Apparatus Operates At Positive Pressure Patents (Class 422/208)
  • Patent number: 11944106
    Abstract: A continuous quantitative spraying structure for sterilization of harvested fruits is provided. The continuous quantitative spraying structure includes a track provided thereon with equally spaced trays for conveying fruits, where the trays each include a circular tray body; a central part of the tray body is provided with a central hole allowing the fruit to fall off; a bottom part of the central hole is provided with two parallel rollers; an inner bottom surface of the tray body is provided with a flap; an inner end of a central shaft of the roller passes through the flap, and is fixed to a rolling wheel; a bearing is provided between the roller and the flap; the track is provided with a spraying sterilization section; the spraying sterilization section is sequentially provided with 3 to 4 sets of sterilization nozzles above a tray conveying route.
    Type: Grant
    Filed: October 8, 2022
    Date of Patent: April 2, 2024
    Assignee: ZHEJIANG UNIVERSITY ZHONGYUAN INSTITUTE
    Inventors: Di Wu, Weinan Huang, Dandan Zheng, Feng Jiang, Chongde Sun, Kunsong Chen
  • Patent number: 11826756
    Abstract: Disclosed herein are cell processing systems, devices, and methods thereof. A system for cell processing may comprise a plurality of instruments each independently configured to perform one or more cell processing operations upon a cartridge, and a robot capable of moving the cartridge between each of the plurality of instruments.
    Type: Grant
    Filed: April 28, 2023
    Date of Patent: November 28, 2023
    Assignee: Cellares Corporation
    Inventors: Vladimir Azersky, Fabian Gerlinghaus, Daniele Malleo, Brian Alexander Pesch, Bharat S. Thakkar, Wilson Wai Toy
  • Patent number: 11498040
    Abstract: The machinery and methods disclosed herein are based on the use of a specialized extruder configured to continuously convey and plasticize/moltenize selected lignocellulosic biomass and/or waste plastic materials into a novel variable volume tubular reactor, wherein the plasticized/moltenized material undergoes reaction with circumferentially injected supercritical water—thereby yielding valuable simple sugar solutions and/or liquid hydrocarbon mixtures (e.g., “neodiesel”), both of which are key chemical commodity products. The reaction time may be adjusted by changing the reactor volume. The machinery includes four zones: (1) a feedstock conveyance and plasticization/moltenization zone; (2) a steam generation and manifold distribution zone; (3) a central supercritical water reaction zone; and (4) a pressure let-down and reaction product separation zone.
    Type: Grant
    Filed: April 5, 2021
    Date of Patent: November 15, 2022
    Inventors: Thomas Erik Loop, James D. Flynn, G. Graham Allan
  • Patent number: 10967349
    Abstract: The machinery and methods disclosed herein are based on the use of a specialized extruder configured to continuously convey and plasticize/moltenize selected lignocellulosic biomass and/or waste plastic materials into a novel variable volume tubular reactor, wherein the plasticized/moltenized material undergoes reaction with circumferentially injected supercritical water—thereby yielding valuable simple sugar solutions and/or liquid hydrocarbon mixtures (e.g., “neodiesel”), both of which are key chemical commodity products. The reaction time may be adjusted by changing the reactor volume. The machinery includes four zones: (1) a feedstock conveyance and plasticization/moltenization zone; (2) a steam generation and manifold distribution zone; (3) a central supercritical water reaction zone; and (4) a pressure let-down and reaction product separation zone.
    Type: Grant
    Filed: August 25, 2019
    Date of Patent: April 6, 2021
    Inventors: Thomas Erik Loop, James D Flynn, G. Graham Allan
  • Patent number: 10759087
    Abstract: A Mortar Delivery System is described. The Mortar Delivery System provides precise control of the delivery and application of mortar in addition to the mixing and tempering of mortar. Such control eliminates the use of a hand trowel in brick, block and stone laying applications. Sensing and control are integrated with the Mortar Delivery System to make it an important element of a robotic brick laying system. The Mortar Delivery System contains sensors to measure mortar viscosity and workability, mortar flow rate, and mortar nozzle pressure. The data from the Mortar Delivery System sensors can be used to change the rotational speed of the shear blades, change the amount of water being used for mixing or tempering, and change the delivery speed of the mortar. Such changes result in precise control of mortar that is in turn suitable for automated or semi-automated building processes.
