Combined Patents (Class 422/187)
  • Publication number: 20150038598
    Abstract: A synthesis gas conversion process and system are disclosed. Fresh syngas from a methane reformer is used as a sweep zone gas feed which is caused to flow across a water permselective membrane in a membrane reactor. The water permselective membrane is adjacent a synthesis gas conversion reaction zone in which synthesis gas is contacted with a catalyst and converted to effluent including water. Water is removed from the reaction zone through the membrane and passes out of the reactor with the sweep zone gas. The water is then removed from the sweep zone gas forming a modified gas feed which is fed to the reaction zone. The modified gas feed has a preferred H2/CO ratio to feed into the reaction zone.
    Type: Application
    Filed: July 31, 2013
    Publication date: February 5, 2015
    Applicant: Chevron U.S.A. Inc.
    Inventors: Lixin You, Shabbir Husain, Christopher M. Chen
  • Publication number: 20150030521
    Abstract: A reaction vessel for oxidation of ammonia to nitrogen monoxide in the presence of a catalyst is provided. The catalyst can become dislodged during the oxidation. The reaction vessel includes a reactor body having a top portion, a bottom portion, and a middle portion. The top and middle portions cooperate to define a cavity where the ammonia is catalytically oxidized to provide the nitrogen monoxide. The reaction vessel also includes an internal filter element. The internal filter element includes a filter cage that defines an interior volume and a filter medium disposed adjacent to the filter cage. The internal filter element collects the catalyst dislodged during the oxidation.
    Type: Application
    Filed: February 22, 2013
    Publication date: January 29, 2015
    Applicant: BASF SE
    Inventor: Robert A. Fox
  • Publication number: 20150030523
    Abstract: Processes, methods, system and uses in relation to chemical sequestration of carbon dioxide from a carbon dioxide containing gas by carbonation of an alkaline earth metal containing material. The carbon dioxide containing gas is contacted with an aqueous slurry in a carbonation unit for carbonation of at least a portion of the alkaline earth metal to produce a carbon dioxide depleted gas and a carbonate loaded slurry which is substantially exempt of precipitated alkaline earth. metal carbonates, The carbonate loaded slurry is then separated into an aqueous phase and a solid phase; and the aqueous phase is supplied to a precipitation unit for precipitating alkaline earth metal carbonates. The carbonation stage may be performed at a carbonation temperature between about 10° C. and about 40° C. and a carbonation pressure between about 1 bar and about 20 bars. The solid phase may be recycled to the carbonation stage.
    Type: Application
    Filed: March 7, 2013
    Publication date: January 29, 2015
    Inventors: Guy Mercier, Jean-Francois Blais, Emmanuelle Cecchi, Sanoopkumar Puthiya Veetil, Louis-Cesar Pasquier, Sandra Kentish
  • Publication number: 20150031928
    Abstract: Processes and apparatuses for preparing aromatic compounds are provided herein. In an embodiment, a process for preparing aromatic compounds includes providing a first stream that includes an aromatic component, a non-aromatic component, and a sulfur-containing component. The aromatic component and the sulfur-containing component are separated from the non-aromatic component of the first stream to form a separated aromatic stream and a raffinate stream. The separated aromatic stream includes the aromatic component and the sulfur-containing component. The raffinate stream includes the non-aromatic component. The separated aromatic stream is concurrently transalkylated and desulfurized in the presence of a catalyst that includes acid function and metal function to produce a transalkylated aromatic stream and a sulfur-containing gas stream that is separate from the transalkylated aromatic stream.
    Type: Application
    Filed: July 23, 2013
    Publication date: January 29, 2015
    Applicant: UOP LLC
    Inventors: Jason L. Noe, Peter Kokayeff
  • Publication number: 20150031778
    Abstract: A process and system for recovering at least one polyamide from one or more composite materials is provided. The process comprises dissolving the at least one polyamide present in the one or more composite materials in a solvent. The process further comprises separating at least one undissolved polymer from the solution by filtration. Furthermore, the process comprises evaporating part of the solvent from the solution containing the at least one polyamide. Also, the process comprises neutralizing, using an alkali, the solvent remaining with the at least one polyamide. In addition, the process comprises washing, filtering and drying the mixture comprising the at least one polyamide to obtain polyamide.
