Oxygenator Patents (Class 422/45)
  • Patent number: 8517969
    Abstract: A liquid collection bag is used as a part of an extracorporeal circuit and is connected via a tube to a storage container containing a priming solution. The collection container collects the priming solution from the storage container by a pressure differential between the pressure inside the collection container and the pressure inside the storage container. The liquid collection container is a flexible bag body having a partition part dividing the inside of the bag body into a first space and a second space. In addition, a communication part communicates the first space with the second space.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: August 27, 2013
    Assignee: Terumo Kabushiki Kaisha
    Inventors: Norikazu Ishida, Hidetaka Nakayama
  • Publication number: 20130209314
    Abstract: An apparatus for oxygenating blood including a housing and an oxygenator bundle. The housing defines a primary chamber, a blood inlet port open to the primary chamber, and a blood outlet region. The outlet region includes a blood outlet port, an outlet chamber open to the outlet port, and a partition. The partition establishes spaced apart, first and second passageways from the primary chamber to the outlet chamber. The oxygenator bundle is disposed within the primary chamber. A blood flow path is formed from the blood inlet port, through the oxygenator bundle and to the blood outlet port, and includes first and second outlet flow paths within the outlet chamber via the first and second passageways, respectively. The first and second outlet blood flow paths merge at the blood outlet port. A dual port blood outlet is created, increasing mixing of blood immediately upstream of the outlet port.
    Type: Application
    Filed: February 15, 2012
    Publication date: August 15, 2013
    Applicant: Medtronic, Inc.
    Inventors: Stephen Roller, Chistopher Plott, Alford McLevish, Gregory Hake, Brian Steffens
  • Patent number: 8496874
    Abstract: An integrated centrifugal blood pump-oxygenator (1) which has a housing (2) with a top (3) having a blood inlet (4), a blood outlet (5) and a gas inlet (6), and a bottom (7) having a rotational body (8) being rotatably arranged in a rotor-housing (9) of the bottom (7). The integrated centrifugal blood pump-oxygenator (1) further has an oxygenator membrane (10) provided in an interior (11) of the housing (2), wherein in the operation state oxygen (12) is transferred from the gas inlet (6) through the oxygenator membrane (10) to a gas outlet (13) and blood (14) is brought in direct contact with the oxygenator membrane (10) by pumping the blood (14) with the rotational body (8) from the blood inlet (4) to the blood outlet (5). The rotational body (8) is magnetically journalled in a contact-free manner with respect to the rotor-housing (9). There is an extracorporeal life support system (1000), and a method of de-bubbling and priming a extracorporeal life support system (1000).
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: July 30, 2013
    Assignee: Thoratec LLC
    Inventors: Barry N. Gellman, Andrew Koert, Zhongjun Wu, Juntao Zhang, Bartley P. Griffith
  • Patent number: 8486333
    Abstract: This invention provides rotors and methods of precisely metering a sample fluid and mixing the sample with a reagent. The rotors have a metering tube of defined volume that fills until sample flow is stopped by surface tension of a meniscus at a capillarity port, while excess sample is stripped from the metering tube inlet by centripetal force of the spinning rotor. By spinning the rotor at a higher speed, a reagent can be forced from a reagent chamber to contact the meniscus, breaking the surface tension and allowing the metered sample to mix with the reagent.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: July 16, 2013
    Assignee: MicroPoint Biosciences, Inc.
    Inventors: Mark Wang, Nan Zhang
  • Patent number: 8480606
    Abstract: A system is disclosed for removing gas bubbles from blood during circulatory assist procedures. Such bubbles are generated, along with particulate matter, in an extracorporeal circulatory bypass system by the pump, oxygenator and other components. Current filters are inefficient at removing small bubbles that can cause neurological defects and renal and other organ failures in the patient. An active filter apparatus and method is disclosed that forces the bubbles to the center of the system where they are removed from the blood before the blood exits the filter. The filter comprises an axially elongate cylindrical shell with a blood inlet, a blood outlet and a gas outlet. A motor driven impeller spins the blood within the shell and forces the gas toward the center by centripetal force, utilizing the buoyancy effects of the bubbles in blood, whereby the bubbles can be bled off at the center of the filter.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: July 9, 2013
    Assignee: Indian Wells Medical, Inc.
    Inventors: David W. Wieting, Jay A. Lenker
  • Patent number: 8475398
    Abstract: An extracorporeal blood processing method using a blood circuit comprising a pair of blood passages attached to opposite flow ends of a blood treatment device and said blood circuit is mounted on a blood pump console, the method includes: withdrawing blood from a vascular system of a human patient and drawing the blood into the blood circuit; pumping the withdrawn blood through one of the pair of blood passages using a first blood pump of the console and into the blood treatment device; pumping the treated blood from the treatment device through the other of the pair of blood passages using a second blood pump of the console; infusing the treated blood from the other blood passage and into the vascular system of the patient, and periodically reversing a flow direction of blood through the pair of blood passages and blood treatment device.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: July 2, 2013
    Assignee: Gambro uf Solutions, Inc.