    Type: Grant
    Filed: May 1, 2015
    Date of Patent: September 1, 2020
    Assignee: Construction Robotics, LLC
    Inventors: Scott Lawrence Peters, Timothy Riley Voorheis, Michael John Oklevitch, Rockwell Najeeb Yarid, Kerry Evan Lipp, Erwin Ludwig Allmann
  • Patent number: 9289001
    Abstract: A control system for monitoring an antimicrobial application system may include a controller having a monitoring program including an operations unit and an interface unit. The operations unit may include a sensor module operatively coupled to a plurality of sensors positioned to detect operation data associated with the application system in real-time. An adjustment module may adjust the operation of the application system. An analysis module may analyze real-time operation data and initiate a specified response when the analysis indicates that a trigger event has occurred. The response may include issuing a notification to a notification device or initiating the adjustment module to perform a control operation to modify the operation of the antimicrobial application system. A remote monitoring center may control multiple and remote application systems. Mobile devices and a control panel may be operable to interface with operations of the antimicrobial application system via the control system.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: March 22, 2016
    Assignee: SAFE FOODS CORPORATION
    Inventors: Justin Massey, Tim Yeaman
  • Publication number: 20150147242
    Abstract: Techniques, systems, apparatus and material are disclosed for generating renewable energy from biomass waste while sequestering carbon. In one aspect, a method performed by a reactor to dissociate raw biomass waste into a renewable source energy or a carbon byproduct or both includes receiving the raw biomass waste that includes carbon, hydrogen and oxygen to be dissociated under an anaerobic reaction. Waste heat is recovered from an external heat source to heat the received raw biomass waste. The heated raw biomass waste is dissociated to produce the renewable fuel, carbon byproduct or both. The dissociating includes compacting the heated raw biomass waste, generating heat from an internal heat source, and applying the generated heat to the compacted biomass waste under pressure.
    Type: Application
    Filed: January 28, 2015
    Publication date: May 28, 2015
    Inventor: Roy Edward McAlister
  • Publication number: 20150125374
    Abstract: Described herein are processes and apparatus for the large-scale synthesis of boron nitride nanotubes (BNNTs) by induction-coupled plasma (ICP). A boron-containing feedstock may be heated by ICP in the presence of nitrogen gas at an elevated pressure, to form vaporized boron. The vaporized boron may be cooled to form boron droplets, such as nanodroplets. Cooling may take place using a condenser, for example. BNNTs may then form downstream and can be harvested.
    Type: Application
    Filed: October 31, 2014
    Publication date: May 7, 2015
    Inventors: Michael W. Smith, Kevin C. Jordan, Jonathan C. Stevens
  • Publication number: 20150104360
    Abstract: A reactor assembly having a plurality of reaction chambers defined therein is provided. The reactor assembly includes a fluid flow module that provides a pressurized control flow of fluid from an open container. In another embodiment, the reactor block includes a plurality of passageways defined over a surface of a substrate to accommodate the combinatorial processing in order to obtain multiple data points from a single substrate.
    Type: Application
    Filed: December 17, 2014
    Publication date: April 16, 2015
    Inventors: Zachary Fresco, Rich Endo
  • Publication number: 20150076410
    Abstract: A reformer tube for producing synthesis gas by steam reforming of hydrocarbon-containing feed gases, preferably natural gas, includes one or more helically coiled heat exchanger tubes which are arranged within a catalyst bed of a reforming catalyst and are helically coiled over part of their length located within the catalyst bed and are otherwise straight are present, where the straight proportion of the heat exchanger tubes and/or the helix pitch of the helically coiled part alters within the catalyst bed and matching to requirements of the pressure drop, the heat exchange properties, and the corrosion resistance.
    Type: Application
    Filed: November 7, 2012
    Publication date: March 19, 2015
    Applicants: L'AIR LIQUIDE, SOCIÉTÉ ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCÉDÉS GERGES CLAUDE, LURGI GMBH
    Inventors: Holger Schlichting, Ulrich Wolf, Sven Pohl, Dieter Ulber, Udo Zolnowski, Antonio Coscia, Julien Cances, Frederic Camy-Peyret, Fabrice Mathey
  • Patent number: 8980143
    Abstract: A method for transforming a selected polymeric material into a plurality of reaction products via supercritical water is disclosed. The method comprises: conveying the selected polymeric material through an extruder, wherein the extruder is configured to continuously convey the selected polymeric material to a supercritical fluid reaction zone; injecting hot compressed water into the supercritical fluid reaction zone, while the extruder is conveying the selected polymeric material into the supercritical fluid reaction zone so as to yield a mixture; retaining the mixture within the reaction zone for a period of time sufficient to yield the plurality of reaction products. The reaction zone may be characterized by a tubular reactor having an adjustably positionable inner tubular spear, wherein the tubular reactor and the inner tubular spear further define an annular space within the reaction zone, and wherein the mixture flows through the annular space and into a reaction products chamber.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: March 17, 2015
    Inventors: Thomas E. Loop, James D. Flynn, Graham Allan, Steven C. Van Swearingen, Kevin O. Gaw
  • Patent number: 8975303
    Abstract: In a synthesis gas methanation process, at least one first fraction of synthesis gas to treat is fed, together with steam, to a shift reactor where a shift reaction occurs; the gas flow produced in the shift reactor is then fed to a first methanation reactor where a methanation reaction occurs and then to further second methanation reactors in series, where further methanation reactions, performed with the addition of fresh synthesis gas which has not been subjected to the shift reaction.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: March 10, 2015
    Assignee: Foster Wheeler Italiana S.r.l.
