medium susceptible to efficient receiving of energy and/or mass which is provided by localized release of the second medium. Although the description of the present invention focuses on biomass, it is envisaged that the invention is generally applicable to control the mixing of at least two media by crossing their stream of while dispersing at least one of them.
    Type: Application
    Filed: September 29, 2014
    Publication date: April 9, 2015
    Inventors: Finn Beldring, Dragan Lukic, Troels Hilstrom
  • Publication number: 20150099285
    Abstract: The present invention relates to systems and methods for producing energy. Specifically, the present invention relates to systems and methods for producing energy, such as energy in the form of electricity, and fuels, such as, for example, biodiesel and/or cellulosic ethanol in a small scale energy center. Moreover, the systems and methods of the present invention provide for recovery of materials, such as in soil production and/or recycling.
    Type: Application
    Filed: August 18, 2014
    Publication date: April 9, 2015
    Inventors: Steven M. Clements, Richard L. Clements
  • Publication number: 20150098868
    Abstract: The invention relates to a commercially viable modular ceramic oxygen transport membrane reforming reactor configured using repeating assemblies of oxygen transport membrane tubes and catalytic reforming reactors.
    Type: Application
    Filed: October 7, 2014
    Publication date: April 9, 2015
    Inventors: Sean M. Kelly, Gervase Maxwell Christie, Charles Robinson, Jamie R. Wilson, Javier E. Gonzalez, Uttam R. Doraswami
  • Patent number: 8999258
    Abstract: A method for the oxidative coupling of hydrocarbons includes providing an oxidative catalyst inside a reactor and carrying out the oxidative coupling reaction under a set of reaction conditions. The reactor surfaces that contact the reactants and products do not provide a significant detrimental catalyzing effect. In an embodiment the reactor contains an inert lining or a portion of the reactor inner surface is treated to reduce the detrimental catalytic effects. In an embodiment the reactor contains a lining that includes an oxidative catalyst.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: April 7, 2015
    Assignee: Fina Technology, Inc.
    Inventors: Sivadinarayana Chinta, Joseph Thorman
  • Patent number: 8999030
    Abstract: The present invention concerns a process for producing synthetic coal and aqueous liquid plant fertilizing solution products from a fermentation residue such as is left over from the corn based process of producing ethanol. The synthetic coal has a high heat value commensurate with naturally occurring coals and is lower in ash and sulfur content and thus has value as a clean burning energy source. The aqueous fertilizer includes commercially useful amounts of phosphorous, potassium and nitrogen in solution. The process of the invention is also energy efficient in that the products produced thereby involve the use of substantially less energy as compared to the traditional methods of processing fermentation residues in the corn based ethanol production industry.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: April 7, 2015
    Inventors: Frederick J Schendel, Marc von Keitz, Kenneth J Valentas, Steven M Heilmann, Lindsey R Jader, Brandon M Wood
  • Patent number: 8999257
    Abstract: Methods and systems for the dehydrogenation of hydrocarbons include a direct contact condenser to remove compounds from an offgas process stream. The reduction of compounds can decrease duty on the offgas compressor by removing steam and aromatics from the offgas. The dehydrogenation reaction system can be applicable for reactions such as the dehydrogenation of ethylbenzene to produce styrene, the dehydrogenation of isoamiline to produce isoprene, or the dehydrogenation of n-pentene to produce piperylene.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: April 7, 2015
    Assignee: Fina Technology, Inc.
    Inventors: Vincent A. Welch, James R. Butler
  • Patent number: 8999256
    Abstract: A process and apparatus are disclosed for hydrotreating a hydrocarbon feed in a hydrotreating unit and hydrocracking a liquid hydrotreating effluent stream in a hydrocracking unit. A hot separator separates the diesel in a liquid hot hydrotreating effluent stream that serves as feed to the hydrocracking unit. Low sulfur diesel product can be saturated to further upgrade its cetane rating.