    Inventor: John O'Mahony
  • Publication number: 20130101464
    Abstract: Treatment of carbon monoxide poisoning of a body by removal of a portion of the blood from the body, placing the portion in an exposure cell, exposing the portion in the cell to light of wave length and intensity that causes dissociation of carbon monoxide from hemoglobin, and returning the portion to the body. The intensity and wave length of the light is sufficient to dissociate a therapeutically-effective amount of carbon monoxide from the hemoglobin in the blood. The blood is circulated from and to the body through a concentric double lumen cannula. The wave lengths of the light are 540 and/or 570 nanometers. The cell exposes the blood to at least 9.5 Joules of dissociative light per milliliter of blood, and least 9.5 Watts of dissociative light per milliliter of blood per second. Oxygen is provided to, and the dissociated carbon monoxide is removed from the system.
    Type: Application
    Filed: February 13, 2012
    Publication date: April 25, 2013
    Inventor: MARK S. SMYCZYNSKI
  • Patent number: 8425838
    Abstract: A filter member used in an oxygenator is constructed to provide improved contact with a hollow fiber membrane bundle and to capture bubbles contained in blood. The filter member possesses elasticity at least in the circumferential direction to allow the inner circumference of the filter member to be increased from a natural non-expanded state prior to placement on the hollow fiber membrane bundle to an expanded state in which the inner circumference of the filter member is increased when placed on the hollow fiber membrane bundle. The filter member is constructed to satisfy the condition 0.5?L2/L1<1, wherein L1 represents the outer circumference of the hollow fiber membrane bundle and L2 represents the inner circumference of the filter member in the natural non-expanded state.
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: April 23, 2013
    Assignee: Terumo Kabushiki Kaisha
    Inventors: Kazuhiro Mizoguchi, Eiji Kato
  • Publication number: 20130094996
    Abstract: A cardiopulmonary bypass or CPB monitoring tool includes: a preoperative information module; a preoperative calculation module able to estimate a body surface area, blood volume, and theoretical weight; a priming module able to determine priming constitution, volume and flow to achieve a hemodilution target; an operation risk module for calculating operation risk; a drug calculation module able to determine medication doses; a timer module with timers that can be activated during operation; a data collection module with an interface and drivers enabling data collection from a wide variety of extracorporeal pumps and oxygenators during operation; an events module with retroactive manipulation of the time of an event; a printing report generation module; a graphic user interface; and a configuration module.
    Type: Application
    Filed: October 11, 2012
    Publication date: April 18, 2013
    Applicant: HEARTWARE BVBA
    Inventor: HEARTWARE BVBA
  • Patent number: 8409502
    Abstract: A compliant blood gas exchanger is provided including a housing having a first end cap, a second end cap, and an elastomeric sidewall or sleeve extending there between forming a chamber. A hollow fiber assembly is disposed in the chamber. The hollow fiber assembly has a first mounting collar, a second mounting collar and a plurality of hollow fibers disposed there between. The first end cap is disposed in communication with the first mounting collar and the second end cap is disposed in communication with the second mounting collar. The end caps are connected to a gas inlet and a gas outlet. The chamber is in communication with a blood inlet and a blood outlet. The elastomeric sidewall is responsive to internal and external pressures affecting the chamber. The first chamber can also be placed adjacent to a second chamber and both chambers placed within a rigid outer housing. Thus, a dual-chamber pulsatile blood gas exchanger can be provided.
    Type: Grant
    Filed: August 24, 2005
    Date of Patent: April 2, 2013
    Inventors: Robert N. Schaap, Barry Bagley
  • Publication number: 20130078144
    Abstract: A liquid collection bag is used as a part of an extracorporeal circuit and is connected via a tube to a storage container containing a priming solution. The collection container collects the priming solution from the storage container by a pressure differential between the pressure inside the collection container and the pressure inside the storage container. The liquid collection container is a flexible bag body having a partition part dividing the inside of the bag body into a first space and a second space. In addition, a communication part communicates the first space with the second space.
    Type: Application
    Filed: November 16, 2012
    Publication date: March 28, 2013
    Applicant: TERUMO KABUSHIKI KAISHA
    Inventor: TERUMO KABUSHIKI KAISHA
  • Publication number: 20130017119
    Abstract: A blood reservoir may be used in combination with other elements such as a heart lung machine (HLM), oxygenator, heat exchanger, arterial filter and the like to form an extracorporeal blood circuit that may be employed in a procedure such as a bypass procedure. The blood reservoir may be configured to receive, filter and store blood from a number of sources including vent blood (from within the heart), venous blood (from a major vein), purge blood (from a sampling line) and cardiotomy or suction blood (from the surgical field).