    Inventors: Luigi Bressan, Maria Sudiro
  • Patent number: 8858221
    Abstract: The present invention describes a novel reactor adapted for carrying out chemical reactions at temperatures of up to 1600° C., and at pressures of up to 100 bars. The reactor of the invention has two vessels surrounding the reaction zone, an inner vessel constituted by a refractory material and an outer vessel surrounding the inner vessel and constituted by an insulating material.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: October 14, 2014
    Assignee: IFP Energies Nouvelles
    Inventors: Stephane Bertholin, Fabrice Giroudiere
  • Publication number: 20140046105
    Abstract: An underground reactor for creating hydrocarbons and chemicals from organic material can include a heat recovery device. Some embodiments of the present disclosure include at least one tube that injects biomass underground and at least one second tube that collects reacted biomass on the surface. Further tubes are also disclosed for the ability to control temperature and pressure and collect minerals and carbon dioxide. In another embodiment, a super-critical fluid is injected into the underground reactor. Methods for utilizing the reactor are additionally provided. Further embodiments include methods of using the reactor such as, for example, methods of creating fuel from algae and methods of using the minerals and carbon dioxide as food for an algae farm that will be used as biomass for the reactor.
    Type: Application
    Filed: August 9, 2013
    Publication date: February 13, 2014
    Applicant: The Administrators of the Tulane Educational Fund
    Inventor: Brandon J. Iglesias
  • Publication number: 20130172625
    Abstract: Methods for using ailylic oxidation catalysts to perform oxidation reactions. In an exemplary method for catalyzing an ailylic oxidation reaction of the present disclosure, the method comprises the step of catalyzing an oxidation of an ailylic compound using an ailylic oxidation catalyst. In at least one embodiment, the ailylic oxidation catalyst comprises palladium, gold, and titanium, In an exemplary embodiment, the ailylic oxidation catalyst comprises 2.5% A?÷2.5% Pd/TiO2.
    Type: Application
    Filed: February 10, 2011
    Publication date: July 4, 2013
    Inventors: Brian Tarbit, Graham J. Hutchings, Jennifer K. Edwards, Peter Miedziak
  • Patent number: 8475727
    Abstract: This invention relates to a new system for controlling temperature and pressure in, at least, one chemical reactor, characterized in that it includes, at least, the following devices: a) a deposit with at least one pressure regulation device; b) a connecting duct between said deposit and the reactor; c) a device for injecting condensates into the reactor. Moreover, the invention relates to the use of said control system to control the pressure and temperature of at least one chemical reactor, being especially applicable to a chemical reactor in which a hydrothermal biomass carbonization reaction takes place.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: July 2, 2013
    Assignee: Ingelia, S.L.
    Inventor: Martin Hitzl
  • Publication number: 20130149212
    Abstract: Disclosed is a device for revaporizing natural gas. Provided is a device for revaporizing natural gas hydrate pellets, comprising: a pellet charging portion for charging pellets which is formed with an upper valve and a lower valve so as to divide space for adjusting pressure; a storing portion, which communicates with the lower portion of the pellet charging portion, for receiving pellets when the lower valve is opened; a transfer screw, one end of which couples to the lower portion of the storing portion, for transferring the pellets in the storing portion; and a dissolving reaction tub, which is coupled to the other end of the transfer screw, receives pellets from the lower portion of the dissolving reaction tub, and which accommodates heating water.
    Type: Application
    Filed: August 23, 2010
    Publication date: June 13, 2013
    Inventors: Myung Ho Song, Yong Seok Yoon, Hye Jung Hong, Jung Huyk Ahn, Mun Keun Ha, Seok Ku Jeon, Hoon Ahn, Ta Kwan Woo
  • Publication number: 20130119314
    Abstract: A method is disclosed for generating useful chemical intermediates from biomass using a novel pyrolysis reactor that utilizes the inherent thermal properties of carbon under compression as the biomass is subjected to sequential or concurrent temperature ramps. The ramps are sufficient to volatilize and selectively create different components, while the pressure application aids the selective decomposition of the biomass.
    Type: Application
    Filed: December 31, 2012
    Publication date: May 16, 2013
    Inventors: MICHAEL CHEIKY, RONALD A. SILLS
  • Publication number: 20130108512
    Abstract: Methods of treating of stannous oxide particles having at least a partial surface crust of stannic oxide by contacting the particles with a reducing agent for a period of time sufficient to produce stannous oxide are provided. The stannous oxide particles produced are readily soluble in organic sulfonic acids.