    Type: Grant
    Filed: June 20, 2013
    Date of Patent: April 7, 2015
    Assignee: UOP LLC
    Inventors: Paul R. Zimmerman, Peter Kokayeff, Michael R. Smith
  • Publication number: 20150093301
    Abstract: It is described a process for the production of hexamethylenediamine by hydrogenation of adiponitrile, comprising an improved step of regeneration of the catalyst. Also described are an equipment for the production of hexamethylenediamine, and a washing apparatus (14) for implementing the catalyst regeneration step.
    Type: Application
    Filed: December 9, 2014
    Publication date: April 2, 2015
    Inventors: Tommaso Crippa, Stefano Alini, Luciano Guida, Alberto Corona
  • Publication number: 20150094506
    Abstract: Methods and systems are provided for producing a fuel from a renewable feedstock. The method includes deoxygenating the renewable feedstock in a deoxygenation zone to produce hydrocarbons with normal paraffins. The hydrocarbons with normal paraffins are isomerized to produce hydrocarbons with branched paraffins. The hydrocarbons with branched paraffins are fractionated to produce a naphtha at a naphtha outlet, where the naphtha is further isomerized.
    Type: Application
    Filed: September 27, 2013
    Publication date: April 2, 2015
    Applicant: UOP LLC
    Inventors: Geoffrey William Fichtl, Jonathan Arana, Daniel L. Ellig
  • Publication number: 20150094508
    Abstract: Methods and systems are provided for separating a selected xylene isomer. The method includes separating a feed stream including a plurality of aromatic hydrocarbons into a first stream including toluene and isomers of xylene, and a second stream including isomers of xylene. The method further includes separating the first stream into a third stream including toluene and a fourth stream including isomers of xylene. The method further includes combining the second stream and the third stream in an adsorptive separation unit including an adsorbent configured to adsorb the selected xylene isomer from the second stream. The third stream desorbs the selected xylene isomer to produce a fifth stream including the selected xylene isomer and toluene and a sixth stream including non-selected xylene isomers and toluene. Still further, the method includes separating the sixth stream into a seventh stream including the non-selected xylene isomers and the third stream including toluene.
    Type: Application
    Filed: September 27, 2013
    Publication date: April 2, 2015
    Applicant: UOP LLC
    Inventors: Jason T. Corradi, Gregory Werba, Rajeswar Gattupalli
  • Publication number: 20150093319
    Abstract: A method comprises receiving a carbon dioxide recycle stream having carbon dioxide and hydrocarbons. The carbon dioxide recycle stream is fed to a catalytic reactor. The hydrocarbons are converted to carbon dioxide in the catalytic reactor by a catalytic reaction without combustion to form a purified carbon dioxide recycle stream. Electrical energy is generated by using heat produced by the catalytic reactor in the conversion. Another method comprises receiving a recycle stream having carbon dioxide, C1-C2 hydrocarbons, and C3+ hydrocarbons. The C3+ hydrocarbons are separated from the carbon dioxide and the C1-C2 hydrocarbons. The carbon dioxide and the C1-C2 hydrocarbons are fed to a catalytic reactor at a pressure greater than about 300 pounds per square inch (psi), and the C1-C2 hydrocarbons are converted to carbon dioxide, water, and heat.
    Type: Application
    Filed: October 2, 2014
    Publication date: April 2, 2015
    Inventor: Eric Prim
  • Publication number: 20150094497
    Abstract: The invention relates to a reaction system and process for continuously preparing polymethoxy dimethyl ether (DMM3-8) by a continuous acetalization reaction between an aqueous formaldehyde solution or paraformaldehyde and methanol in the presence of a functionalized acidic ionic liquid as a catalyst. The reaction system of the invention preferably comprises a formaldehyde-concentrating unit, a vacuum-drying unit, an acetalization reaction unit, a product-separating unit and a catalyst-regenerating unit. The process of the invention uses aqueous formaldehyde solution as an initial raw material, which is concentrated in the formaldehyde-concentrating unit to a concentrated formaldehyde of 50˜80 wt. %, and vacuum-dried to paraformaldehyde, or uses paraformaldehyde as raw material directly, then obtains DMM3-8 by an acetalization reaction.
