Automated System With Sample Fluid Pressure Transport Means Patents (Class 422/81)
  • Patent number: 8926902
    Abstract: An automatic apparatus is described, which is suitable for the withdrawal of portions of biological material from a parent test tube (1), mobile in a conveyor (6) of a test tube transport plant by means of transport devices (8) of single test tubes, to be loaded in one or more child test tubes (2) countermarked beforehand with suitable identification means and to be sent to different biological material analysis instruments interfaced to said transport plant.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: January 6, 2015
    Assignee: Inpeco Holding Ltd.
    Inventor: Gianandrea Pedrazzini
  • Publication number: 20140370583
    Abstract: The invention is directed to multi-fluidic cartridges for sample analysis and to methods of using said cartridges. In one embodiment, the cartridge comprises: (a) a first conduit beginning at a sample entry port for receiving a fluid sample and in fluid communication with one or more sensors; (b) a plurality of rupturable fluidic pouches, each containing a different fluid and in fluid communication with a respective delivery conduit configured for delivering a respective fluid to said first conduit; and (c) at least one pneumatic pump configured to move said fluid sample to said one or more sensors and for transporting at least one of said different fluids to said first conduit.
    Type: Application
    Filed: August 29, 2014
    Publication date: December 18, 2014
    Inventor: Cary James Miller
  • Patent number: 8894930
    Abstract: A specimen processing device is disclosed that comprises: a processing unit configured to aspirate a specimen from a specimen container accommodating the specimen, and to process the aspirated specimen; a state transition section configured to make the processing unit undergo transition to a pause state; an instruction accepting section configured to accept an instruction to start processing of the specimen when the processing unit is in the pause state; and a pause state releasing section configured to release the processing unit from the pause state to make the processing unit perform the processing of specimen when the instruction to start the processing is accepted by the instruction accepting section. A specimen processing method using a specimen processing device is also disclosed.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: November 25, 2014
    Assignee: Sysmex Corporation
    Inventor: Toru Mizumoto
  • Patent number: 8883513
    Abstract: The present invention relates to droplet-based particle sorting. According to one embodiment, a droplet microactuator is provided and includes: (a) a suspension of particles; and (b) electrodes arranged for conducting droplet operations using droplets comprising particles. A method of transporting a particle is also provided, wherein the method includes providing a droplet comprising the particle and transporting the droplet on a droplet microactuator.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: November 11, 2014
    Assignee: Advanced Liquid Logic, Inc.
    Inventors: Michael G. Pollack, Vamsee Pamula, Vijay Srinivasan
  • Patent number: 8871496
    Abstract: Embodiments of the present invention provide methods, microfluidic devices, and systems for the detection of an active target agent in a fluid sample. A substrate molecule is used that contains a sequence which may cleave in the presence of an active target agent. A SNAP25 sequence is described, for example, that may be cleaved in the presence of Botulinum Neurotoxin. The substrate molecule includes a reporter moiety. The substrate molecule is exposed to the sample, and resulting reaction products separated using electrophoretic separation. The elution time of the reporter moiety may be utilized to identify the presence or absence of the active target agent.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: October 28, 2014
    Assignee: Sandia Corporation
    Inventors: Gregory J. Sommer, Anson V. Hatch, Anup K. Singh, Ying-Chih Wang
  • Patent number: 8865075
    Abstract: The present invention relates to an immunoaffinity device for capturing one or more analytes present at high or low concentrations in simple or complex matrices. The device is designed as a modular, multi-task immunoaffinity device secured to a peripheral box and connected to capillary electrophoresis or liquid chromatography for the isolation, enrichment, separation and identification of polymeric macromolecules, primarily protein biomarkers. In one embodiment, two devices are coupled in-tandem to perform separately and sequentially microreactions and concentrations of proteins. In this embodiment, biological samples containing proteins can be subjected to proteolytic processing in the first device, and the resulting peptides subjected to selective purification and concentration in the second device.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: October 21, 2014
    Assignee: Princeton Biochemicals, Inc.