    Type: Application
    Filed: July 13, 2011
    Publication date: January 17, 2013
    Applicant: Sorin Group Italia S.r.I.
    Inventors: Claudio Silvestri, Gabriele Tommasi
  • Publication number: 20130004937
    Abstract: A system and methodology for the preservation of red blood cells is described in which red blood cells are oxygen or oxygen and carbon dioxide depleted, treated and are stored in an anaerobic environment to optimize preparation for transfusion. More particularly, a system and method for extended storage of red blood cells from collection to transfusion that optimizes red blood cells prior to transfusion is described.
    Type: Application
    Filed: July 3, 2012
    Publication date: January 3, 2013
    Applicant: NEW HEALTH SCIENCES, INC.
    Inventors: Tatsuro YOSHIDA, Paul VERNUCCI
  • Patent number: 8317738
    Abstract: A liquid collection bag is used as a part of an extracorporeal circuit and is connected via a tube to a storage container containing a priming solution. The collection container collects the priming solution from the storage container by a pressure differential between the pressure inside the collection container and the pressure inside the storage container. The liquid collection container is a flexible bag body having a partition part dividing the inside of the bag body into a first space and a second space. In addition, a communication part communicates the first space with the second space.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: November 27, 2012
    Assignee: Terumo Kabushiki Kaisha
    Inventors: Norikazu Ishida, Hidetaka Nakayama
  • Patent number: 8318092
    Abstract: An oxygenator combines, in a single structure, a heat exchanger, a gas exchanger and an arterial filter. Such an oxygenator permits fewer fluid connections and thus may simplify an extracorporeal blood circuit, including a heart-lung machine and a blood reservoir, in which it is used. In some cases, the oxygenator may be configured to include multiple purge ports for purging bubbles both before and after filtering the blood.
    Type: Grant
    Filed: April 29, 2010
    Date of Patent: November 27, 2012
    Assignee: Sorin Group Italia S.r.l.
    Inventors: Stefano Reggiani, Claudio Silvestri, Alberto Giri
  • Patent number: 8292839
    Abstract: A switch comprises a rotating switch member which provides fluid communication in three modes; infusion, recirculation and priming The switch is located between the oxygenator and drug bag and the cardioplegia pump raceway. The switch has three channels molded into the rotating manifold which either direct blood and cardioplegia into the coronary arteries of the patient or into a recirculation line. When the switch is rotated into the recirculation line, a hose is in fluid connection through the switch and connects the recirculation line with the pump blood and drug inlet lines thereby allowing cooling of the cardioplegic mixture during the time between infusions.
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: October 23, 2012
    Inventor: William G. O'Neill
  • Publication number: 20120209399
    Abstract: A two-stage system for oxygenating and removing carbon dioxide from a physiological fluid, including: a primary exchange module configured to receive a gas having oxygen therein and a carrier fluid having carbon dioxide therein. The primary exchange module is configured to transfer oxygen from the gas to the carrier fluid and transfer carbon dioxide from the carrier fluid to the gas to create an oxygen loaded carrier fluid and a carbon dioxide load gas. A secondary exchange module is configured to receive the oxygen loaded carrier fluid and a physiological fluid having the carbon dioxide therein. The secondary exchange module is configured to transfer the oxygen from the oxygen loaded carrier fluid to the physiological fluid and transfer carbon dioxide from the physiological fluid to the carrier fluid to create an oxygen loaded physiological fluid.
    Type: Application
    Filed: February 10, 2011
    Publication date: August 16, 2012
    Inventors: Anna Galea, Gordon B. Hirschman, Thieu Q. Truong, Nicholas Vitale
  • Patent number: 8211362
    Abstract: A packaged blood purification device including a hollow fiber blood-processing device having a bundle of hollow fibers and a cylindrical container holding the bundle of hollow fibers; and a gas-impermeable container for packaging the hollow fiber blood-processing device. The hollow fiber blood-processing device is sealed together with an oxygen absorber in the gas-impermeable container, and is sterilized with radiation. The blood-processing device is produced by a method including the steps of sealing a hollow fiber blood-processing device in said gas-impermeable container together with an oxygen absorber, and radiation sterilizing the blood-processing device held in the sealed gas-impermeable container.
    Type: Grant
    Filed: September 23, 2004
    Date of Patent: July 3, 2012
    Assignee: Nipro Corporation
    Inventors: Toshiaki Masuda, Yuki Hatakeyama, Takashi Sunohara
  • Patent number: 8206580
    Abstract: An integrated blood treatment module comprises a blood treatment device (1) having a housing (2) and a first end-cap (4) and a second end-cap (5) closing both ends of the housing (2). A pump hose (17) for a peristaltic pump has a first end (18) that is secured to the housing (2) and a second end (16) that is connected to a blood inlet port (15) of the first end-cap (4) so as to form a loop. A degassing device (30) is connected to the second end-cap (5). The degassing device (30), which, in use, is full of liquid, comprises a hydrophobic membrane through which bubbles and micro-bubbles escape the degassing device.