    Type: Application
    Filed: July 29, 2014
    Publication date: January 29, 2015
    Inventors: Dilip Digambar RAVETKAR, Kushaba Dnyandev GIRAMKAR, Vaibhav Babaji MHAPRALKAR
  • Publication number: 20150030505
    Abstract: A plant for producing hydrogen peroxide by an autoxidation process (AO-process) comprising hydrogenating an anthraquinone in a working solution, oxidizing the hydrogenated anthraquinone with oxygen to form hydrogen peroxide and extracting the hydrogen peroxide from the working solution, the plant comprising at least one skid mounted module selected from the group consisting of a skid mounted module comprising at least one hydrogenator (hydrogenation reactor) to hydrogenate the anthraquinone in the working solution (hydrogenation skid 1); a skid mounted module comprising at least one oxidizer (oxidation reactor) to oxidize the hydrogenated anthraquinone with oxygen to form hydrogen peroxide (oxidizer skid 2); optionally a skid mounted module comprising at least one means to compress air (process air compressor skid 3), to feed oxygen, in particular oxygen from the air, into an oxidizer of skid 2, and in case of presence of skid 3 a further skid mounted module comprising at least one means to recover the solven
    Type: Application
    Filed: February 28, 2013
    Publication date: January 29, 2015
    Inventors: Stephen Bloomfield, Patrick Markus Dhaese
  • Publication number: 20150027931
    Abstract: Methods, systems and units for liquefaction of combustible material are provided. After separating the combustible material from waste rock gravitationally in an aqueous salt solution selected to have a density which is intermediate between a density of the combustible material and a density of the waste rock and after heating and grinding the separated combustible material to yield a paste of purified combustible material, the paste is fluidizing and hydrogenated underground in a hydrogenation chamber including a Segner turbine. The described processes significantly reduce the energy consumption of the process, remove environmental hazards and result in more efficient liquefaction with respect to existing technologies.
    Type: Application
    Filed: August 1, 2013
    Publication date: January 29, 2015
    Applicant: S.G.B.D. TECHNOLOGIES LTD.
    Inventor: Alexander BRODT
  • Patent number: 8940262
    Abstract: The invention relates to a process for the removal of NO and NO2 from an oxygen-containing gas stream, which comprises a scrubbing step in which the gas stream is brought into contact with an ammonia-containing scrubbing solution, NO is oxidized to form NO2 by means of the oxygen present at a pressure of at least 2 bar and temperatures of from 15° C. to 60° C. and at least part of the NO2 present in the gas stream is converted by means of the ammonia-containing scrubbing solution into ammonium nitrite and a downstream decomposition step in which the ammonium nitrite present in the scrubbing solution is thermally decomposed into elemental nitrogen and water, where the decomposition step is carried out at temperatures of from 121° C. to 190° C. and a pressure of from 2 to 40 bar. The invention likewise relates to a plant for operation of the process of the invention.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: January 27, 2015
    Assignee: Linde Aktiengesellschaft
    Inventors: Nicole Schodel, Hans-Jorg Zander, Florian Winkler, Roland Ritter
  • Patent number: 8940255
    Abstract: Disclosed are process and apparatus for vertical splitting of the oxygen supply to a post-oxidation reactor. Further disclosed are process and apparatus for supplying reaction medium to a post-oxidation reactor at a mid-level inlet. Such apparatus and process can assist in reducing oxygen pinch throughout the post-oxidation reactor.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: January 27, 2015
    Assignee: Grupo Petrotemex, S.A. de C.V.
    Inventors: Ashfaq Shaikh, Alan George Wonders
  • Patent number: 8940150
    Abstract: A reactor for production of a fluid reaction product includes a reaction chamber, a plurality of fluid connections to supply fluid reactants to the reaction chamber, a reception chamber located directly below the reaction chamber, a transfer device providing a fluid connection between the reaction chamber and the reception chamber so that the reception chamber receives a fluid reaction product produced in the reaction chamber, a control unit and a first device, arranged in the reaction chamber to be in direct contact with the supplied fluids to determine a filling level. The first device includes at least one switching point which is operatively coupled with the control unit such that the supply of the fluid reactants into the reaction chamber is controlled and carried out sequentially.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: January 27, 2015
    Assignee: Grundfos Water Treatment GmbH
    Inventors: Franz Gunzinam, Roland Strauch, Wolfgang Ress, Ulrich Stemick
  • Patent number: 8940254
    Abstract: An apparatus is disclosed for recovering hydroprocessing effluent from a hydroprocessing unit utilizing a hot stripper and a cold stripper. Only the hot hydroprocessing effluent is heated in a fired heater prior to product fractionation, resulting in substantial operating and capital savings.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: January 27, 2015
    Assignee: UOP LLC
    Inventors: Richard K. Hoehn, David M. Bowman, Xin X. Zhu
  • Publication number: 20150021522
    Abstract: The invention relates to inert gas production processes and can be used for producing a krypton/xenon mixture from a stream of oxygen recovered from air separation plants and containing 0.05-0.5% krypton and xenon. The method for producing a krypton/xenon mixture involves purifying a stream of gaseous primary concentrate by the catalytic combustion thereof and subsequently cooling same, purifying the primary concentrate of catalytic combustion products, carrying out cooling upon completion of purification, fractionating the primary concentrate in a rectification column to form a stream of krypton/xenon mixture and a stream of stripped oxygen and removing the stream of krypton/xenon mixture from the rectification column in the form of a target product, as well as purifying the krypton/xenon mixture of radon. The invention makes it possible to extend the scope of use of the krypton/xenon mixture.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 22, 2015
    Inventors: Vitaly Leonidovich Bondarenko, Nikolay Petrovich Losyakov, Valeriy Borisovich Vorotyntsev, Aleksandr Petrovich Grafov
  • Publication number: 20150025277
    Abstract: Embodiments of the present invention describe systems and methods for production of methyl isobutyl ketone (MIBK) from acetone and hydrogen in a two-step process. In a first step, acetone is converted to a product stream containing mesityl oxide (MO) at a temperature in the range of about 0-120° C. and a pressure in the range of about 1-3 atm. The composition of the product stream from the first reaction step is adjusted so that the resulting stream can undergo a favorable liquid-liquid separation in a decanter, and an MO rich product stream can be recovered. The composition of the feed to the decanter is controlled by choosing the number of reactor stages for the first reaction step and their operating temperatures, and/or by recycling some MIBK to the decanter feed. The method does not require a substantially complete conversion of acetone in the first reaction step, nor does it require a removal of DAA from the product of the first reaction step by separation.
