Automated System Patents (Class 422/509)
  • Patent number: 8986629
    Abstract: A device for controlling, detecting, and measuring a molecular complex is disclosed. The device comprises a common electrode. The device further comprises a plurality of measurement cells. Each measurement cell includes a cell electrode and an integrator electronically coupled to the cell electrode. The integrator measures the current flowing between the common electrode and the cell electrode. The device further comprises a plurality of analog-to-digital converters, wherein an integrator from the plurality of measurement cells is electrically coupled to one analog-to-digital converter of the plurality of analog-to-digital converters.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: March 24, 2015
    Assignee: Genia Technologies, Inc.
    Inventors: Kevin Deierling, Roger J. A. Chen, David J. Fullagar
  • Patent number: 8986614
    Abstract: A self-contained, fully automated, biological assay-performing apparatus includes a housing; a dispensing platform including a controllably-movable reagent dispensing system, disposed in the housing; a reagent supply component disposed in the housing; a pneumatic manifold removably disposed in the housing in a space shared by the dispensing platform, removably coupled to a fluidic transport layer and a plurality of reservoirs, wherein the fluidic transport layer, the reservoirs, and a test sample to be introduced therein are disposed in the housing in the space separate from the dispensing platform; a pneumatic supply system removably coupled to the pneumatic manifold in the housing in a space separate from the dispensing platform; and a control system coupled to at least one of the dispensing platform and the pneumatic supply system, disposed in the housing.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 24, 2015
    Assignee: Rheonix, Inc.
    Inventors: Peng Zhou, Lincoln C. Young, Benjamin Thomas, Zongyuan Chen, Todd Roswech, Gwendolyn Spizz, Rubina Yasmin, Greg Mouchka
  • Patent number: 8980184
    Abstract: The invention relates to a device for the preparation of radiochemical compounds. It is provided that the device comprises at least a reaction module, a dosing module, and a storage module, wherein; the reaction module has at least one reaction vessel having a closable opening through which substances needed for the preparation of a predetermined radiochemical compound can be introduced into the reaction vessel of the reaction module and through which the prepared radiochemical compound can be removed from the reaction vessel of the reaction module; the dosing module has at least one pipetting head which can be moved relative to the storage module and the reaction module and in x, y, and z directions and also has at least one dosing unit; and at least one reservoir for one of the substances needed for the preparation of the respective radiochemical compound is formed in the storage module.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: March 17, 2015
    Assignees: ABX Advanced Biochemical Compounds GmbH, Gesim—Gesellschaft fuer Silizium-Mikrosysteme mbH
    Inventors: Marco Mueller, Steffen Howitz
  • Patent number: 8974750
    Abstract: A nozzle device which can perform accurate quantitative suction without being affected by a pressure when, for example, a nozzle (2) is inserted into a closed container (T). The nozzle device has the nozzle (2) that is inserted into the closed container (T) and that sucks a liquid in the closed container (T), an exposure to atmosphere mechanism (3) that opens the closed container (T) to the atmospheric air, and an opening/closing structure (4) that is arranged at a proximal end of the nozzle (2) and that has an internal flow channel (411) communicated with a flow channel in the nozzle (2) and an opening/closing mechanism for opening and closing the internal flow channel (411), and an opening/closing control section (5) that controls the opening/closing mechanism.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: March 10, 2015
    Assignee: Horiba, Ltd.
    Inventors: Soichi Oue, Yoshihiro Yano, Narihiro Oku
  • Patent number: 8968680
    Abstract: A cleaning device that cleans a liquid storage part of a vessel for storing liquid. The cleaning device includes: a cleaning liquid discharge nozzle that discharges cleaning liquid to the liquid storage part; a first overflow suction nozzle of which tip is positioned above the tip of the cleaning liquid discharge nozzle, that sucks the liquid containing the cleaning liquid from the liquid storage part; a second overflow suction nozzle of which tip is positioned above the tip of the first overflow suction nozzle, that sucks the liquid containing the cleaning liquid from the liquid storage part; and a clog detecting unit that detects clog in one of the first and second overflow suction nozzles.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: March 3, 2015
    Assignee: Beckman Coulter, Inc.
    Inventors: Kunihiko Mazume, Masato Kayahara, Tsutomu Ishikiriyama
  • Publication number: 20150056111
    Abstract: A pipetting device having a modular pipetting unit including a pipetting tip for pipetting of fluid samples and a pump conduit for transferring a negative or positive pressure to the pipetting tip is disclosed. The pipetting tip and a portion of the pump conduit adjoining the pipetting tip mutually define a fluid sample conduit for receiving the fluid samples. The modular pipetting unit is detachably attached to an automated positioning device for positioning the modular pipetting unit. A system and method for pipetting of fluid samples using such a pipetting device are also disclosed wherein pipetting of the fluid samples is performed in such a manner that each pipetted fluid sample volume is smaller than a volume of the fluid sample conduit.