    Type: Grant
    Filed: November 5, 2004
    Date of Patent: June 26, 2012
    Assignee: Gambro Lundia AB
    Inventors: Jürgen Dannenmaier, Hermann Goehl, Thomas Ertl, Jacques Chevallet, Francesco Ribolzi, Björn Frederik Seidler, Lennart Jönsson, Eddie Nilsson
  • Patent number: 8192384
    Abstract: This invention discloses a modular system having a base module, a mid-section control module, and a display module for preparing and administering a gas-enriched bodily fluid. An apparatus adapted for connecting with a gas tank is included in the system for gas tank hook-up. Gas-enrichment is achieved by a gas-enriching device which can be in the form of a disposable cartridge. During operation, the gas-enrichment device is placed in an enclosure within the control module. An electronic controller manages the various aspects of the system such as the production of gas-enriched fluid, flow rates, bubble detection, and automatic operation and shut down. The system has a power supply for providing electrical power to the system, and a switching mechanism coupled to the power supply and gas tank for synchronized switching of the power supply and the gas tank between an ON state and an OFF state.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: June 5, 2012
    Assignee: TherOx, Inc.
    Inventors: Stephen E. Myrick, Gregory P. Watson, Achilles V. Young
  • Patent number: 8187215
    Abstract: A device that allows for serial (time) use of clean blood filters during the use of a heart lung machine. The device is comprised of a series of filters and a switching mechanism that allows the new filter to be placed in the blood flow pathway while at the same time removing the old (previous) filter. A clean filter is always available, and filters for specific components of blood or those able to bind and remove specific biochemicals can be used.
    Type: Grant
    Filed: January 8, 2009
    Date of Patent: May 29, 2012
    Inventor: Robert E. Helm, Jr.
  • Patent number: 8187622
    Abstract: The present invention relates to methods for coating at least one surface of a medical device for improving the hemocompatibility of said surface. Further, the invention relates to medical devices comprising surfaces, coated with a coating composition containing a nonionic ester formed from an acyclic C3-C6(OH)3-6 polyol and from at least three C12-C26 fatty acids, and further includes at least one hydrophilic group.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: May 29, 2012
    Assignee: Maquet Cardiopulmonary AG
    Inventors: Mathias Nakel, Birgit Eisenlohr
  • Patent number: 8178041
    Abstract: A method and apparatus for performing coronary perfusion and cardiac reoxygenation that enables accurate control of oxygen levels in blood used for the coronary circulation. Deoxygenated blood and oxygenated blood are collected and oxygen levels are measured by sensors. The deoxygenated and oxygenated blood is then mixed and the mixed blood is measured by another sensor. The sensors provide data used to provide real-time oxygen level measurement and adjustment for blood supplied for coronary circulation.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: May 15, 2012
    Assignee: Rheoxtech, LLC
    Inventor: Neil J. Thomas
  • Publication number: 20120095382
    Abstract: A device (FIGS. 1b, 8c, 14b) for storing and dispensing a fluid and fluid energy using continuous analog modification of the total surface area of one or more solid surfaces against which, on one side of such surface(s), the fluid to be stored and dispensed may proximally and forcibly act and against which, on the opposed side of such surface(s), one or more elastic elements may act, withal producing the effect of a substantially constant static pressure across a range of deformation of the elastic element(s), i.e., a piezoequilibrative effect.
    Type: Application
    Filed: October 18, 2010
    Publication date: April 19, 2012
    Inventor: Dennis Sheanne Hudson
  • Patent number: 8147753
    Abstract: A heat exchanger includes a plurality of tubes 2 through an inner cavity of which a heat-transfer medium liquid flows, a sealing member 6 that seals the plurality of tubes 2 while exposing both ends thereof, with a blood channel passing outside each of the tubes 2 being formed in a central portion in the axial direction of the tubes, and a housing 5 that accommodates the tubes 2 sealed with the sealing member 6. The heat exchanger further includes a hollow fiber membrane 3 that is formed of a plurality of hydrophobic and gas permeable hollow fibers 4 and that is disposed on at least one of an entrance side and an exit side of the blood channel in the housing 5 so that a liquid flowing through the blood channel passes through the hollow fiber membrane 3. The housing 5 includes openings 10 for exposing open ends of each of the hollow fibers 4 forming the hollow fiber membrane 3 to the outside, and gaps between an inner side of the openings and the hollow fibers 4 are sealed.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: April 3, 2012
    Assignee: JMS Co., Ltd.