    Type: Application
    Filed: May 28, 2014
    Publication date: January 22, 2015
    Applicant: ClearWaterBay Technology, Inc.
    Inventors: Vaibhav V. Kelkar, Drow Lionel O'Young, Christianto Wibowo, Madhura Kelkar, Hok Chung Chan
  • Publication number: 20150025290
    Abstract: The invention relates to a method for generating an alkene, in which a hydrocarbon-comprising feed material is subjected to a dehydrogenation and a product material comprising at least one alkene is generated. A gas stream coming from an adsorber is cooled by a gas stream which comprises the feed material, and the gas stream coming from the adsorber is cooled by a condensed component of the gas stream coming from the adsorber in a first cooling phase. Feed material is cooled in a second cooling phase by a condensed component of the gas stream coming from the adsorber. The flow of the condensed component of the gas stream coming from the adsorber, fed to the first and/or second cooling phase, is varied depending on the temperature of the gas stream leaving the first cooling phase which comprises the feed material and which is fed to the dehydrogenation.
    Type: Application
    Filed: July 17, 2014
    Publication date: January 22, 2015
    Applicant: LINDE AKTIENGESELLSCHAFT
    Inventors: Bernd KLEIN, Thomas TROTT
  • Publication number: 20150025229
    Abstract: The present invention provides a process and System for Separation of biomass components into individual components such as cellulose, hemicellulose and lignin. The present invention provides a process for separating lignin in its native form. The cellulose obtained by the process of the present invention is highly reactive for saccharification.
    Type: Application
    Filed: February 18, 2014
    Publication date: January 22, 2015
    Applicant: NAGARJUNA ENERGY PRIVATE LIMITED
    Inventors: Dinakaran Samuel SUDHAKARAN, Suresh Chandra SRIVASTAVA, Manoj Kumar SARKAR, Banibrata PANDEY, Sakthi Priya PECHIMUTHU
  • Publication number: 20150025273
    Abstract: A process for the direct synthesis of urea from ammonia and carbon dioxide with increased corrosion resistance, comprising, in the high-pressure synthesis section, a reaction step in a vertical reactor fed with at least one stream of fresh carbon dioxide containing a passivating agent and a decomposition-stripping step of the non-converted reagents, wherein the gas-liquid mixture collected at the head of the reactor is separated into a gaseous stream and a liquid stream fed to the tail and head of the stripper, respectively.
    Type: Application
    Filed: January 9, 2013
    Publication date: January 22, 2015
    Inventors: Lino Carlessi, Alessandro Gianazza
  • Publication number: 20150023859
    Abstract: The present invention relates to a specific process for producing trisilylamine from monochlorosilane and ammonia in the liquid phase. The invention further relates to a plant wherein such a process can be carried out with advantage.
    Type: Application
    Filed: November 6, 2012
    Publication date: January 22, 2015
    Applicant: Evonik Industries AG
    Inventors: Carl-Friedrich Hoppe, Hartwig Rauleder, Christian Goetz
  • Publication number: 20150023850
    Abstract: A method for improving the filterability in separating a zinc sulfide, produced by applying sulfurization treatment to a post-neutralization solution containing zinc together with nickel and cobalt in a dezincification step in a hydrometallurgical process for nickel oxide ore. The method includes a neutralization reaction step of neutralizing leachate in a neutralization tank, a separation step of separating neutralized slurry into a neutralized sediment and a post-neutralization solution by adding flocculant to the neutralized slurry, a measuring step of measuring the viscosity of the post-neutralization solution, a step of storing the post-neutralization solution in a storage tank, and a transfer step of transferring the stored post-neutralization solution to a dezincification reaction tank used in a dezincification step subsequent to a neutralization step.