    Type: Application
    Filed: October 30, 2014
    Publication date: February 26, 2015
    Inventors: Carsten Haack, Thomas Engel, Tobias Holenstein
  • Patent number: 8961905
    Abstract: An apparatus, system, and method for determining the osmolarity of a fluid. The apparatus includes at least one micro-fluidic circuit and at least one electrical circuit disposed in communication with the micro-fluidic circuit for determining a property of a fluid contained within the at least one micro-fluidic circuit.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: February 24, 2015
    Assignee: Lenovo Enterprise Solutions (Singapore) Pte. Ltd.
    Inventors: Govindarajan Natarajan, Emmanuel Delamarche, Eric A. Eckberg, James N. Humenik, Kathleen A. McGroddy-Goetz, Scott Partington, Christopher F. Perrera, Marco G. Trivella, Timothy M. Wiwel
  • Publication number: 20150050719
    Abstract: A dispensing assembly comprising a cartridge holder is presented. The cartridge holder can receive a cartridge for dispensing a fluid. The cartridge can comprise a reservoir for receiving the fluid. The reservoir can comprise an outlet. The reservoir can have an adjustable volume for forcing the fluid through the outlet. The cartridge can further comprise a nozzle for dispensing the fluid. The nozzle can be connected to the outlet. The dispensing assembly can further comprise an actuator for actuating the adjustable volume. The dispensing assembly can further comprise an impulse generator for imparting an impulse to the nozzle. The impulse generator can comprise an actor for contacting the nozzle. The dispenser assembly can further comprise a controller for controlling the actor and the impulse generator.
    Type: Application
    Filed: November 3, 2014
    Publication date: February 19, 2015
    Inventors: Stefan Borja Bammesberger, Andreas Ernst, Peter Koltay, Nadine Losleben, Laurent Tanguy
  • Patent number: 8956579
    Abstract: A chemical dispensing system is provided having a micro-controller and at least one expansion module. The expansion module includes an expansion module interface. The expansion module is in communication with the micro-controller via the expansion module interface. The at least one expansion module expands capabilities of the chemical dispensing system beyond a base operation of the device.
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: February 17, 2015
    Assignee: Delaware Capital Formation, Inc.
    Inventors: Wayne Yankee, David Howland, Scott Christa
  • Patent number: 8951023
    Abstract: Pumping systems and methods for delivering a plurality of different pumpable materials serially at a location at substantially the same flow rate includes a plurality of diaphragm pumps, wherein each diaphragm pump has a first chamber for receiving a hydraulic fluid from a first and/or second hydraulic fluid source and a second chamber for receiving a material to be pumped from one of a plurality of pumpable material sources. A sensor is provided for detecting the pressure of the hydraulic fluid in each of the first chambers of the plurality of diaphragm pumps and is operable to activate the source of hydraulic fluid to ensure that the hydraulic fluid in each of the first chambers of the plurality of diaphragm pumps has an equivalent pressure.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: February 10, 2015
    Assignee: Stratabolt (Proprietary) Limited
    Inventor: Donald Michael O'Connor
  • Publication number: 20150037227
    Abstract: The present disclosure includes a nucleic acid purification apparatus and a pipette, the pipette comprises: a tubular body, at least a gas seal ring, a nut, and a shaft. A first opening and second opening arranged at two ends of the tubular body air communicable with the tubular body, thus forming a main chamber. The gas seal ring is disposed in a seal slot arranged proximate to the second opening. The nut is coupled to the second opening and has portions forming a cavity air communicable with the nut and second opening. An opening has a pressing edge. The shaft can movably dispose in the tubular body and the nut. The pressing edge presses against the gas seal ring via the firm coupling of the nut onto the second opening. As a result, individual adjustment can provide the optimum airtightness in nucleic acid purification devices.
    Type: Application
    Filed: August 1, 2013
    Publication date: February 5, 2015
    Applicant: OME TECHNOLOGY CO., LTD.
    Inventor: SHIH-HUNG DING
  • Patent number: 8940232
    Abstract: An automated assay system is described with stations for placement of materials to be used in an assay of materials inside capillaries and an automated gripper for manipulating capillaries. The system includes a separation and immobilization station where reactions inside the capillaries take place and a detector station where photoemissions from the capillary reactions are detected. The photoemissions from the capillaries may be displayed as line graphs or in columns of a pseudo-gel image resembling the familiar Western gel blot. An automated control system has a user interface by which an operator can select a run protocol and define the locations of samples and reagents to be used in the protocol run: Following the setup the control system will cause the automated system to execute the protocol, then display the results in a selected display format.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: January 27, 2015
    Assignee: ProteinSimple
    Inventors: David J. Roach, Tom W. Yang, Roger A. O'Neill, Robert T. Loder, Jr.