    Inventors: Minoru Tanaka, Tomokazu Niitsuma, Shigeki Kawarabata, Takashi Matsushita
  • Publication number: 20120076691
    Abstract: Some embodiments of a system or method for treating heart tissue can include a catheter device that provides a user with the ability to perform a number of heart treatment tasks (before, during, and after a cardiac surgery or a percutaneous coronary intervention). In particular embodiments, the catheter device can be used to (i) precondition heart muscle tissue before the heart is isolated from the circulatory system, (ii) deliver cardioplegia into the coronary sinus during the cardiac surgery when the heart is isolated from the circulatory system, and (iii) control the blood flow through the heart after the heart is reconnected with the circulatory system. In some embodiments, the catheter device can perform some or all of: (i) intermittently occluding the coronary sinus, (ii) delivering a treatment fluid into the coronary sinus, and (iii) monitoring a flow rate of blood passing from the coronary sinus to the right atrium.
    Type: Application
    Filed: December 5, 2011
    Publication date: March 29, 2012
    Inventor: Werner Mohl
  • Publication number: 20120076690
    Abstract: Some embodiments of a system or method for treating heart tissue can include a catheter device that provides a user with the ability to perform a number of heart treatment tasks (before, during, and after a cardiac surgery or a percutaneous coronary intervention). In particular embodiments, the catheter device can be used to (i) precondition heart muscle tissue before the heart is isolated from the circulatory system, (ii) deliver cardioplegia into the coronary sinus during the cardiac surgery when the heart is isolated from the circulatory system, and (iii) control the blood flow through the heart after the heart is reconnected with the circulatory system. In some embodiments, the catheter device can perform some or all of: (i) intermittently occluding the coronary sinus, (ii) delivering a treatment fluid into the coronary sinus, and (iii) monitoring a flow rate of blood passing from the coronary sinus to the right atrium.
    Type: Application
    Filed: December 5, 2011
    Publication date: March 29, 2012
    Inventor: Werner Mohl
  • Patent number: 8142546
    Abstract: An artificial lung includes a housing, a tubular hollow fiber membrane bundle contained in the housing and providing a multiplicity of hollow fiber membranes having a gas exchange function, a gas inflow port and a gas outflow port communicating with each other through hollow portions of the hollow fiber membranes, and a blood inflow port and a blood outflow port through which blood is distributed. The tubular hollow fiber membrane bundle has a cylindrical overall shape, and a filter member having a bubble-trapping function is provided on an outer peripheral portion of the tubular hollow fiber membrane bundle.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: March 27, 2012
    Assignee: Terumo Kabushiki Kaisha
    Inventors: Mitsuaki Ogihara, Hidetaka Nakayama
  • Patent number: 8142383
    Abstract: A fluid distribution module (1) for causing and monitoring the circulation of fluids from and to a patient through an extracorporeal blood treatment device, comprises a degassing device (11) connected to a connecting structure (10). The degassing device (11) comprises a first chamber (12) having a lower inlet (13) for a liquid and a second chamber (14) having an upper opening (79) closed by a hydrophobic membrane (78) and an outlet (15) for discharging the liquid. The connecting structure (10) has at least a first and a second conduits (20, 21) defined therein, wherein the first conduit (20) comprises a first end for connection to a discharge tube (7) from the treatment device and a second end connected to the inlet (13) of the first chamber (12) of the degassing device (11), and the second conduit (21) comprises a first end connected to the outlet (15) of the second chamber (14) of the degassing device (11) and a second end for connection to a blood return tube (6) to a patient.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: March 27, 2012
    Assignee: Gambro AB
    Inventors: Jürgen Dannenmaier, Hermann Goehl, Thomas Ertl, Jacques Chevallet, Francesco Ribolzi
  • Patent number: 8142717
    Abstract: The invention provides an oxygenator of a hollow fiber membrane type where a plurality of hollow fiber membranes are received in a housing, wherein at least a part of the regions of the hollow fiber membranes to contact blood during use is coated with a water-insoluble (meth)acrylate copolymer in which a hydrophobic (meth)acrylate is copolymerized with a hydrophilic (meth)acrylate at a molar ratio of (50 to 90):(50 to 10).
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: March 27, 2012
    Assignee: Toyo Boseki Kabushiki Kaisha
    Inventors: Yuta Kawakatsu, Hidenori Tanaka, Susumu Kashiwabara
  • Patent number: 8105491
    Abstract: An extracorporeal filtration and detoxification system and method generally comprise separating ultrafiltrate from cellular components of blood, treating the ultrafiltrate independently of the cellular components in a recirculation circuit, recombining treated ultrafiltrate and the cellular components, and returning whole blood to the patient. A recirculation circuit generally comprises an active cartridge including active cells operative to effectuate a selected treatment; in some embodiments, the active cells are the C3A cell line.
    Type: Grant
    Filed: February 23, 2005
    Date of Patent: January 31, 2012
    Assignee: Vital Therapies, Inc.