    Inventor: Norberto A. Guzman
  • Publication number: 20140308163
    Abstract: This disclosure is directed to a device and a system for picking a target analyte of a suspension. A picker introduces at least one force, such as by a magnetic gradient and/or by a pressure gradient, to extract the target analyte from a specimen. The magnetic gradient may be introduced by a magnet, such as a permanent magnet or an electromagnet, and the pressure gradient may be introduced by a pump which moves within a fluid-primed cannula to create the pressure gradient, thereby drawing the target analyte into the cannula. The picker may also expel the target analyte onto or into a substrate, such as a well plate, after the target analyte has been drawn into the picker by reversing the pressure gradient or removing the magnetic gradient.
    Type: Application
    Filed: April 9, 2014
    Publication date: October 16, 2014
    Applicant: RareCyte, Inc.
    Inventors: Joshua Nordberg, Steve Quarre
  • Patent number: 8845965
    Abstract: The present application relates to a sensor (1) for use in detecting an analyte comprising: a transducer (10) composed of a pyroelectric or piezoelectric polymer substrate e.g. PVDF (3) and a transparent electrode layer (4) on a surface of the substrate; a layer of parylene (12) on the transparent electrode layer; and a reagent (17) immobilised on the transducer, the reagent having a binding site which is capable of binding the analyte or a derivative of the analyte.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: September 30, 2014
    Assignee: Vivacta Ltd.
    Inventors: Timothy Joseph Nicholas Carter, Steven Andrew Ross, Timothy Stuart Dwyer
  • Publication number: 20140273277
    Abstract: An apparatus for measuring the luminescence and the fluorescence of a sample, comprising: a light tight optics box capable of receiving a pipette tip containing a sample; an optical sensor located within the optics box and capable of being disposed in both a luminescence reading position and a fluorescence reading position; an excitation light fiber optic bundle and a sample transmission fiber optic bundle; an excitation light assembly that projects excitation light onto a first terminus end of the excitation light fiber optic bundle; and an in-line filter located along the sample transmission fiber optic bundle.
    Type: Application
    Filed: March 17, 2014
    Publication date: September 18, 2014
    Inventors: Ronald Norman Diamond, Steve Michael Gann, Eric Darnell Hall, Tae Ho Hwang, John Lewis Morton, Anatoly Moskalev, Bruce Alan Sargeant, Dennis Edwin Rieger, Marinela Gombosev, Mark David Van Cleve
  • Patent number: 8828335
    Abstract: Fluid-based no-moving part logic devices are constructed from complex sequences of micro- and nanofluidic channels, on-demand bubble/droplet modulators and generators for programming the devices, and micro- and nanofluidic droplet/bubble memory elements for storage and retrieval of biological or chemical elements. The input sequence of bubbles/droplets encodes information, with the output being another sequence of bubbles/droplets or on-chip chemical synthesis. For performing a set of reactions/tasks or process control, the modulators can be used to program the device by producing a precisely timed sequence of bubbles/droplets, resulting in a cascade of logic operations within the micro- or nanofluidic channel sequence, utilizing the generated droplets/bubbles as a control. The devices are based on the principle of minimum energy interfaces formed between the two fluid phases enclosed inside precise channel geometries.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: September 9, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Manu Prakash, Neil Gershenfeld
  • Patent number: 8831783
    Abstract: A biochemical processing apparatus is provided having a stage receiving a biochemical reaction cartridge which includes chambers and flow paths communicating therebetween, a moving system for moving liquid via the flow paths, and a detector for detecting the presence of the liquid in a chamber and/or the amount of the liquid. In addition, a determining device determines a result of the movement of the liquid from the information of the liquid in the chamber detected by the detector.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: September 9, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventor: Yasuyuki Numajiri
  • Patent number: 8815070
    Abstract: Disclosed herein is a device A device of the microelectrode array architecture, comprising: (a) a bottom plate comprising an array of multiple microelectrodes disposed on a top surface of a substrate covered by a dielectric layer; wherein each of the microelectrode is coupled to at least one grounding elements of a grounding mechanism, wherein a hydrophobic layer is disposed on the top of the dielectric layer and the grounding elements to make hydrophobic surfaces with the droplets; (b) a field programmability mechanism for programming a group of configured-electrodes to generate microfluidic components and layouts with selected shapes and sizes; and, (c) a system management unit, comprising: (i) a droplet manipulation unit; and (ii) a system control unit.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: August 26, 2014
    Assignee: Sparkle Power, Inc.