  • Patent number: 8936755
    Abstract: Disclosed is an apparatus for analyzing the composition of bodily fluid. The apparatus can include a fluid handling network including a patient end configured to maintain fluid communication with a bodily fluid in a patient and a pump unit in operative engagement with the fluid handling network. The pump unit can have an infusion mode, in which the pump unit is operable to deliver infusion fluid to the patient through the patient end, and a sample draw mode, in which the pump unit is operable to draw a sample of the bodily fluid from the patient through the patient end. The apparatus can include a spectroscopic analyzer positioned to analyze at least a portion of the sample; a processor in communication with or incorporated into the spectroscopic analyzer; and stored program instructions executable by the processor to obtain measurements of two or more properties of the sample.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: January 20, 2015
    Assignee: OptiScan Biomedical Corporation
    Inventors: Jennifer H. Gable, James R. Braig, Kenneth I. Li, Mark Wechsler, Peng Zheng, Richard Keenan
  • Patent number: 8936762
    Abstract: The present invention relates generally to the field of high content screening of particles, e.g., cells in a flow cytometric system. In particular, the present invention relates to devices, methods and systems to obtain line-scan images of particles, e.g., cells, of a plurality of different samples simultaneously, where the line-scan images can be used to identify cells based on at least one of a variety of phenotypic characteristics such as shape, asymmetry, and intracellular information for cell sorting and selection. In some embodiments, the line-scan images are obtained as the particles, e.g., cells, in a plurality of different samples flow through a plurality of microchannels, reducing the need and time for focusing of the image detection system. In some embodiments, the laser spot size has a small spatial resolution for rapid capturing of images of cells. In some embodiments, the laser spot size has a larger spatial resolution for imaging of larger particles or cells, e.g., rare cells in a sample.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: January 20, 2015
    Assignee: Trustees of Boston University
    Inventors: Daniel J. Ehrlich, Brian McKenna
  • Publication number: 20150017077
    Abstract: An improved SmartPump Fluid Delivery System is disclosed. In the preferred embodiment of the present invention a system is disclosed for use by pharmaceutical compounders to deliver precise amounts of base material used in transdermal prescriptions. It affords a pharmacist or pharmacy technician the ability to request a desired amount of base material to be delivered accurately and sanitarily to their workstation for processing. By utilizing the current SmartPump Fluid Delivery System a device that provides for the collection, storage, measuring, metering, transportation, and processing of pharmaceutical base material is presented. Further the potential errors, dangers, inaccuracies of compounding base material contamination and processing, and loss of user time associated with the traditional methods, are avoided.
    Type: Application
    Filed: July 14, 2014
    Publication date: January 15, 2015
    Inventors: Bradley V. Farford, Matthew J. Dyszel, Evan C. Hathaway
  • Patent number: 8932543
    Abstract: An apparatus including a reagent cartridge and a reaction chamber, the reagent cartridge having a reagent capsule removably positioned therein for dispensing of a reagent onto the reaction chamber. A system including a linearly translatable mounting assembly having a plurality of mounting stations dimensioned to receive at least one fluid dispensing cartridge, a linearly translatable bulk reagent dispensing assembly having a plurality of bulk reagent dispensing nozzles coupled thereto and a receiving assembly positioned beneath the mounting assembly and the bulk reagent dispensing assembly, the receiving assembly including a plurality of reaction stations.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: January 13, 2015
    Assignee: Sakura Finetek U.S.A., Inc.
    Inventors: Xuan S. Bui, Anthony L. Hartman, Toshiyuki Fujimaki, Shinji Tokudaiji, Yoshitake Okabe, Yoshitada Mizusawa
  • Patent number: 8932542
    Abstract: A gripper unit for handling a vessel for receiving biological material is proposed, inter alia. The vessel has a lid which can assume an open position and a closed position. The gripper unit comprises a gripper for gripping and releasing the vessel, and a lid holder, for holding a lid in a defined position in relation to the vessel. The defined position is an open position of the lid.
    Type: Grant
    Filed: September 26, 2006
    Date of Patent: January 13, 2015
    Assignee: Qiagen GmbH
    Inventors: Andreas Schaefer, Thomas Voit, Walter Tschopp, Adrian Geiger, Markus Zbinden, Harald Hibbing, Andreas Karl, Frank Eigemeier, Volker Behrmann, Dietmar Kopp, Andreas Schmiede
  • Patent number: 8920752
    Abstract: Novel and improved systems and methods for high speed arraying, hybridization, quantitative development and/or assaying are provided. Some embodiments provide a web based arraying format. Some other embodiments provide a sheet based arraying format. Some embodiments use a drop on drop assaying or hybridization mode. In some embodiments, a substantially inert substrate is utilized. In some other embodiments, an interactive substrate is utilized.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: December 30, 2014
    Assignee: Biodot, Inc.