    Type: Application
    Filed: March 18, 2014
    Publication date: April 2, 2015
    Applicants: Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Suzhou OST Advanced Materials Co., Ltd.
    Inventors: Jing Chen, Heyuan Song, Chungu Xia, Meirong Kang
  • Patent number: 8992850
    Abstract: A fuel processor with a floating catalyst has a reactant gas passage and a product gas passage separated by a separating wall which is fixed at one end and free at the other end, to permit differential thermal expansion. The catalyst is received inside the separating wall proximate to the free end. An outer wall at least partially surrounds the separating wall and the fixed end of the separating wall may be joined to the outer wall. The fuel processor may comprise a plurality of concentric tubes, and may include a third tube located inside the separator wall. The gas passages are provided with gas permeable support structures such as turbulizers or fins which support the separating wall relative to the outer wall, but the support structures are bonded to only one tube in order to permit differential thermal expansion of the walls.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: March 31, 2015
    Assignee: Dana Canada Corporation
    Inventor: Doug Vanderwees
  • Publication number: 20150086922
    Abstract: A process includes dissolving a polymer in an organic solvent to form a polymer solution and forming a latex from the polymer solution by contacting the polymer solution with steam while substantially simultaneously distilling the organic solvent.
    Type: Application
    Filed: September 24, 2013
    Publication date: March 26, 2015
    Applicant: XEROX CORPORATION
    Inventors: Yu Liu, Yulin Wang, Ke Zhou, Frank Ping-Hay Lee, Marko Saban, Shigang Qiu, Sonja Hadzidedic
  • Publication number: 20150087857
    Abstract: The invention relates to a liquid-liquid extraction process, comprising: the provision of a main input liquid stream, comprising at least one compound of interest and an excess compound; the provision of a liquid scrubbing stream; the extraction of the excess compound from the main input liquid stream by contact with the liquid scrubbing stream, making it possible to collect a main output liquid stream, depleted in excess compound with respect to the main input liquid stream; in which: the main input liquid stream and the liquid scrubbing stream exhibit a difference in density of less than or equal to 50 kg/m3 and also an interfacial tension of less than or equal to 3 dyn/cm; and the extraction stage is carried out in a packed contactor with a ratio by weight as input liquid scrubbing stream/main liquid stream ranging from 0.3 to 0.5.
    Type: Application
    Filed: September 23, 2014
    Publication date: March 26, 2015
    Applicant: Arkema France
    Inventors: Serge TRETJAK, Stephane DENIS
  • Publication number: 20150086438
    Abstract: Fuel converters configured to convert a transportation fuel to a low-C hydrocarbon fuel, along with methods of their use, are provided. The fuel converter can comprise: an evaporator configured to receive a transportation fuel from a fuel tank in a liquid state, wherein the evaporator converts the transportation fuel from a liquid to a gas; a fuel burner configured to heat the evaporator; a catalyst cartridge in fluid communication with the evaporator so as to receive the gas from the evaporator; and a condenser in fluid communication with the catalyst cartridge so as to receive the reaction product mixture from the catalyst cartridge. The catalyst cartridge comprises a catalyst configured to convert the transportation fuel into a reaction product mixture comprising a low-C hydrocarbon fuel. The condenser is configured to separate the low-C hydrocarbon fuel from a condensed fuel in the reaction product mixture.
    Type: Application
    Filed: September 24, 2014
    Publication date: March 26, 2015
    Inventors: Jochen Lauterbach, Erdem Sasmaz, Sungtak Kim, Michael Kai Mayeda
  • Publication number: 20150086437
    Abstract: Reactor systems are provided that comprise a purification zone comprising an absorbent which comprises silver, an alkali or alkaline earth metal, and a support material having a surface area of more than 20 m2/g, and a reaction zone comprising a catalyst, which reaction zone is positioned downstream from the purification zone.