    Type: Application
    Filed: March 6, 2013
    Publication date: January 22, 2015
    Applicant: SUMITOMO METAL MINING Co., Ltd
    Inventors: Hiroyuki Mitsui, Osamu Nakai, Satoshi Matsubara
  • Publication number: 20150023849
    Abstract: The present invention provides a hydrometallurgical method for nickel oxide ore, wherein the plant can be smoothly started up without imposing a load onto a filter cloth for a separation treatment of zinc sulfide, and the amount of residual zinc in a mother liquor for nickel recovery can be reduced to 1 mg/L. In the plant start-up after the completion of a periodic inspection, a post-neutralization solution is controlled to return to a neutralization reaction tank via circulation piping by adjustment of a switching valve in flow piping without sulfurizing post-neutralization solution. When the flow rate and/or the temperature of the post-neutralization solution circulated reaches a predetermined value, a sulfurization treatment is applied to the post-neutralization solution in the dezincification reaction tank to form zinc-sulfide-containing mother liquor for nickel recovery and adjust the switching valve.
    Type: Application
    Filed: March 1, 2013
    Publication date: January 22, 2015
    Inventors: Hiroyuki Mitsui, Osamu Nakai, Satoshi Matsubara
  • Patent number: 8936768
    Abstract: We provide an alkylation process unit, comprising: a control system connected to an alkylation reactor, that enables the alkylation reactor to operate in both an alkylate mode that produces a gasoline blending component having a RON of 90 or higher and in a distillate mode that produces a second gasoline blending component having a RON of 85 or higher.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: January 20, 2015
    Assignee: Chevron U.S.A. Inc.
    Inventors: Hye Kyung Cho Timken, Shawn Shlomo Winter, Howard Steven Lacheen, Sven Ivar Hommeltoft
  • Patent number: 8936767
    Abstract: Disclosed are process and apparatus for vertical splitting of the oxygen supply to a post-oxidation reactor. Further disclosed are process and apparatus for supplying reaction medium to a post-oxidation reactor at a mid-level inlet. Such apparatus and process can assist in reducing oxygen pinch throughout the post-oxidation reactor.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: January 20, 2015
    Assignee: Grupo Petrotemex. S.A. DE C.V.
    Inventors: Ashfaq Shaikh, Alan George Wonders, David Lange
  • Publication number: 20150018576
    Abstract: The invention relates to a method for producing a product mixture (2) by means of the technical hydroformylation of a hydrocarbon stream (1) that contains isobutene, and for separating the product mixture (2) that is obtained, as well as to a device for the claimed method and to the use of a claimed device. The problem addressed thereby is that of providing a method and an associated device that allow the amount of high-boiling substances in the product mixture (2) to be kept as low as possible and thus the yield of the reaction to be increased. The problem is solved by the use of a nano-filtration device (M) for separating the catalyst from the product mixture (2), said device having especially high permeability to 3-methylbutanoic acid.
    Type: Application
    Filed: February 11, 2013
    Publication date: January 15, 2015
    Applicant: Evonik Degussa GmbH
    Inventors: Goetz Baumgarten, Michael Grass, Alfred Kaizik, Markus Winterberg, Hans-Gerd Lueken, Bart Hamers, Markus Priske, Dirk Fridag, Robert Franke, Dieter Hess
  • Publication number: 20150018593
    Abstract: The present invention relates to a catalyst characterized in that it comprises a) at least one metal compound selected from a group consisting of metal carbide, -nitride, -silicide, -phosphide and -sulfide or mixtures thereof, wherein the metal is selected from a group consisting of molybdenum, tungsten, tantalum, vanadium, titanium, niobium, lanthanum and chromium, and b) at least one non-Brønsted-acidic binder selected from a group consisting of AlPO4, Bentonite, AlN and N4Si3. Furthermore, the present invention relates to a process or a device for the preparation of olefins from C2-, C3- or C4-alkanes using the catalyst.
    Type: Application
    Filed: March 14, 2013
    Publication date: January 15, 2015
    Inventor: Christian Trischler
  • Publication number: 20150014590
    Abstract: Systems and methods for pre-treatment of acid gas are presented in which ammonium is removed from the acid gas in an absorber that is operated at significantly elevated temperature using dilute phosphoric acid. While seemingly incompatible, absorbing ammonia at high heat in the absorber will allow for production of a diammonium phosphate product that is ultra-low in residual sulfurous compounds and prevent crystallization of phosphate salts due to the increased solubility of the salts in the hot diluted solvent.
    Type: Application
    Filed: July 11, 2014
    Publication date: January 15, 2015
    Inventors: Ravi Ravikumar, Paul M. Mathias, Paul E. Koppel, Sanjiv Dabee
  • Publication number: 20150018581
    Abstract: The present invention provides a method for simultaneous production of components suitable for production of base oil and fuel components. In the method a feedstock comprising fatty acids and/or fatty acid esters is entered into a reaction zone and subjected to a ketonisation reaction in the presence of a dual catalyst system. This system is configured to perform a ketonisation reaction and a hydrotreatment reaction, under hydrogen pressure. Subsequently ketones are obtained.