    Inventors: John D. Brotherton, Dar He
  • Patent number: 8070952
    Abstract: The invention relates to an apparatus and method for simultaneous extrarenal blood purification therapy and respiration support therapy. The apparatus includes a CO2 removing means having a first inlet for receiving a flow of blood for CO2 removal and a first outlet for expelling blood deprived of CO2. The apparatus also includes filtering means having a first inlet for receiving the flow of blood, a first outlet for expelling purified blood, and at least one drain channel. The drain channel directs a diluting liquid obtained from the blood expelled during purification of the blood. The drain channel is directly connected to the first inlet of the CO2 removing means to supply the diluting liquid to the CO2 removing means without submitting the diluting liquid to any filtering treatment during passage along the drain channel.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: December 6, 2011
    Assignee: Medical Service S.R.L.
    Inventor: Gianni Pasqualini
  • Patent number: 8066942
    Abstract: An integrated device for heating and oxygenating blood in an extracorporeal blood circuit, comprising a shell-and-tube heat exchanger module provided with a coupling to a blood supply line and with two couplings respectively for the intake and discharge of the water designed to exchange heat with the blood; ports are also provided for the passage of the blood toward an oxygenator module of the hollow-fiber type which is located at the peripheral region of the heat exchanger and is provided with a coupling to a blood discharge line; the device further comprises means adapted to direct the flow of blood along a turbulence-free path and with optimum distribution within the two modules.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: November 29, 2011
    Assignee: Eurosets S.r.l.
    Inventors: Nicola Ghelli, Edgardo Costa Maianti, Roberto Balanzoni
  • Publication number: 20110268608
    Abstract: An oxygenator combines, in a single structure, a heat exchanger, a gas exchanger and an arterial filter. Such an oxygenator permits fewer fluid connections and thus may simplify an extracorporeal blood circuit, including a heart-lung machine and a blood reservoir, in which it is used. In some cases, the oxygenator may be configured to include multiple purge ports for purging bubbles both before and after filtering the blood.
    Type: Application
    Filed: April 29, 2010
    Publication date: November 3, 2011
    Applicant: Sorin Group Italia S.r.I.
    Inventors: Stefano Reggiani, Claudio Silvestri, Alberto Giri
  • Patent number: 8017075
    Abstract: An oxygenator that inhibits or prevents bubbles in blood from exiting through a blood outlet includes an oxygenator part which performs gas exchange on blood and a heat exchanging part which performs heat exchange on the blood. The oxygenators part has a housing that is generally in a rectangular parallelepiped form, with a hollow fiber membrane bundle positioned in the housing. The hollow fiber membrane bundle is formed by a multiplicity of hollow fiber membranes adapted to perform gas exchange. Blood flows along a blood passage comprised of gaps between the hollow fiber membranes and contacts the surface of the hollow fiber membranes where gas exchange occurs with gas flowing through the lumens of the hollow fiber membranes. In addition, a filter member is arranged on a downstream side of the hollow fiber membrane bundle so that bubbles present in the blood are caught by the filter member.
    Type: Grant
    Filed: January 18, 2007
    Date of Patent: September 13, 2011
    Assignee: Terumo Kabushiki Kaisha
    Inventor: Mitsuaki Ogihara
  • Publication number: 20110158847
    Abstract: The invention provides systems and methods for exchanging gas in a microfluidic device, and methods for preparing such microfluidic devices. The systems and methods can be used to transfer oxygen to blood to assist lung function in a patient.
    Type: Application
    Filed: December 30, 2010
    Publication date: June 30, 2011
    Inventors: Joseph L. Charest, Jeffrey T. Borenstein, Joseph M. Bauer
  • Patent number: 7935249
    Abstract: A blood purification apparatus includes a blood circuit, a blood purifying device, a first valve, a discharge line, a second valve, and a detection device. The blood circuit has an arterial blood circuit and a venous blood circuit. The first valve opens and closes the venous blood circuit. The second valve opens and closes the discharge line. The detection device detects whether a priming solution is replaced with blood in an end portion of the venous blood circuit at an upstream side from the first valve. The blood purification apparatus automatically turns the first valve from a closed position to an open position and the second valve from an open position to a closed position, respectively, when the detection device detects the priming solution being replaced with the blood.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: May 3, 2011
    Assignee: Nikkiso Co., Ltd.
    Inventors: Hiroshi Nimura, Azusa Mori, Yoshiro Ueda
  • Patent number: 7927544
    Abstract: A paracorporeal respiratory assist lung is configured with an annular cylindrical hollow fiber membrane (fiber bundle) that is rotated at rapidly varying speeds. Fluid (for example, blood) is introduced to the center of the device and is passed radially through the fiber bundle. The bundle is rotated at rapidly changing velocities with a rotational actuator (for example, a motor or magnetic coupling). The rotation of the fiber bundle provides centrifugal kinetic energy to the fluid giving the device pumping capabilities and may create Taylor vortexes to increase mass transfer. Rotation of the fiber bundle increases the relative velocity between the fluid and the hollow fibers and increases the mass transfer. The porosity of the fiber bundle may be varied to enhance gas exchange with the blood. Alternatively, a rotating core may be used with a stationary fiber bundle.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: April 19, 2011
    Assignee: Alung Technologies, Inc.