    Inventors: Thomas C Tisone, Holger Eickhoff
  • Patent number: 8920751
    Abstract: The present teachings provide apparatuses and methods for automated handling of samples, e.g., biological or chemical samples. The apparatuses and the methods of the present teachings allow automated performance of various sample manipulation steps without manual intervention. In a preferred embodiment, the present teachings provide apparatuses and methods for automated enrichment of templated beads produced by PCR.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: December 30, 2014
    Assignee: Life Technologies Corporation
    Inventors: Kristopher Barbee, Maximilian Carpino, Raymond Alan Wheeling, Nicholas Peter Bajka
  • Patent number: 8912007
    Abstract: An optical measuring apparatus and method for analysis of samples contained in liquid drops provided by a liquid handling system has a liquid handling tip. A light source irradiates the liquid drop; a detector measures sample light; and an optics system with first optical elements transmits irradiation light, and a processor processes the measurement signals. The liquid drop is suspended at the liquid handling orifice of the liquid handling tip in a position where the liquid drop is penetrated by a first optical axis defined by the light source and the first optical elements. The liquid drop is physically touched only by the liquid handling tip and the liquid sample inside the liquid handling tip. A mutual adaption of the size and position of the liquid drop with respect to the first optical elements is achieved.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: December 16, 2014
    Assignee: Tecan Trading AG
    Inventors: Torleif Ove Bjornson, Thomas Geiges
  • Patent number: 8911685
    Abstract: Disclosed is an automated analyzer intended for qualitative/quantitative analysis of blood, urine, and other biological samples, and including a reagent disk for mounting a plurality of reagent containers thereon, wherein any errors in liquid-level measurement due to oscillation of a reagent liquid surface during rotation of the reagent disk are minimized, even when reagent containers of a large capacity are mounted. If a predetermined constant cycle time is defined as one unit, the reagent disk with reagent containers mounted thereon is transported to a liquid-level detection position using at least two units when a liquid level of a reagent is measured.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: December 16, 2014
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Atsushi Watanabe, Shigeki Matsubara, Teruhiro Yamano
  • Patent number: 8911667
    Abstract: A device for preparing and/or treating a biological sample including an assembly of storage chambers and/or reaction chambers intended for receiving a fluid, the chambers being separated by walls so as to form an assembly of adjacent chambers. The device includes a base and a drawer including the assembly of adjacent chambers, the drawer being movable in relation to the base, the drawer including a contact surface connected to first means for establishing fluid communication connected to the inside of at least one chamber, the contact surface of the drawer being intended to be positioned facing a contact surface of the base including at least one position at which second means for fluid communication connected to detection means are placed.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: December 16, 2014
    Assignee: Biomerieux
    Inventors: Tom Beumer, Frederic Foucault, Emiliano Maione, Agnes Rubens
  • Patent number: 8906324
    Abstract: An automatic inoculating system for depositing a sample on a substrate in a predetermined pattern. A turret is rotatable about a vertical axis, and an arm retained by the turret is pivotable about a horizontal axis. A stylus retained at a distal portion of the arm sucks up and dispenses the sample, such as by use of a pumping system in fluidic communication with the stylus. A support rotatably retains the substrate. The arm can be raised and lowered, such as by a cylinder on which the arm rests without a retaining mechanical connection therebetween. The arm can thus freely lift off the cylinder as when the stylus contacts the surface of the substrate. The sample can thus be deposited on the substrate in a predetermined pattern by a dispensing from the stylus in combination with rotation of the turret and the substrate and a pivoting of the arm.
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: December 9, 2014
    Inventor: Emmanuel Jalenques
  • Patent number: 8900514
    Abstract: The invention discloses a blood analyzing device (100) comprising a holder (110) arranged for carrying a container (10) having a cuvette (20) containing a blood sample (30). The container (10) is positioned in the holder (110) so that a longitudinal axis (60) of the cuvette (20) is angled relative a horizontal axis (70). A light source (120) provides light (40) into the sample (30) and a detector (130) detects the output light (50) from a sub-portion of the blood sample (30). Kinetic information indicative of the change in hemoglobin concentration in a measuring volume (32, 34) is determined by a Hb processor (145) from the detected output light (50). An ESR processor (140) determines the erythrocyte sedimentation rate of the sample (30) based on the kinetic information.
    Type: Grant
    Filed: September 1, 2008
    Date of Patent: December 2, 2014
    Inventor: Tommy Forsell
  • Patent number: 8900811
    Abstract: The present invention provides novel methods and devices that employ microfluidic technology to generate molecular melt curves. In particular, the devices and methods in accordance with the invention are useful in providing for the analysis of PCR amplification products.
    Type: Grant
    Filed: February 9, 2006
    Date of Patent: December 2, 2014
    Assignees: Caliper Life Sciences, Inc., Canon U.S. Life Sciences, Inc.