    Type: Application
    Filed: September 25, 2013
    Publication date: March 26, 2015
    Applicant: SHELL OILL COMPANY
    Inventor: Marek MATUSZ
  • Patent number: 8986405
    Abstract: A gas generator and process for converting a fuel into an oxygen-depleted gas and/or hydrogen-enriched gas. The gas generator is preferably used for generating protection gas or reducing gas for start up, shut down or emergency shut down of a SOFC or SOEC. The process for converting fuel into oxygen-depleted gas and/or a hydrogen-enriched gas includes combusting the fuel in a primary catalytic burner with an oxygen-containing gas to produce a flue gas with oxygen, combusting or partially oxidizing the flue gas comprising oxygen with excess fuel in a secondary catalytic burner to produce a gas with hydrogen and carbon monoxide, and reducing the trace amounts of oxygen from the gas comprising traces of oxygen and obtaining an oxygen-depleted gas, or reducing the carbon monoxide present in the gas by conversion to carbon dioxide or methane to obtain a hydrogen-enriched gas.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: March 24, 2015
    Assignee: Topsoe Fuel Cell A/S
    Inventor: Hassan Modarresi
  • Patent number: 8986549
    Abstract: The present invention relates to an apparatus for the treatment of liquids, comprising a filter module with a filter, an inlet for liquid, a first outlet for liquid and a second outlet for filtered liquid, wherein the inlet and the first outlet are positioned on a first side of the filter, and the second outlet is positioned on the second side of the filter, a first UV-treatment module with a first UV-light source, wherein the first UV-treatment module is connected with the first outlet of the filter module and adapted to receive liquid from the filter module, and to expose said liquid to UV-light from the first UV-light source, and a second UV-treatment module with a second UV-light source, wherein the second UV-treatment module is connected with the second outlet of the filter module adapted to receive filtered liquid from the filter module, and to expose said liquid to UV-light from the second UV-light source.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: March 24, 2015
    Assignee: GEA Westfalia Separator Group GmbH
    Inventor: Wilfried Riggers
  • Publication number: 20150078980
    Abstract: An apparatus for producing disilane through pyrolysis of monosilane, includes: a monosilane pyrolysis unit; a solid particle removal unit which removes solid particles generated in the pyrolysis unit; a condensing unit which liquefies and collects unreacted monosilane, and disilane and higher silanes with three (3) to seven (7) silicon atoms as pyrolysis products excluding hydrogen from a gas with the solid particles removed; a first separation unit which separates monosilane from a mixture of the liquefied unreacted monosilane, disilane and higher silanes; and a second separation unit which separates disilane and higher silanes from the mixture with the monosilane removed. In accordance with the present disclosure, disilane can be produced economically and efficiently with high purity through pyrolysis of monosilane.
    Type: Application
    Filed: November 26, 2014
    Publication date: March 19, 2015
    Inventors: Won Ho Lee, Young Ha Song, Sam Bong Kwon
  • Publication number: 20150080626
    Abstract: A bottom fraction of a product of a hydrocatalytic reaction is gasified to generate hydrogen for use in further hydrocatalytic reactions. In one embodiment, an overhead fraction of the hydrocatalytic reaction is further processed to generate higher molecular weight compounds. In another embodiment, a product of the further processing is separated into a bottom fraction and an overhead fraction, where the bottom fraction is also gasified to generate hydrogen for use in further hydrocatalytic reactions.
    Type: Application
    Filed: September 15, 2014
    Publication date: March 19, 2015
    Inventors: Andries Quirin Maria BOON, Joseph Broun POWELL, Lamar Lane JOFFRION, Kimberly Ann JOHNSON, Hubert Willem SCHENCK
  • Publication number: 20150080627
    Abstract: Butadiene is formed by dehydrogenation of butenes which are mixed with steam and oxygen then converted to butadiene by oxidative dehydrogenation over a ferritic oxide catalyst, wherein the sensible heat in the oxidative dehydrogenation reaction product is utilized along with heat produced by thermal oxidation of low value volatile products formed to reduce energy requirements and CO2 emissions. Sensible heat is utilized at high temperature for purposes of superheating feed and at somewhat lower temperatures for purposes of vaporizing feed at sequential locations in the process.