    Type: Application
    Filed: November 1, 2012
    Publication date: January 15, 2015
    Applicant: Neste Oil Oyj
    Inventors: Mika Kettunen, Jukka Myllyoja, Rami Piilola, Goran Sandstrom, Pekka Aalto
  • Patent number: 8932529
    Abstract: A desulphurization and decarbonisation apparatus includes (a) a starter for starting a reaction between an electropositive metal and sulphur oxides and carbon dioxide of a flue gas; (b) a first reaction chamber with a cooling unit for reducing the sulphur oxides and the carbon dioxide of the flue gas in an exothermic reaction with the electropositive metal; (c) a second reaction chamber for generating a first suspension including suspended carbon containing reaction products and sulphur containing reaction products by extracting solid reaction products of the first reaction chamber in a solvent; (d) a third reaction chamber for oxidizing the first suspension to generate a second suspension including suspended carbon containing reaction products and oxidized sulphur containing reaction products; and (e) a separator for separating the oxidized sulphur containing reaction products from the suspended carbon containing reaction products.
    Type: Grant
    Filed: February 10, 2014
    Date of Patent: January 13, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventors: Elena Arvanitis, Manfred Baldauf, Günter Schmid, Dan Taroata, Frank Walachowicz
  • Patent number: 8932534
    Abstract: In one aspect, the invention includes a reactor apparatus for pyrolyzing a hydrocarbon feedstock, said apparatus including: a reactor component comprising a refractory material in oxide form, the refractory material having a melting point of no less than 2060° C. and which remains in oxide form when exposed to a gas having carbon partial pressure of 10?22 bar and oxygen partial pressure of 10?10 bar, at a temperature of 1200° C.; wherein said refractory material has no less than 4 vol % formed porosity, measured at 20° C., based upon the bulk volume of said refractory material. In another embodiment, the refractory material has total porosity in the range of from 4 to 60 vol %.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: January 13, 2015
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: ChangMin Chun, Frank Hershkowitz, Paul F. Keusenkothen, Shiun Ling, Gary David Mohr
  • Patent number: 8932498
    Abstract: Disclosed is a device for preparation of liposomes, comprises a reaction tank and an infusion unit. The reaction tank comprises a collector mounted in a predetermined position of the reaction tank; Two inlet ports are included: the first inlet port for infusing an aqueous solution; and the second inlet port for infusing an organic solution. The infusion unit can introduce a bioactive agent containing-aqueous solution into the reaction tank. The infusion unit comprises a filter connected to one end of the infusion unit and being adjacent to the collector.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: January 13, 2015
    Assignee: National Tsing Hua University
    Inventors: JA-An Ho, Yeh-Chun Lin
  • Publication number: 20150008158
    Abstract: Deep desulfurization of hydrocarbon feeds containing undesired organosulfur compounds to produce a hydrocarbon product having low levels of sulfur, i.e., 15 ppmw or less of sulfur, is achieved by hydrotreating the feed under mild conditions, and separating the hydrotreated effluent into an aromatic-rich fraction which contains a substantial amount of the aromatic refractory and sterically hindered sulfur-containing compounds, and an aromatic-lean fraction. The aromatic-rich fraction is contacted with isomerization catalyst, and the isomerized aromatic-rich fraction is recycled to the mild hydrotreating process.
    Type: Application
    Filed: July 15, 2014
    Publication date: January 8, 2015
    Inventor: Omer Refa Koseoglu
  • Publication number: 20150011662
    Abstract: The hydrocarbon production apparatus is provided with a gas-liquid separator for cooling gaseous state hydrocarbons drawn out from a gas phase portion of a reactor for the Fischer-Tropsch synthesis reaction and liquefying a portion of the hydrocarbons. A light liquid hydrocarbon supply line for supplying light hydrocarbons is disposed between a downstream side line which is downstream from the last stage of a gas-liquid separating unit of the gas-liquid separator, and an upstream side line which is upstream from the last stage of the gas-liquid separating unit of the gas-liquid separator, wherein the downstream side line is a liquid hydrocarbon line on the downstream side through which the light hydrocarbons having cloud points lower than the temperature at an outlet of a cooler in the last stage of the gas-liquid separating unit are flowed.