    Inventors: Steven A. Sundberg, Michael R. Knapp, Ivor T. Knight, Deborah J. Boles, Aaron J. Rulison, Wesley B. Dong, Andrew G. Fabans, Allen R. Boronkay, Edward P. Donlon, Robert J. Moti, Michael Slater
  • Patent number: 8900527
    Abstract: A pipetting device is described comprising more than one pipetting unit, wherein said pipetting units are independently movable in Y and Z direction and comprise at least one module arranged in a staggered manner compared to the adjacent pipetting unit.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: December 2, 2014
    Assignee: Roche Molecular Systems Inc.
    Inventors: Alessandro D'Amore, Urs Knecht, Rolf Schneebeli
  • Patent number: 8900878
    Abstract: A pipetting device having a modular pipetting unit including a pipetting tip for pipetting of fluid samples and a pump conduit for transferring a negative or positive pressure to the pipetting tip is disclosed. The pipetting tip and a portion of the pump conduit adjoining the pipetting tip mutually define a fluid sample conduit for receiving the fluid samples. The modular pipetting unit is detachably attached to an automated positioning device for positioning the modular pipetting unit. A system and method for pipetting of fluid samples using such a pipetting device are also disclosed wherein pipetting of the fluid samples is performed in such a manner that each pipetted fluid sample volume is smaller than a volume of the fluid sample conduit.
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: December 2, 2014
    Assignee: Roche Molecular Systems Inc.
    Inventors: Carsten Haack, Thomas Engel, Tobias Holenstein
  • Publication number: 20140348724
    Abstract: Automated apparatus and methods for dispensing fluids into microplates utilizing microwell covers, the covers comprising open portions to allow a pipette access to one or more wells and impermeable portions which prevent the fluids from getting into wells shielded by the impermeable portion. The open portions and impermeable portions are preferably arranged and sized to align with alternating rows of wells in a particular microplate. Preferred covers are movably positioned on the microplate. Automated dispensing apparatus for use with microplates and microwell covers comprises a programmable controller, and suitable interfaces which allow the apparatus to be programmed, and which control a dispensing head such that pipettes are moved in the desired manner in order to take advantage of the protective features of the microwell covers. The apparatus also preferably comprises at least one transfer mechanism for moving a cover relative to a microplate at a dispensing station.
    Type: Application
    Filed: August 9, 2014
    Publication date: November 27, 2014
    Applicant: Biochemical Diagnostics, Inc.
    Inventor: Allen I. Panetz
  • Patent number: 8894949
    Abstract: A cleaning device includes a discharge nozzle that discharges cleaning liquid; a suction nozzle that sucks the cleaning liquid or reaction liquid in the cleaning tank or the reaction vessel; a discard vessel connected to the suction nozzle via a pipe to discard the cleaning liquid or the reaction liquid; a detecting unit that detects whether an electrostatic capacity at least between the suction nozzle and an electrode provided in the pipe exceeds a threshold value; a determination unit that determines that the suction nozzle is clogged when a time difference between a time, at which the electrostatic capacity exceeds the threshold value when the suction nozzle is not clogged, and a time, at which the electrostatic capacity exceeds the threshold value at the time of determination, is not less than a predetermined time difference threshold value; and a control unit that stops the discharge nozzle from discharging the cleaning liquid to the reaction vessel when the suction nozzle is clogged.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: November 25, 2014
    Assignee: Beckman Coulter, Inc.
    Inventors: Shinichi Inamura, Kenichi Kakizaki, Satoshi Nemoto
  • Patent number: 8894930
    Abstract: A specimen processing device is disclosed that comprises: a processing unit configured to aspirate a specimen from a specimen container accommodating the specimen, and to process the aspirated specimen; a state transition section configured to make the processing unit undergo transition to a pause state; an instruction accepting section configured to accept an instruction to start processing of the specimen when the processing unit is in the pause state; and a pause state releasing section configured to release the processing unit from the pause state to make the processing unit perform the processing of specimen when the instruction to start the processing is accepted by the instruction accepting section. A specimen processing method using a specimen processing device is also disclosed.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: November 25, 2014
    Assignee: Sysmex Corporation
    Inventor: Toru Mizumoto
  • Patent number: 8894948
    Abstract: A cleaning device includes a discharge nozzle that discharges cleaning liquid; a suction nozzle that sucks the cleaning liquid or reaction liquid in the cleaning tank or the reaction vessel; a discard vessel connected to the suction nozzle via a pipe to discard the cleaning liquid or the reaction liquid; a detecting unit that detects whether an electrostatic capacity at least between the suction nozzle and an electrode provided in the pipe exceeds a threshold value; a determination unit that determines that the suction nozzle is clogged when a totalizing time, for which the electrostatic capacity exceeds the threshold value during a preset clogging determination time, is longer than a totalizing time, for which the electrostatic capacity exceeds the threshold value during a preset normal determination time; and a control unit that stops the discharge nozzle from discharging the cleaning liquid to the reaction vessel when the suction nozzle is clogged.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: November 25, 2014
    Assignee: Beckman Coulter, Inc.