    Type: Application
    Filed: September 30, 2012
    Publication date: May 2, 2013
    Applicant: DOW GLOBAL TECHNOLOGIES LLC
    Inventor: Dow Global Technologies LLC
  • Publication number: 20120308475
    Abstract: Provided are methods and devices for storing and generating oxygen from a low temperature oxygen generating liquid. The oxygen storage method may use lithium chlorate plus water to store oxygen wherein all solids that may be present enter solution for delivery as a liquid to a reaction vessel. The oxygen production method may be a batch process with steps to heat the liquid, boil out the water, thermally decompose the lithium chlorate and then rinse out the remaining product. The apparatus for oxygen generation may use multiple reaction vessels operating sequentially to produce a continuous flow of oxygen with a rinse step in a separate area from the heat application area to remove end product solid. The device for oxygen storage includes a storage vessel and is configured to heat the oxygen generating liquid using waste heat present in the rinse liquid.
    Type: Application
    Filed: June 13, 2012
    Publication date: December 6, 2012
    Inventors: Kenneth Lee PRESLEY, Scott Clarence MEYERS
  • Publication number: 20120263630
    Abstract: A vertical high temperature and high pressure stove structure includes a vertically-disposed pressure vessel and a heating module disposed in the pressure vessel. The heating module includes a heating space filled with a quartz tube and sets of independent heating units. The independent heating units includes a lower protective zone heating unit, a provision zone heating unit, a synthesis zone heating unit and an upper protective zone heating unit. The synthesis zone heating unit provides a group III element fusion zone with a temperature equal to or greater than that of a composition melting point, the provision zone heating unit provides a steam having temperature greater than evaporation temperature to a group V element provision zone, and a compound synthesis of a group III element and a group V element as chemical element periodic table is rapidly completed in the group III element fusion zone.
    Type: Application
    Filed: April 11, 2012
    Publication date: October 18, 2012
    Inventors: Zhi HE, Xiao-Yu Hu
  • Publication number: 20120118105
    Abstract: Disclosed herein is a continuous process for producing silver powders comprising silver particles. Each powder is comprised of silver particles that have a specific morphology that is determined by the process conditions and the use of one or more particle modifiers in the process. A reactor for carrying out the process is also disclosed. The silver powders produced are particularly useful in electronic applications.
    Type: Application
    Filed: November 17, 2010
    Publication date: May 17, 2012
    Applicant: E. I. DU PONT DE NEMOURS AND COMPANY
    Inventors: Roberto Irizarry, Kalyana C. Pyada
  • Publication number: 20120042567
    Abstract: A method for torrefaction of lignocellulosic biomass using a torrefaction reactor vessel having stacked trays, the method including: continuously feeding the biomass to an upper inlet of the torrefaction reactor vessel such that the biomass material is deposited on an upper tray of a plurality of trays stacked vertically within the reactor; as the biomass moves across an upper surface of each of the trays, heating and drying the biomass material with a gas injected into the vessel, wherein the gas is substantially non-oxidizing of the biomass, is under a pressure of at least 20 bar gauge and at a temperature of at least 200° C.; cascading the biomass down through the trays by passing the biomass through an opening in each of the trays to deposit the biomass on a lower tray; discharging torrefied biomass from a lower outlet of the torrefaction reactor vessel, and circulating gas extracted from a lower elevation of the reactor vessel to an upper region of the reactor vessel.
    Type: Application
    Filed: August 16, 2011
    Publication date: February 23, 2012
    Applicant: Andritz Technology and Asset Management GmbH
    Inventors: Joseph RAWLS, Bertil Stromberg, John Weston, Xiaoping Jiang, Tyson Hunt
  • Publication number: 20120005949
    Abstract: The present invention provides an improved method for solvent liquefaction of biomass to produce liquid products such as transportation fuel. The method uses a novel solvent combination that promotes liquefaction relatively quickly, and it reduces the need to transport large amounts of hydrogen or hydrogen-carrying solvents. It operates at lower pressure than previous methods, does not require a catalyst or hydrogen gas or CO input, and provides very high conversion of biomass into a bio-oil that can be further processed in a petroleum refinery. It also beneficially provides a way to recycle a portion of the crude liquefaction product for use as part of the solvent combination for the biomass liquefaction reaction.
    Type: Application
    Filed: April 4, 2011
    Publication date: January 12, 2012
    Inventors: James STEVENS, Michelle YOUNG, Daniel EUHUS, Alex COULTHARD, Doug NAAE, Kerry SPILKER, Jason HICKS, Subhasis BHATTACHARYA, Paul SPINDLER
  • Patent number: 8066953
    Abstract: Apparatus and method for hydrolyzing biological material for safe disposal thereof without the necessity of incineration or use of disinfectants are described. An alkaline solution having a concentration and an amount effective for hydrolyzing the biological material is brought into contact therewith by means of rotating paddles which both pound the biological material into small pieces and thoroughly mix the alkaline solution with the material under pressure and at elevated temperature. Following the hydrolysis of the biological material, a chosen portion of the water is removed from the alkaline solution and from the liquefied biological material, such that the resulting product solidifies when cooled. The present safe disposal of the biological material does not require incineration thereof, the addition of disinfectants thereto, or the discharge of liquid effluent containing processed biological material into the sewage system.