    Type: Application
    Filed: March 13, 2012
    Publication date: January 8, 2015
    Applicants: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD., JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., JX NIPPON OIL & ENERGY CORPORATION
    Inventor: Shinya Arai
  • Patent number: 8926916
    Abstract: A process and apparatus for recovering dichlorohydrins from a mixture comprising dichlorohydrins, one or more compounds selected from esters of dichlorohydrins, monochlorohydrins and/or esters thereof, and multihydroxylated-aliphatic hydrocarbon compounds and/or esters thereof, and optionally one or more substances comprising water, chlorinating agents, catalysts and/or esters of catalysts is disclosed. The mixture is stripped to recover dichlorohydrin(s) while distilling or fractionating the mixture to separate a lower boiling fraction comprising dichlorohydrin(s) from the mixture in one step. Advantages include more efficient recovery of dichlorohydrins for a given distillation column, less waste due to avoiding the conditions conducive to the formation of heavy byproducts, and reduced capital investment in recovery equipment.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: January 6, 2015
    Assignee: Dow Global Technologies LLC
    Inventors: Danil Tirtowidjojo, Andrei S. Merenov, Christian D. Kneupper, Bruce D. Hook, Anil Mehta
  • Patent number: 8926917
    Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: January 6, 2015
    Assignee: Ener-Core Power, Inc.
    Inventor: Boris A. Maslov
  • Patent number: 8926908
    Abstract: Reactor vessels with pressure and heat transfer features for producing hydrogen-based fuels and structural elements, and associated systems and methods. A representative reactor system includes a first reaction zone and a heat path, a reactant source coupled to the first reaction zone, and a first actuator coupled to cyclically pressurize the first reaction zone. A second reaction zone is in fluid communication with the first, a valve is coupled between the first and second reaction zones to control a flow rate therebetween, and a second actuator is coupled in fluid communication with the second reaction zone to cyclically pressurize the second reaction zone. First and second heat exchangers direct heat from products to reactants in the reaction zones. A controller controls the first and second actuators in a coordinated manner based at least in part on a flow rate of the second product from the second reaction zone.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: January 6, 2015
    Assignee: McAlister Technologies, LLC
    Inventor: Roy Edward McAlister
  • Patent number: 8926942
    Abstract: Methods and systems for generating hydrogen and separating carbon dioxide from a feed stream including hydro-carbons and water are disclosed. In some embodiments, the method includes the following: providing a catalytic chamber including a monolithic structure having surfaces coated with carbon dioxide adsorbing materials and one or more washcoated layers of combined steam reforming, water gas shift, and combustion catalysts; directing the feed stream into said catalytic chamber; controlling the feed stream so that it has a temperature range that allows the reactive generation of carbon dioxide and hydrogen gas but does not cause substantial development of coke between hydrocarbons in the feed stream and said surfaces of said monolithic structure; and adsorbing said carbon dioxide generated by heating the feed stream, wherein said carbon dioxide is adsorbed onto carbon dioxide adsorbing materials on said surfaces of said monolithic structure.
    Type: Grant
    Filed: February 22, 2008
    Date of Patent: January 6, 2015
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Marco J. Castaldi, Robert J. Farrauto, Tuncel M. Yegulalp
  • Publication number: 20150005207
    Abstract: Petroleum coke or coal coke is gasified to produce a gas stream containing carbon monoxide, hydrogen, hydrogen sulfide, and optionally ammonia, carbon dioxide, water, and nitrogen. Carbon monoxide, hydrogen, and hydrogen sulfide, and optionally ammonia, carbon dioxide, water, and nitrogen are separated from the gas stream. The separated carbon monoxide and hydrogen are reacted to produce methanol, and the methanol is reacted with the separated hydrogen sulfide to produce dimethyl sulfide.
    Type: Application
    Filed: June 25, 2014
    Publication date: January 1, 2015
    Inventors: Stanley Nemec MILAM, Erik Willem TEGELAAR, John Justin FREEMAN, Richard B. TAYLOR
  • Publication number: 20150001437
    Abstract: Continuous flow synthetic methods are used to make single phase magnetic metal alloy nanoparticles that do not contain rare earth metals. Soft and hard magnets made from the magnetic nanoparticles are used for a variety of purposes, e.g. in electric motors, communication devices, etc.
    Type: Application
    Filed: January 4, 2013
    Publication date: January 1, 2015
    Inventors: Everett E. Carpenter, Zachary J. Huba, Kyler J. Carroll, Ahmed Farghaly
  • Publication number: 20150001133
    Abstract: One exemplary embodiment can be a process for removing gases from a sweetened hydrocarbon stream. The process can include passing the sweetened hydrocarbon stream to a gas removal zone, contacting the sweetened hydrocarbon stream with an aqueous stream, passing the aqueous stream to the degassing drum, and removing gases including at least one of oxygen and nitrogen from the aqueous stream. Often, the gas removal zone includes a degassing drum.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventor: Jonathan Andrew Tertel
  • Publication number: 20150001130
    Abstract: An integrated vapor-liquid separation device is provided in conjunction with a steam pyrolysis cracking unit operation. In certain aspects, a feed is charged to the inlet of a convection portion of a steam pyrolysis unit where the feed is heated to conditions effective for steam cracking The convection section effluent is separated in a vapor-liquid separator and the separator vapor effluent is charged to the inlet steam cracking portion of the steam pyrolysis zone. The liquid effluent can be further processed, recycled within the system or a combination thereof. In additional aspects, a feed separated upstream of the convection portion of a steam pyrolysis unit using a flash vessel equipped with a vapor-liquid separator device described herein.