    Inventors: William J. Federspiel, Brian J. Frankowski, Brendan C. Mack, Scott W. Morley, Meir Rosenberg, Robert G. Svitek
  • Patent number: 7909788
    Abstract: Apparatus and methods for removing carbon dioxide from whole blood. Hydrogen ions are generated from water in the blood, resulting in the formation and release of carbon dioxide from the blood.
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: March 22, 2011
    Assignee: Battelle Memorial Institute
    Inventors: Bruce F. Monzyk, Eric C. Burckle
  • Patent number: 7871566
    Abstract: A device and method for enriching and/or depleting substances in a liquid is disclosed. An exemplary device comprises a membrane module that consists essentially of concentric elements and that has a separation element in which the substance to be enriched and/or depleted is carried, and whereby the liquid is carried outside of the separation element. The exemplary device also comprises a drive module that encompasses a drive unit for driving a conveying element that conveys the liquid, the drive unit having a radial magnetic coupling for a central impeller located on the inside. The exemplary device further comprises a conveying module for conveying the liquid through the device, housing the conveying element, whereby the drive module is adapted to be inserted into and removed from the membrane module with a liquid-tight closure. The exemplary device further an oxygenator having an outside fiber bundle and an inside fiber bundle.
    Type: Grant
    Filed: August 18, 2006
    Date of Patent: January 18, 2011
    Assignee: Ilias-medical GmbH
    Inventors: Andreas Strauss, Mustafa Akdis
  • Patent number: 7829018
    Abstract: A disposable, integrated extracorporeal blood circuit employed during cardiopulmonary bypass surgery performs gas exchange, heat transfer, and microemboli filtering functions in a way as to conserve volume, to reduce setup and change out times, to eliminate a venous blood reservoir, and to substantially reduce blood-air interface. Blood from the patient or prime solution is routed through an air removal device that is equipped with air sensors for detection of air. An active air removal controller removes detected air from blood in the air removal device. A disposable circuit support module is used to mount the components of the disposable, integrated extracorporeal blood circuit in close proximity and in a desirable spatial relationship to optimize priming and use of the disposable, integrated extracorporeal blood circuit. A reusable circuit holder supports the disposable circuit support module in relation to a prime solution source, the active air removal controller and other components.
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: November 9, 2010
    Assignee: Medtronic, Inc.
    Inventors: Robert W. Olsen, Walter L. Carpenter, John B. Dickey, Mark D. Stringham
  • Publication number: 20100272604
    Abstract: Disclosed is an apparatus for oxygenating and controlling the temperature of blood in an extracorporeal circuit. The apparatus has an inlet and an outlet that is located radially outward from the inlet in order to define a flowpath through the apparatus. The apparatus comprises at least one integrated pump that is provided in a core of the apparatus and to which blood from a patient can be supplied through the inlet; a heat exchanger comprising a plurality of heat transfer elements that are arranged around the at least one integrated pump and between which blood from the at least one integrated pump can move radially outward; an oxygenator comprising a plurality of gas exchange elements that are arranged around the heat exchanger and through which blood from the heat exchanger can move radially outward; and an optional filter arranged around the oxygenator and through which blood from the oxygenator can move radially outward before exiting the apparatus through the outlet.
    Type: Application
    Filed: March 4, 2010
    Publication date: October 28, 2010
    Applicant: Medtronic, Inc.
    Inventors: Walt L. Carpenter, Kevin McIntosh
  • Patent number: 7819834
    Abstract: A perfusion system for treating blood during a surgical procedure uses a flow control valve with first and second inlets and first and second outlets. A first intermediate line couples the first outlet to an air removal system. A second intermediate line couples blood from the air removal system to the second inlet. An arterial line carries treated blood from the second outlet back to the patient. The flow control valve has an open position and a recirculate position, wherein the first inlet is coupled to the first outlet when the flow control valve is in either the open position or the recirculate position. The second inlet is coupled to the second outlet and blocked from the first outlet in the open position. The second inlet is coupled to the first outlet and blocked from the second outlet in the recirculate position.
    Type: Grant
    Filed: January 18, 2007
    Date of Patent: October 26, 2010
    Assignee: Terumo Cardiovascular Systems Corp.
    Inventor: Gregory L. Paul
  • Patent number: 7820102
    Abstract: A device generates a gas-enriched physiologic fluid and combines it with a bodily fluid to create a gas-enriched bodily fluid. The device may take the form of a disposable cartridge. The cartridge may include a fluid supply chamber for delivering physiologic fluid under pressure to an atomizer. The atomizer delivers fluid droplets into a gas-pressurized atomization chamber to enrich the physiologic fluid with the gas. The gas-enriched physiologic fluid is delivered to a mixing chamber in the cartridge where the gas-enriched physiologic fluid is mixed with a bodily fluid, such as blood, to create a gas-enriched bodily fluid.