    Inventors: Shinichi Inamura, Kenichi Kakizaki, Satoshi Nemoto
  • Patent number: 8895311
    Abstract: The present invention provides control methods, control systems, and control software for microfluidic devices that operate by moving discrete micro-droplets through a sequence of determined configurations. Such microfluidic devices are preferably constructed in a hierarchical and modular fashion which is reflected in the preferred structure of the provided methods and systems. In particular, the methods are structured into low-level device component control functions, middle-level actuator control functions, and high-level micro-droplet control functions. Advantageously, a microfluidic device may thereby be instructed to perform an intended reaction or analysis by invoking micro-droplet control function that perform intuitive tasks like measuring, mixing, heating, and so forth. The systems are preferably programmable and capable of accommodating microfluidic devices controlled by low voltages and constructed in standardized configurations.
    Type: Grant
    Filed: September 18, 2002
    Date of Patent: November 25, 2014
    Assignee: HandyLab, Inc.
    Inventors: Kalyan Handique, Karthik Ganesan, Sundaresh N. Brahmasandra
  • Publication number: 20140334993
    Abstract: An electronic pipette comprising a piston actuated in a cylinder by a motor, a control system for carrying out pipette operations, and a user interface for operating the pipette, which user interface comprises a display, wherein the main menu of the user interface comprises a user defined shortcut to a specific pipetting application.
    Type: Application
    Filed: May 13, 2014
    Publication date: November 13, 2014
    Applicant: Thermo Fisher Scientific Oy
    Inventor: Suvi Berghall
  • Patent number: 8877513
    Abstract: The pipetting method is directed to mounting and ejecting a disposable pipette tip. The pipetting system has one or more tip mounting shafts with an upper locking section and a lower sealing section. The upper locking section has outwardly extending lobes spaced around the mounting shaft and located above a stop member. The lower sealing section on the tip mounting shaft is located below the stop. As the mounting shaft is inserted into the collar of the disposable pipette, the collar distorts out of round and engages the lobes on the upper locking section of the tip mounting shaft. Contemporaneously, the lower sealing section of the mounting shaft seals against the barrel of the disposable pipette tip.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: November 4, 2014
    Assignee: Integra Biosciences AG
    Inventors: Gregory Mathus, Terrance Kelly, Richard Cote
  • Patent number: 8877144
    Abstract: An apparatus for processing a biological sample is provided, the biological sample being arranged on a first planar surface of a carrier. The apparatus comprises a second planar surface arranged substantially parallel to said first planar surface and at a first distance from said first planar surface, said first planar surface and said second planar surface being arranged at an angle (A) greater than zero degree from the horizontal plane (HP); and supply means for supplying an amount of a liquid that is to be applied to said biological sample. The first planar surface and said second planar surface are configured to be arranged at a second distance from each other, said second distance being such that said supplied amount of liquid is distributed over said biological sample when said first planar surface and said second planar surface are brought to said second distance from each other.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: November 4, 2014
    Assignee: Dako Denmark A/S
    Inventors: Tim Svenstrup Poulsen, Steen Hauge Matthiesen
  • Patent number: 8877145
    Abstract: A device for generating a drop of a primary liquid is described, including: a reservoir fillable with the primary liquid, a pressure generation device for generating a hydraulic pressure on the primary liquid, at least one inlet channel for introducing a secondary fluid, and a channel having a flow cross-section transverse to a main flow direction, wherein the flow cross-section includes a main region and at least one sub-region extending from the main region, designed such that the primary liquid can be held in the main region by capillary forces, and the secondary fluid can be held in the sub-region by capillary forces, wherein the reservoir is fluidically connected to a first end of the channel via an output opening, and the at least one inlet channel is also fluidically connected to the channel, and wherein the pressure generation device is implemented to apply a hydraulic pressure to the primary liquid, whereby the same is moved along the channel and output at a second end of the channel as free-flying d
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: November 4, 2014
    Assignee: Albert-Ludwigs-Universitaet Freiburg
    Inventors: Tobias Metz, Peter Koltay
  • Publication number: 20140322101
    Abstract: A dispensing method which dispenses a first liquid contained in a first vessel which stores the first liquid and a second liquid to introduce the first liquid into a second vessel by using a tube.
    Type: Application
    Filed: July 14, 2014
    Publication date: October 30, 2014
    Inventors: Yuji SAITO, Fumio TAKAGI
  • Patent number: 8871156
    Abstract: An interface cartridge for a microfluidic chip, with microfluidic process channels and fluidic connection holes at opposed ends of the process channels, provides ancillary fluid structure, including fluid flow channels and input and/or waste wells, which mix and/or convey reaction fluids to the fluidic connection holes and into the process channels of the microfluidic chip.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: October 28, 2014
    Assignee: Canon U.S. Life Sciences, Inc.