    Type: Application
    Filed: September 19, 2014
    Publication date: January 1, 2015
    Inventors: Abdul Rahman Zafer AKHRAS, Abdennour BOURANE, Raheel SHAFI, Ibrahim A. ABBA
  • Publication number: 20150004072
    Abstract: A process and apparatus is disclosed for pretreating a hydrocarbon stream in a hydrotreating reactor and separating the diesel materials from the pretreated effluent before the heavier liquid materials are fed to a hydrocracking unit. Thus diesel materials are preserved but recovered along with the hydrocracked effluent. A recovered diesel stream can be sent to a hydrotreating unit to improve its cetane rating.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventors: Peter Kokayeff, Clayton C. Sadler, Vasant P. Thakkar
  • Publication number: 20150004073
    Abstract: An olefin hydration process and reactor are provided, where an integrated membrane selectively removes alcohol product from the reactor, thereby allowing for increased yields.
    Type: Application
    Filed: September 17, 2014
    Publication date: January 1, 2015
    Inventors: Ibrahim Abba, Aadesh Harale, Stephan Ralf Vogel, Wei Xu
  • Patent number: 8920732
    Abstract: The present disclosure is directed to systems and methods for actively controlling the steam-to-carbon ratio in hydrogen-producing fuel processing systems that include a feedstock delivery system. The feedstock delivery system supplies a combined feedstock stream including steam and carbon-containing feedstock to a hydrogen-producing region, which produces a mixed gas stream including hydrogen gas as a majority component therefrom. The systems and methods may include measuring a thermodynamic property of a steam stream, a carbon-containing feedstock stream, and/or the combined feedstock stream and controlling the flow rate and/or pressure of a water stream, the steam stream, and/or the carbon-containing feedstock stream based on a desired steam-to-carbon ratio in the combined feedstock stream and/or a desired flow rate of the mixed gas stream and may include feedforward and/or feedback control strategies.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: December 30, 2014
    Assignee: DCNS
    Inventors: Zhen Chen, Xun Ouyang
  • Patent number: 8920733
    Abstract: The invention is directed to processes for treating biosolids that result in high-value, nitrogen-containing, slow-release, organically-augmented inorganic fertilizer that are competitive with less valuable or more costly conventional commercially manufactured fertilizers. The process involves conditioning traditional waste-water biosolids and processing the conditioned biosolids continuously in a high throughput manufacturing facility. The exothermic design and closed loop control of the primary reaction vessel decreases significantly the amount of power necessary to run a manufacturing facility. The process utilizes green technologies to facilitate decreased waste and enhanced air quality standards over traditional processing plants. The fertilizer produced from recovered biosolid waste is safe and meets or exceeds the United States Environment Protection Agency (USEPA) Class A and Exceptional Quality standards and is not subject to restrictions or regulations.
    Type: Grant
    Filed: October 9, 2013
    Date of Patent: December 30, 2014
    Assignee: VitAg Corporation
    Inventors: Jeffrey C. Burnham, James P. Carr, Gary L. Dahms
  • Patent number: 8921636
    Abstract: Methods for converting an HF alkylation unit to an ionic liquid alkylation system configured for performing ionic liquid catalyzed alkylation processes may comprise connecting at least one component configured for ionic liquid catalyzed alkylation to at least one component of the HF alkylation unit, wherein the at least one component of the HF alkylation unit is retained, modified or adapted for use in the ionic liquid alkylation system. An ionic liquid alkylation system derived from an existing or prior HF alkylation unit is also disclosed.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: December 30, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Robert Fletcher Cleverdon, Christine Marie Phillips, Hye Kyung Cho Timken
  • Patent number: 8920736
    Abstract: A loop seal for a fluidized bed reactor comprising a vertical downcomer segment connected to a dipleg for receiving solids particles from the dipleg, a horizontal segment downstream of the downcomer, a riser segment downstream of the horizontal segment, and a downwardly inclined segment downstream of the riser, whereby the solids are entrained to the fluidized bed reactor. An eductor is added to the angled leg to induce the underflow gas from the cyclone; one of the preferred motive fluids to the eductor is the fines from fuel preparation and the carrying gas for the fines. Also provided are a fluidized bed reactor comprising the loop seal, and a method for producing syngas from coal and steam using the same.
    Type: Grant
    Filed: June 5, 2010
    Date of Patent: December 30, 2014
    Assignee: Synthesis Energy Systems, Inc.