    Type: Grant
    Filed: June 15, 2008
    Date of Patent: November 29, 2011
    Assignee: Gyver L. Electric, Inc.
    Inventor: Mark R. Muth
  • Publication number: 20110288287
    Abstract: The present invention provides: a method for synthesizing a halogen-substituted saccharide from a leaving group-substituted saccharide in a short-time and continuously; a reaction composition; and a device for synthesis of same, i.e., the method being for synthesizing a halogen-substituted saccharide from a leaving group-substituted saccharide by a halogen-substituted saccharide synthesis reaction using a subcritical fluid or a supercritical fluid as the reaction solvent; the reaction composition of the same being an aqueous solution of halogen-substituted saccharide; and the device for synthesis being a device for producing the same, the method being for producing a halogen-substituted saccharide with a subcritical fluid or a supercritical fluid at a temperature of 100 to 400° C. and a pressure of 0.
    Type: Application
    Filed: December 25, 2009
    Publication date: November 24, 2011
    Inventors: Masahiro Sato, Hajime Kawanami, Fujio Mizukami
  • Publication number: 20110243805
    Abstract: The present subject matter discloses a fluid cooled reformer for gas turbine systems and a method for cooling both a fuel reformer and a heated reformate stream produced by such fuel reformer. The fluid cooled reformer may include a pressure vessel and a reactor assembly disposed within the pressure vessel. The reactor assembly may include a reactor and may be configured to receive and reform an oxygen/fuel mixture to produce a heated reformate stream. Additionally, the fluid cooled reformer may include an inlet configured to direct a fluid stream into the pressure vessel. At least a portion of the fluid stream may be used to cool the reactor assembly. A reformate cooling section may be disposed downstream of the reactor of the reactor assembly and may be configured to cool the heated reformate stream.
    Type: Application
    Filed: March 30, 2010
    Publication date: October 6, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Jonathan Dwight Berry, Hasan Karim, Abdul Rafey Khan
  • Publication number: 20110237837
    Abstract: A low-pressure one-step gas-phase process for the production and recovery of methyl isobutyl ketone (MIBK) is disclosed. One-step gas-phase synthesis of MIBK from acetone and hydrogen over nano-Pd/nano-ZnCr2O4 catalyst at atmospheric pressure is used as an example. The said process is designed to recover the additional heat associated with the reactor effluent via heating acetone feed and recycle (mixed acetone) before entering the reactor. A compressor is introduced to the gas-phase process to increase slightly the reactor effluent pressure before this effluent is cooled and fed to a flash drum. The compressed reactor effluent is used to preheat hydrogen feed and recycle (mixed hydrogen) before entering the reactor. The separation scheme of low-pressure one-step gas-phase process comprises of several distillation columns used for MIBK separation and purification.
    Type: Application
    Filed: June 7, 2011
    Publication date: September 29, 2011
    Applicant: King Abdulaziz City for Science and Technology (KACST)
    Inventors: Abdulrahman A. Al-Rabiah, Vagif Malik Akhmedov, Abdulaziz A. Bagabas
  • Publication number: 20110225876
    Abstract: This invention relates to a new system for controlling temperature and pressure in, at least, one chemical reactor, characterized in that it includes, at least, the following devices: a) a deposit with at least one pressure regulation device; b) a connecting duct between said deposit and the reactor; c) a device for injecting condensates into the reactor. Moreover, the invention relates to the use of said control system to control the pressure and temperature of at least one chemical reactor, being especially applicable to a chemical reactor in which a hydrothermal biomass carbonization reaction takes place.
    Type: Application
    Filed: April 7, 2011
    Publication date: September 22, 2011
    Inventor: Martin HITZL
  • Publication number: 20110193026
    Abstract: In an embodiment, a method of conducting a high temperature chemical reaction that produces hydrogen or synthesis gas is described. The high temperature chemical reaction is conducted in a reactor having at least two reactor shells, including an inner shell and an outer shell. Heat absorbing particles are included in a gas stream flowing in the inner shell. The reactor is heated at least in part by a source of concentrated sunlight. The inner shell is heated by the concentrated sunlight. The inner shell re-radiates from the inner wall and heats the heat absorbing particles in the gas stream flowing through the inner shell, and heat transfers from the heat absorbing particles to the first gas stream, thereby heating the reactants in the gas stream to a sufficiently high temperature so that the first gas stream undergoes the desired reaction(s), thereby producing hydrogen or synthesis gas in the gas stream.