    Inventors: Ray Tsao, Hiroshi Inoue, Shulin Zeng, Brian Murphy, Kenton C. Hasson
  • Publication number: 20140308163
    Abstract: This disclosure is directed to a device and a system for picking a target analyte of a suspension. A picker introduces at least one force, such as by a magnetic gradient and/or by a pressure gradient, to extract the target analyte from a specimen. The magnetic gradient may be introduced by a magnet, such as a permanent magnet or an electromagnet, and the pressure gradient may be introduced by a pump which moves within a fluid-primed cannula to create the pressure gradient, thereby drawing the target analyte into the cannula. The picker may also expel the target analyte onto or into a substrate, such as a well plate, after the target analyte has been drawn into the picker by reversing the pressure gradient or removing the magnetic gradient.
    Type: Application
    Filed: April 9, 2014
    Publication date: October 16, 2014
    Applicant: RareCyte, Inc.
    Inventors: Joshua Nordberg, Steve Quarre
  • Publication number: 20140308750
    Abstract: The invention relates to a fluid transfer apparatus, in particular pipetting apparatus, for transferring at least one fluid laboratory sample, in particular a biochemical or medical laboratory sample, comprising a base body, which has a connecting section serving for connecting a container to the base body for the intake of the at least one fluid sample into the container, a movement device, which can bring about the intake and/or delivery of at least one fluid laboratory sample into the container, an electrical control device, which controls at least one function of the fluid transfer apparatus, a sensor device, which comprises at least one acceleration sensor which is signal-connected to the control device and by means of which at least one acceleration value can be measured during the movement of the fluid transfer apparatus, wherein the control device is designed such that it uses the at least one acceleration value during the control of the at least one function.
    Type: Application
    Filed: November 6, 2012
    Publication date: October 16, 2014
    Applicant: Eppendorf AG
    Inventors: Burkhardt Reichmuth, Herbert Belgardt, Stefen Hofmann, Mike Queck
  • Patent number: 8858899
    Abstract: A fraction collector where fractions of liquid are sequentially dispensed from a dispensing means into a plurality of receptacles arranged in a cassette in the fraction collector, by displacing the dispensing means relative to the receptacles, the receptacles being arranged at predefined positions with respect to the cassette and the cassette being arranged at a predetermined position with respect to the fraction collector, wherein the cassette is retained at the predefined position with respect to the fraction collector by a magnetic arrangement.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: October 14, 2014
    Assignee: GE Healthcare Bio-Sciences AB
    Inventors: Tomas Agren, Johan Carlsson
  • Patent number: 8852527
    Abstract: A microfluidic chip includes microfluidic channels, elements for thermally and optically isolating the microfluidic channels, and elements for enhancing the detection of optical signal emitted from the microfluidic channels. The thermal and optical isolation elements may comprise barrier channels interposed between adjacently-arranged pairs of microfluidic channels for preventing thermal and optical cross-talk between the adjacent microfluidic channels. The isolation element may alternatively comprise reflective film embedded in the microfluidic chip between the adjacent microfluidic channels. The signal enhancement elements comprise structures disposed adjacent to the microfluidic channels that reflect light passing through or emitted from the microfluidic channel in a direction toward a detector. The structures may comprise channels or a faceted surface that redirects the light by total internal reflection or reflective film material embedded in the microfluidic chip.
    Type: Grant
    Filed: November 12, 2012
    Date of Patent: October 7, 2014
    Assignee: Canon U.S. Life Sciences, Inc.
    Inventors: Bradley S. Thomas, Johnathan S. Coursey, Kenton C. Hasson, Hongye Liang
  • Patent number: 8846410
    Abstract: The present invention relates to bead incubating and washing on a droplet actuator. Methods for incubating magnetically responsive beads that are labeled with primary antibody, a sample (i.e., analyte), and secondary reporter antibodies on a magnet, on and off a magnet, and completely off a magnet are provided. Also provided are methods for washing magnetically responsive beads using shape-assisted merging of droplets. Also provided are methods for shape-mediated splitting, transporting, and dispensing of a sample droplet that contains magnetically responsive beads. The apparatuses and methods of the invention provide for rapid time to result and optimum detection of an analyte in an immunoassay.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: September 30, 2014
    Assignee: Advanced Liquid Logic, Inc.