    Inventor: Guohai Liu
  • Patent number: 8920755
    Abstract: Methods for converting an H2SO4 alkylation unit to an ionic liquid alkylation system configured for performing ionic liquid catalyzed alkylation processes may comprise connecting at least one component configured for ionic liquid catalyzed alkylation to at least one component of the H2SO4 alkylation unit, wherein the at least one component of the H2SO4 alkylation unit is retained, modified or adapted for use in the ionic liquid alkylation system. Ionic liquid catalyzed alkylation systems derived from existing conventional alkylation units, and ionic liquid catalyzed alkylation processes are also disclosed.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: December 30, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Robert Fletcher Cleverdon, Christine Marie Phillips, Hye Kyung Cho Timken
  • Publication number: 20140374318
    Abstract: A multi-stage hydrotreating process obtains ultra-low sulfur diesel boiling range hydrocarbon having less than 10 ppm sulfur with elimination of external hot high pressure separator and avoids the formation of recombinant mercaptans by removing excess hydrogen sulfide formed during hydroprocessing reaction. The process includes mixing a diesel boiling range hydrocarbon feedstock with hydrogen and sending to the first predominantly liquid phase hydroprocessing reaction stage. Effluent from the first hydroprocessing reaction stage is sent to first separator zone of open and empty space in the upper part of the second hydroprocessing reaction stage to flash off the dissolved reaction products hydrogen sulfide and ammonia. Liquid part of the effluent of first hydroprocessing reaction stage is passed to the second predominantly liquid phase hydroprocessing reaction stage.
    Type: Application
    Filed: June 24, 2014
    Publication date: December 25, 2014
    Inventors: Ganesh Vitthalrao BUTLEY, Yamini GUPTA, Mainak SARKAR, Arun ARANGARASU, Madhusudan SAU, Brijesh KUMAR, Santanam RAJAGOPAL, Ravinder Kumar MALHOTRA
  • Publication number: 20140377140
    Abstract: A process and apparatus are disclosed for hydrotreating a hydrocarbon feed in a hydrotreating unit and hydrocracking a liquid hydrotreating effluent stream in a hydrocracking unit. A hot separator separates the diesel in a liquid hot hydrotreating effluent stream that serves as feed to the hydrocracking unit. Low sulfur diesel product can be saturated to further upgrade its cetane rating.
    Type: Application
    Filed: June 20, 2013
    Publication date: December 25, 2014
    Inventors: Paul R. Zimmerman, Peter Kokayeff, Michael R. Smith
  • Publication number: 20140377672
    Abstract: A hydrogen generator includes: a reformer configured to generate a hydrogen-containing gas by using a raw material; a hydro-desulfurizer configured to remove a sulfur compound in the raw material; a recycle passage through which the hydrogen-containing gas is supplied to the raw material before the raw material flows into the hydro-desulfurizer; a booster configured to supply the raw material to the reformer; a raw material supply passage through which the raw material to be supplied to the reformer flows; and an ejector which is disposed on the raw material supply passage provided downstream of the booster and upstream of the hydro-desulfurizer and into which the hydrogen-containing gas flows from the recycle passage.
    Type: Application
    Filed: October 9, 2013
    Publication date: December 25, 2014
    Applicant: PANASONIC CORPORATION
    Inventors: Yoshio Tamura, Koichi Kusumura, Yoichi Midorikawa, Yoshihiro Mori, Kouhei Tsuyuguchi
  • Publication number: 20140378721
    Abstract: Provided are a method for producing paraffins and an apparatus for producing paraffins, in which each high-purity paraffin can be produced with high efficiency while complicated operations such as distillation are not carried out. An apparatus for producing paraffins includes a separation and recovery unit and a hydrogenation unit. The separation and recovery unit has a separator containing silver ions, and separates impurities from raw material olefins containing olefins as main components and recovers the olefins, by bringing the raw material olefins into contact with the separator. The hydrogenation unit brings the olefins recovered by the separation and recovery unit into contact with hydrogen in a presence of a catalyst and subjects the recovered olefins to a hydrogenation reaction, thereby obtaining high-purity paraffins.
    Type: Application
    Filed: September 25, 2012
    Publication date: December 25, 2014
    Inventors: Akihiro Kuwana, Jun-ichi Sakamoto, Hiroyuki Hata
  • Publication number: 20140374069
    Abstract: A vertically oriented sulfur condenser may employ a plurality of condenser tubes arranged longitudinally within an exterior casing, a liquid sulfur reservoir at a longitudinal end of the sulfur condenser, and a condenser tube wall of at least one of the plurality of condenser tubes that protrudes into and below a liquid sulfur reservoir. A catalyst may be located within the liquid sulfur reservoir. A liquid sulfur outlet may be located at the liquid sulfur surface. A Claus process gas inlet may be proximate a first end of the plurality of condenser tubes. A first tube sheet may connect to and seal an end of the plurality of condenser tubes proximate a first end of the plurality of condenser tubes. A second tube sheet may connect to and seals with the plurality of condenser tubes and the exterior casing proximate a second end of the plurality of condenser tubes.
    Type: Application
    Filed: June 13, 2014
    Publication date: December 25, 2014
    Applicant: PHILLIPS 66 COMPANY
    Inventor: Alfred E. Keller