    Type: Application
    Filed: April 15, 2011
    Publication date: August 11, 2011
    Applicant: REGENTS OF THE THE UNIVERSITY OF COLORADO
    Inventors: ALAN W. WEIMER, JAIMEE K. DAHL, ALLAN A. LEWANDOWSKI, CARL BINGHAM, KAREN J. RASKA BUECHLER, WILLY GROTHE
  • Patent number: 7972573
    Abstract: A reactor suitable for the continuous oxidizing of an organic material in a supercritical water oxidation process, the reactor includes (a) a reactor body with reactor walls; (b) and a threaded reactor upper plug; and (c) a cylindrical liner attached solely to the threaded reactor upper plug, such that, when the threaded reactor upper plug is removed from the reactor, the reactor liner is consequently and simultaneously removed from the reactor as well.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: July 5, 2011
    Assignee: Parsons Corporation
    Inventors: John Scott, James Osterloh
  • Patent number: 7955508
    Abstract: Disclosed herein are supercritical fluid biomass conversion machines, systems, and methods for converting a wide range of biomass materials into a plurality of reaction products including fermentable sugars and various aromatic substances.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: June 7, 2011
    Assignee: Xtrudx Technologies, Inc.
    Inventors: Graham Allan, Thomas E. Loop, James D. Flynn
  • Publication number: 20110072713
    Abstract: A method for converting lipids to alkyl esters may include receiving a reactant comprising one or more lipids. In some cases, the reactant may include substantial amounts of polar lipids and/or free fatty acids. Some reactants may be derived from photosynthetic organisms, such as algae and/or diatoms. The reactant may be mixed with an alcohol and a catalyst to form a mixture. The mixture may be heated, for example, to a temperature between 50 and 350 degrees Celsius, including between 80 and 220 degrees Celsius. Pressure may be controlled to be between 1 and 200 bar, including between 10 and 100 bar. At least a portion of the reactant may be converted to one or more alkyl esters. A biofuel may include alkyl esters made from lipids according to various methods.
    Type: Application
    Filed: September 30, 2009
    Publication date: March 31, 2011
    Inventors: Daniel Fleischer, Andrew Thompson, Marko Jukic, Guido Radaelli, Jon Marshall
  • Publication number: 20110052702
    Abstract: An object of the present invention is to provide a method and apparatus capable of continuously producing organic nanotubes, wherein an organic nanotube material dispersion solution consisting of an organic nanotube material and an organic solvent is pressurized and caused to pass through a very narrow orifice.
    Type: Application
    Filed: January 21, 2009
    Publication date: March 3, 2011
    Applicant: National Institute of Advanced Industrial Science and Technology
    Inventors: Masumi Asakawa, Masaki Kogiso, Toshimi Shimizu
  • Publication number: 20110027143
    Abstract: A method and apparatus for extracting CO2 from air comprising an anion exchange material formed in a matrix exposed to a flow of the air, and for delivering that extracted CO2 to controlled environments. The present invention contemplates the extraction of CO2 from air using conventional extraction methods or by using one of the extraction methods disclosed; e.g., humidity swing or electro dialysis. The present invention also provides delivery of the CO2 to greenhouses where increased levels of CO2 will improve conditions for growth. Alternatively, the CO2 is fed to an algae culture.
    Type: Application
    Filed: October 13, 2010
    Publication date: February 3, 2011
    Inventors: Allen B. Wright, Klaus S. Lackner, Ursula Ginster
  • Publication number: 20110020758
    Abstract: The present invention describes a novel reactor adapted for carrying out chemical reactions at temperatures of up to 1600° C., and at pressures of up to 100 bars. The reactor of the invention has two vessels surrounding the reaction zone, an inner vessel constituted by a refractory material and an outer vessel surrounding the inner vessel and constituted by an insulating material.
    Type: Application
    Filed: October 24, 2008
    Publication date: January 27, 2011
    Inventors: Stephane Bertholin, Fabrice Giroudiere
  • Patent number: 7846401
    Abstract: The overall efficiency of a regenerative bed reverse flow reactor system is increased where the location of the exothermic reaction used for regeneration is suitably controlled. The present invention provides a method and apparatus for controlling the combustion to improve the thermal efficiency of bed regeneration in a cyclic reaction/regeneration processes. The process for thermal regeneration of a regenerative reactor bed entails (a) supplying the first reactant through a first channel means in a first regenerative bed and supplying at least a second reactant through a second channel means in the first regenerative bed, (b) combining said first and second reactants by a gas mixing means situated at an exit of the first regenerative bed and reacting the combined gas to produce a heated reaction product, (c) passing the heated reaction product through a second regenerative bed thereby transferring heat from the reaction product to the second regenerative bed.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: December 7, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Frank Hershkowitz, Jeffrey W. Frederick
  • Publication number: 20100288976
    Abstract: A method and a plant for producing a cooled compressed syngas is presented.