    Type: Application
    Filed: March 28, 2013
    Publication date: March 19, 2015
    Inventors: Liana Caciula, Joseph G. Duff, Elizabeth Ballard, Sirisha Chada, Mark J. Potter
  • Publication number: 20150076033
    Abstract: A process for converting Fischer-Tropsch liquids and waxes into lubricant base stock and/or transportation fuels is disclosed. The process includes the steps of feeding a Fischer-Tropsch wax to a first isomerization unit to produce an isomerized Fischer-Tropsch wax product; combining a Fischer-Tropsch liquid with the isomerized Fischer-Tropsch wax product to create a mixture of the Fischer-Tropsch liquid and the Fischer-Tropsch wax product; and feeding the mixture to a fractionation column to separate the mixture into a lubricant base stock fraction and at least one transportation fuel fraction.
    Type: Application
    Filed: September 13, 2013
    Publication date: March 19, 2015
    Applicant: UOP LLC
    Inventors: Kenneth J. Stippich, Jr., Vasant P. Thakkar, John A. Petri
  • Publication number: 20150075969
    Abstract: Processes and systems for purifying silane-containing streams and, in particular, for purifying silane-containing streams that also contain ethylene are disclosed. The processes and systems may be arranged such that one or more ethylene reactors are downstream of light-end distillation operations.
    Type: Application
    Filed: November 20, 2014
    Publication date: March 19, 2015
    Applicant: SunEdison, Inc.
    Inventors: Baisheng Zou, Zhihui Gu
  • Patent number: 8980188
    Abstract: A refrigerator is provided. The refrigerator includes a case having at least one storage compartment for low temperature storage, a lighting source arranged in the at least one storage compartment to generate a sanitation wavelength, a location controller configured to control a location of the lighting source, and a controller configured to control operation of the location controller.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: March 17, 2015
    Assignee: LG Electronics Inc.
    Inventors: Eunyoung Park, Myungryul Lee, Deulre Min, Seunghwan Oh
  • Patent number: 8980193
    Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: March 17, 2015
    Assignee: Ener-Core Power, Inc.
    Inventors: Thomas Renau Denison, Boris A. Maslov
  • Patent number: 8979984
    Abstract: An apparatus for recovery of tritium from contaminated gaseous mixtures by way of isotope-exchange processes includes a container having a preferably cylindrical shape made of steel or other suitable metal or glass, referred to as “module” (1), which contains at least one permeator tube (T) made of metal or metal alloy selectively permeable to hydrogen and its isotopes, wherein the tube (T) is set in cantilever fashion with its free end closed, there being further provided elements for applying an axial tensile force on the free end of the permeator tube (T) and elements for electrical connection of the free end of the tube (T) to an end flange (FF) of the module (1) adjacent thereto.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: March 17, 2015
    Assignees: Enea-Agenzia Nazionale per le Nuove Technologie, l'Energia e lo Sviluppo Economico Sostenibile, Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Silvano Tosti, Nicolas Ghirelli, Fabio Borgognoni, Pierre Trabuc, Alessia Santucci, Karine Liger, Fabrizio Marini
  • Patent number: 8980201
    Abstract: A system and process for removing catalyst fines from a gas stream overhead the slurry in a Fischer-Tropsch slurry bubble column reactor. The gas phase at the top of the slurry bubble column reactor containing small amounts of entrained liquid and catalyst particles. The unreacted gases are passed through a demister, which removes larger droplets and catalyst particles. Smaller droplets and catalyst fines are conveyed to a secondary gas cleaner, such as a cyclone, whereby substantially all remaining particles are removed from the gas phase. A particle-containing liquid produced in the secondary gas cleaner can be further subjected to a filtrate cleaning unit to filter out fine catalyst particles and produce a substantially particle-free liquid product stream and a slurry stream of liquid product containing catalyst particles.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: March 17, 2015
    Assignee: GTL.FI AG
    Inventors: Trond Myrstad, Dag Schanke, Pål Søraker, Matthias Wagner, Manfred Ruppel