    Type: Grant
    Filed: March 28, 2003
    Date of Patent: October 26, 2010
    Assignee: TherOx, Inc.
    Inventors: Stephen E. Myrick, Gregory P. Watson, William R. Patterson, Paul J. Zalesky
  • Patent number: 7798985
    Abstract: In a venous bubble trap (1), having a housing (2) to which fluid, in particular blood, can be delivered essentially tangentially via a fluid inlet (8) and from which fluid can be carried away via a fluid outlet (10), and having a filter device (3) located in the interior of the housing (2), the filter device (3) divides the housing interior into a prefilter region (5) and a postfilter region (6), and the postfilter region (6) surrounds the prefilter region (5) in at least some portions. As a result, air is reliably removed from the fluid.
    Type: Grant
    Filed: March 7, 2006
    Date of Patent: September 21, 2010
    Assignee: Maquet Cardiopulmonary AG
    Inventors: Ralf Engelhardt, Enno-Utz Kueper, Ulrich Haag
  • Patent number: 7785247
    Abstract: A pulsatile blood circulating pump system that is adapted for use in cardiopulmonary bypass, ventricular assist (LVAD, RVAD, BiVAD), ECMO, organ preservation, fetal cardiac bypass, cancer treatment, and various areas of circulation research, which can be controlled in such a way as to produce a desired blood flow that closely approximates the physiological blood flow of the patient. The pump system includes a pulsating mechanism having a housing defining a chamber within which a compressible-expandable bladder is sealably mounted. The system further includes a hydraulic actuator having a pressure imparting member that acts upon a pressure transmissive fluid contained within the actuator chamber in a manner to generate a pulsatile pressure on the transmissive fluid, which, in turn, results in a pulsatile pressure being exerted on bladder in a manner to controllably vary the volume thereof.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: August 31, 2010
    Assignee: Medical Engineering Co., LLC
    Inventors: Tani Tatum, Stephen Walker, Bob Wilson
  • Publication number: 20100198132
    Abstract: A blood treatment method is described that is adapted to at least partially eliminate the carbon dioxide content of the type comprising a step of drawing a blood flow. Advantageously according to the invention, the method further comprises the steps of: acidifying the blood flow with transformation of the related blood bicarbonate content into gaseous carbon dioxide; and eliminating the gaseous carbon dioxide content by means of a pressure gradient.
    Type: Application
    Filed: May 7, 2008
    Publication date: August 5, 2010
    Applicant: UNIVERSITÁ DEGLI STUDI DI MILANO-BICOCCA
    Inventor: Antonio Maria Pesenti
  • Patent number: 7762976
    Abstract: An apparatus for extracorporeal oxygenation of a patient's blood during cardiopulmonary bypass surgery. The apparatus comprises a bubble sensor, arranged at or connected to a venous line, for detecting bubbles in the venous blood received from the patient. When air bubbles are detected, a second pump is activated to draw air from an air chamber provided in an air filter connected to the venous line and arranged downstream of the bubble sensor. A first pump draws the blood from the air filter and supplies the blood to an oxygenator and to the patient via an arterial line.
    Type: Grant
    Filed: January 20, 2005
    Date of Patent: July 27, 2010
    Assignee: Sorin Group Deutschland GmbH
    Inventors: Johann Schreyer, Erwin Knott, Andreas Hahn
  • Publication number: 20100185136
    Abstract: A method and apparatus for performing coronary perfusion and cardiac reoxygenation that enables accurate control of oxygen levels in blood used for the coronary circulation. Deoxygenated blood and oxygenated blood are collected and oxygen levels are measured by sensors. The deoxygenated and oxygenated blood is then mixed and the mixed blood is measured by another sensor. The sensors provide data used to provide real-time oxygen level measurement and adjustment for blood supplied for coronary circulation.
    Type: Application
    Filed: March 29, 2010
    Publication date: July 22, 2010
    Inventor: Neil J. Thomas
  • Patent number: 7749435
    Abstract: An oxygenator which helps avoid bubbles in the blood from being discharged through the blood outlet port of the oxygenator includes a housing, a hollow fiber membrane bundle in the housing and formed by a multiplicity of hollow fiber membranes serving for gas exchange, gas-inlet and gas-outlet ports communicating with gas passages of the hollow fiber membranes, and a blood-inlet and blood-outlet ports. A filter member is provided on a side closer to the blood outlet port of the hollow fiber membrane bundle and serves to catch bubbles in blood. The blood outlet port projects from the housing and a passage enlargement is provided in a vicinity of the end of the blood outlet port closer to the housing and having an increased passage cross-sectional area. The blood passed the filter member is allowed to reach the blood outlet port by being decelerated in the passage enlargement.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: July 6, 2010
    Assignee: Terumo Kabushiki Kaisha
    Inventors: Mitsuaki Ogihara, Hidetaka Nakayama, Kazuhiro Mizoguchi