    Type: Application
    Filed: November 24, 2008
    Publication date: November 18, 2010
    Applicant: L'Air Liquide Societe Anonyme Pour L'Etude Et L'Exploitation Des Procedes Georges Claude
    Inventor: Benoit Davidian
  • Patent number: 7815873
    Abstract: The overall efficiency of a regenerative bed reverse flow reactor system is increased where the location of the exothermic reaction used for regeneration is suitably controlled. The present invention provides a method and apparatus for controlling the combustion to improve the thermal efficiency of bed regeneration in a cyclic reaction/regeneration processes. The process for thermal regeneration of a regenerative reactor bed entails (a) supplying the first reactant through a first channel means in a first regenerative bed and supplying at least a second reactant through a second channel means in the first regenerative bed, (b) combining said first and second reactants by a gas mixing means situated at an exit of the first regenerative bed and reacting the combined gas to produce a heated reaction product, (c) passing the heated reaction product through a second regenerative bed thereby transferring heat from the reaction product to the second regenerative bed.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: October 19, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Krishnan Sankaranarayanan, Frank Hershkowitz, Jeffrey W. Frederick, Rajeev Agnihotri
  • Publication number: 20100256430
    Abstract: The invention provides a system and process for treating a raw material to reduce the level of a contaminant in the raw material or to form a raw product that can be used to produce a fuel. The system and process include means for pressurising a pumpable feedstock comprising the raw material to a pressure of between 100 and 350 bar, preferably using indirect pressurising means; heating the feedstock to a temperature of between 250° C. and 400° C. within a processing vessel to form a pressurised raw product stream; cooling the raw product stream within the processing vessel to an ambient or near ambient temperature; then depressurising the raw product stream before discharging the raw product from the system.
    Type: Application
    Filed: November 17, 2008
    Publication date: October 7, 2010
    Applicant: SOLRAY ENERGY LIMITED
    Inventor: Christopher Francis Bathurst
  • Publication number: 20100233043
    Abstract: The present invention provides a cartridge for the generation of hydrogen. The cartridge includes a case, an igniter, and a structural component. The case defines an interior cavity and the igniter is positioned within the cavity. The structural component is also positioned within the cavity and is formed of a particulate embedded in a matrix and the particulate includes a metallic material. An oxidizing agent is positioned within the cavity. The structural component is configured such that the metallic material and the oxidizing agent react together to generate hydrogen after the igniter generates sufficient heat to remove the matrix from the structural component and to initiate the reaction between the metallic material and the oxidizing agent.
    Type: Application
    Filed: March 11, 2009
    Publication date: September 16, 2010
    Applicant: ADVANCED HYDROGEN TECHNOLOGIES CORPORATION
    Inventor: Peter James Lohr, SR.
  • Publication number: 20100212727
    Abstract: A method for continuously growing carbon nanotubes may include providing a melt comprising carbon and a catalyst at a temperature between about 1,200 degrees Celsius and about 2,500 degrees Celsius, selecting a carbon nanotube seed having at least one of a semiconductor electrical property and a metallic electrical property from a plurality of carbon nanotube seeds, contacting the selected carbon nanotube seed to a surface of the melt, and moving the selected carbon nanotube seed away from the surface of the melt at a rate operable to continuously grow a carbon nanotube, and continuously growing the carbon nanotube having the selected electrical property. Method for continuously growing a graphene sheet, and apparatus for continuously growing carbon nanotubes and graphene sheets are also disclosed.
    Type: Application
    Filed: February 22, 2010
    Publication date: August 26, 2010
    Inventor: Ji Ung LEE
  • Publication number: 20100205860
    Abstract: A biocoke producing apparatus that realizes efficient mass production of biocoke; a method of controlling the same; and a process for manufacture thereof. The apparatus includes a horizontal tubular reaction vessel (10) provided on its one end side with a supply part (11) for pulverized biomass and provided on its other end side with a discharge part (12). On the supply part side, there is provided an extrusion piston (6) capable of reciprocation along the longitudinal direction in the interior of the reaction vessel and capable of pressurizing the pulverized biomass within the vessel; The temperature range and pressure range for inducing a pyrolytic or thermal curing reaction of lignin and hemicellulose contained in the pulverized biomass are preset, and the reaction vessel (10) is provided with a thermal reaction region (13) for heating the pulverized biomass at temperature within the above temperature range and with a cooling region (14).