    Inventors: Michael G. Pollack, Vamsee K. Pamula, Ramakrishna Sista, Arjun Sudarsan
  • Publication number: 20140273268
    Abstract: An apparatus for preparation of samples for analysis comprising includes structure (21) for interchangeably locating first racks of sample receptacles that contain samples to be prepared for analysis and second racks include racks of different configuration racks for of sample receptacles which second that are respectively transferable to different analysis instruments, and for receiving and positioning a plurality of reagent vessels at known respective positions. An assembly of devices (50,60) is actuable to transfer samples from sample receptacles of the first rack to sample receptacles of the second rack, while carrying out a sample preparation operation selected from a plurality of pre-programmed sample preparation operations, wherein the apparatus is configured to identify which of said the second racks of different configuration is located at said the structure, and to adapt said the transfer and said the selected sample preparation operation to suit the identified rack.
    Type: Application
    Filed: October 12, 2012
    Publication date: September 18, 2014
    Applicant: EPREP PTY LTD.
    Inventors: Reno Cerra, Peter Alexander Dawes
  • Publication number: 20140271403
    Abstract: The invention relates to a closure system for a holder for a reaction vessel in an automatic analysis apparatus. The closure system comprises a lid secured movably on a retainer element, wherein the lid closes an opening of the holder in a closed position and opens it in an open position. The closure system further comprises a restoring element, which is designed in such a way that, depending on the position of the lid, it exerts a restoring force in the direction of the closed position or of the open position.
    Type: Application
    Filed: March 4, 2014
    Publication date: September 18, 2014
    Applicant: SIEMENS HEALTHCARE PRODUCTS DIAGNOSTICS GMBH
    Inventor: Hugo Wilmes
  • Publication number: 20140271404
    Abstract: An article of laboratory glassware for directing the flow of chemical materials is described. The article includes a glass manifold having a plurality of input ports and at least one output port, and a plurality of stopcocks. Each stopcock has an inlet port and an outlet port connected by a passageway through the plug. Each of the stopcock output ports is connected to one of the manifold input ports, and each of the stopcock input ports is connected with one end of a hollow glass tube, and the other end of the hollow glass tube is connected to a ground glass joint. The output ports of the manifold are terminated to a ground glass joint. Each plug is rotated by a stepper motor or D.C. electrical motor, and sensed by a sensor. The rotation of each rotating plug is controlled by a computer.
    Type: Application
    Filed: May 26, 2014
    Publication date: September 18, 2014
    Inventor: LESTER LUDWIG
  • Patent number: 8834814
    Abstract: The automatic analysis system is equipped with a mechanism to transport a sample container having a stopper body, the system comprising: a sample dispensing mechanism that dispenses a predetermined amount of sample accommodated in the sample container; a stopper body removing/mounting mechanism that removes the stopper body from the sample container; a control unit that stores therein association between the sample container and the stopper body of the sample container; the stopper body removing/mounting mechanism that in accordance with the association stored into the control unit, mounts the stopper body back on the sample container containing the sample dispensed by the sample dispensing mechanism; and a stopper body transport mechanism that transports the sample that the stopper body removing/mounting mechanism has removed at a stopper removing position to a stopper mounting position.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: September 16, 2014
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Toshiki Yamagata, Kenichi Takahashi
  • Patent number: 8821718
    Abstract: Automated fluid handling system comprising a housing (20) and two or more fluid handling units (26) arranged as interchangeable modular components with an external fluidics section (30) and an internal non fluidics section (32), and wherein the housing (20) comprises a liquid handling panel (22) with two or more of component positions for receiving said interchangeable modular components (26) such that the external fluidics section (30) is separated from the non fluidics section (32) by the liquid handling panel (22).
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: September 2, 2014
    Assignee: GE Healthcare Bio-Sciences AB
    Inventors: Johan Blomberg, Mats Lundkvist
  • Patent number: 8821796
    Abstract: A mechanism is provided for sensing molecules. A twin-nanopore probe includes a first channel and a second channel. A first pressure-controlled reservoir is connected to the first channel to generate a positive pressure. A second pressure-controlled reservoir is connected to the second channel to generate a negative pressure. A container includes ionic solvent with molecules, and a tip of the twin-nanopore probe is submerged in the container of the ionic fluid with the molecules. The first channel, the second channel, the first pressure-controlled reservoir, and the second pressure-controlled reservoir are filled with the ionic fluid. The first pressure-controlled reservoir drives the ionic fluid out of the first channel and the second pressure-controlled reservoir draws in the ionic fluid with the molecules and solvent through the second channel. A flow of ionic current in the twin-nanopore probe is measured to differentiate the molecules that flow through the second channel.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: September 2, 2014
    Assignee: International Business Machines Corporation
    Inventor: Hongbo Peng
  • Patent number: 8815180
    Abstract: There is provided a sample processing apparatus capable of detecting the push-up type sample container including a recess on the outer side of the bottom portion of the container and performing an appropriate sample processing while alleviating the load of the user with a simple configuration.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: August 26, 2014
    Assignee: Sysmex Corporation
    Inventor: Nobuhiro Kitagawa