    Type: Application
    Filed: April 18, 2008
    Publication date: August 19, 2010
    Inventors: Yoshimasa Kawami, Jun Satou, Tamio Ida
  • Publication number: 20100193741
    Abstract: The invention relates to a reactor for catalytic reformation of hydrocarbons with steam at elevated pressure, said reactor comprising a reaction space and a fire space, said reaction space comprised of a multitude of vertical tubes arranged in rows and suitable for being filled with a catalyst, and having facilities for feeding hydrocarbons and steam to be reformed to the reaction space, and furthermore comprising facilities for discharge of reformed synthesis gas from the reaction space, and furthermore comprising a multitude of firing facilities in the upper area of the firing space, said firing facilities being able to generate mainly downwardly directed flames that are suitable to heat the aforementioned reaction tubes, with the tube feeding air to the burner being equipped with a facility for adjusting and setting the air flow, and there being a secondary air feeder mounted additionally to this tube and branching-off from it and configured in various layouts and having an independently controllable facil
    Type: Application
    Filed: March 22, 2008
    Publication date: August 5, 2010
    Applicant: UHDE GMBH
    Inventors: Oliver Meissner, Silke Wodberg
  • Patent number: 7767170
    Abstract: A process is provided for cracking hydrocarbon feedstock containing resid comprising: heating the feedstock, mixing the heated feedstock with a fluid and/or a primary dilution steam stream to form a mixture, optionally further heating the mixture, flashing the mixture within a flash/separation vessel to form a vapor phase and a liquid phase, partially condensing the vapor phase by contacting with a condenser within the vessel, to condense at least some coke precursors within the vapor while providing condensates which add to the liquid phase, removing the vapor phase of reduced coke precursors content as overhead and the liquid phase as bottoms, heating the vapor phase, cracking the vapor phase in a radiant section of a pyrolysis furnace to produce an effluent comprising olefins, and quenching the effluent and recovering cracked product therefrom. An apparatus for carrying out the process is also provided.
    Type: Grant
    Filed: June 16, 2006
    Date of Patent: August 3, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Richard C. Stell, George Stephens, Jennifer L. Bancroft, John R. Messinger
  • Publication number: 20100159602
    Abstract: Apparatus and methods for measuring the concentrations of organic and inorganic carbon, or of other materials, in aqueous samples are described, together with related, specially adapted components and sub-assemblies and related control, operational and monitoring systems.
    Type: Application
    Filed: August 29, 2008
    Publication date: June 24, 2010
    Inventors: Gregory B. Conway, Michael R. Scaer, Paul Melanson, Gordon K. Francis, Pei Huang
  • Publication number: 20100113705
    Abstract: A dual vessel reactor and a method of carrying out a reaction using a dual vessel reactor are provided using a non-condensable gas to substantially isolate the inner vessel from the outer vessel during the reaction and limit the heating of the outer vessel when steam from the inner vessel condenses on the interior surface of the outer vessel. By limiting the heating of the outer vessel through the condensation of the steam or other vapour from the inner vessel, the operating temperature of the outer vessel is kept below an upper threshold of the operating temperature of a seal used to seal the door in the outer vessel.
    Type: Application
    Filed: September 25, 2009
    Publication date: May 6, 2010
    Inventors: BRIAN HARRISON, HURDON HOOPER
  • Patent number: 7704466
    Abstract: A self-propagating combustion cyclone reactor includes a reaction chamber delimited by a circumferential wall in which at least one reductant inlet and a plurality of oxidizer inlets are formed in a tangential manner. Reductant and oxidizer are fed, together with inert gas, through the inlets into the chamber in a cyclonic manner to induce self-propagating combustion reaction to generate a product of high purity metal, such as titanium, zirconium, hafnium, or silicon, semiconductor substance. The reactor serves as a continuous reactor for generation of metal or semiconductor substances of high purity.
    Type: Grant
    Filed: November 14, 2007
    Date of Patent: April 27, 2010
    Assignee: Sun Materials Technology Co., Ltd.
    Inventor: Yi-Shuen Wu
  • Publication number: 20100080748
    Abstract: Provided is a continuous method and apparatus of purifying carbon nanotubes. The continuous method and apparatus of purifying carbon nanotubes is characterized in a first purifying step for injecting a carbon nanotube liquid mixture containing an oxidizer into a purifying reactor under a sub-critical water or supercritical water condition at a pressure of 50 to 400 atm and a temperature of 100 to 600° C. to obtain a purified product, thereby removing amorphous carbon and producing the carbon nanotube product.
    Type: Application
    Filed: September 29, 2009
    Publication date: April 1, 2010
    Inventors: Joo Hee Han, Jin-Seo Lee, Seung-Hoe Do, Seong Cheol Hong
  • Publication number: 20100015037
    Abstract: The invention relates to a reaction vessel in which hydrogen sulphide is prepared from sulphur and hydrogen, wherein the reaction vessel consists partly or entirely of a material which is resistant to the reaction mixture, its compounds or elements and retains its resistance even at high temperatures.
    Type: Application
    Filed: July 10, 2009
    Publication date: January 21, 2010
    Inventors: Hurbert Redlingshöfer, Jan-Olaf Barth, Caspar-Heinrich Finkeldei, Hans Joachim Hasselbach, Stephan Kretz, Harald Heinzel, Christoph Weckbecker