    Inventors: Gary Chorng-Jyh Wang, Ching Yen Ho, Wen Jang Hwang, Wilson Wen-Fu Wang
  • Patent number: 8808624
    Abstract: This blood analyzer includes a sample preparation portion preparing a measurement sample free from a labeling substance from a blood sample and a hemolytic agent free from a labeling substance, a light information generation portion generating fluorescent information and at least two types of scattered light information from the measurement sample and a control portion performing a first classification of white blood cells in the measurement sample into at least four groups of monocytes, neutrophils, eosinophils and others on the basis of the fluorescent information and the two types of scattered light information.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: August 19, 2014
    Assignee: Sysmex Corporation
    Inventors: Hideaki Matsumoto, Kinya Uchihashi, Yuji Itose, Aya Konishi
  • Patent number: 8808625
    Abstract: In a dispensing apparatus for dispensing a liquid, such as a sample solution, on a substrate, such as a glass slide, the dispensing apparatus includes a capillary provided with a distal end and a proximal end, a pump unit configured to pump an operating liquid into the capillary and to pump the operating liquid out of the capillary, and a controller configured to control the pump unit so as to change a position of a liquid surface of the operating liquid in the capillary so that a predetermined volume of liquid is suctioned from the distal end into the capillary and the liquid suctioned in the capillary is discharged from the distal end. As a result, it is possible to precisely dispense extremely small volume amounts of liquids such as a nanoliter.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: August 19, 2014
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Hiroshi Aoki, Hiroaki Tao, Masaki Torimura, Takashi Ikeda
  • Patent number: 8802029
    Abstract: Systems and methods for improved measurement of absorbance/transmission through fluidic systems are described. Specifically, in one set of embodiments, optical elements are fabricated on one side of a transparent fluidic device opposite a series of fluidic channels. The optical elements may guide incident light passing through the device such that most of the light is dispersed away from specific areas of the device, such as intervening portions between the fluidic channels. By decreasing the amount of light incident upon these intervening portions, the amount of noise in the detection signal can be decreased when using certain optical detection systems.
    Type: Grant
    Filed: May 20, 2013
    Date of Patent: August 12, 2014
    Assignee: OPKO Diagnostics, LLC
    Inventors: David Steinmiller, Vincent Linder
  • Patent number: 8802028
    Abstract: A fluid sample collection device for a disk-based fluid separation system is disclosed. The disk-based separation system includes a compact microfluidic disk with at least one flow channel pattern formed on a side surface of the disk. At least one orifice is formed on an outflow boundary of the disk and is designed in fluid communication with the flow channel pattern through a communication channel. The fluid sample collection device includes at least one collection tube having an open end serving as a fluid receiving end and corresponding to the orifice of the disk with a distance. When the disk is rotated, at least a portion of fluid sample in a sample processing reservoir formed on the disk is delivered by centripetal force through the communication channel and the orifice, and finally the expelling fluid sample is collected in the collection tube.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: August 12, 2014
    Assignee: National Taiwan University
    Inventors: Andrew Man Chung Wo, Chen-Lin Chen, Cheng-Wei Yang, Yu-Cheng Pan
  • Publication number: 20140220693
    Abstract: A plunger 66 is moved downwardly in predetermined distance while the tip of the sample probe 15 is immersed in a sample to suck the sample into the probe. A pressure sensor 26 detects the pressure fluctuation during the suction operation, an AD converter converting the signals into digital signals to send the signals for a signal processing unit 76. The signal processing unit 76 extracts feature variables data of a suction waveform to calculate the Statistical distance D from normal group data. The Statistical distance D an a threshold value th are compared with each other, it is judged that there is an abnormality in the suction operation when the Statistical distance D is more than or equal to the threshold value th. When the Statistical distance D is smaller than the threshold value th, an operation is proceeded to a discharge operation.
    Type: Application
    Filed: July 19, 2012
    Publication date: August 7, 2014
    Applicant: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Isao Yamazaki, Masaharu Nishida, Kumiko Kamihara, Hideto Tamezane
  • Patent number: 8771611
    Abstract: Devices and methods use an integrated microfluidic system that has the capability of realizing a wide range of accurate dilutions in a logarithmic way through semi-direct dilution of samples inside a chip. The device for dose response analysis is able to contain a first fluid source on a microfluidic chip, wherein the first fluid source comprises a drug, a second fluid source on the microfluidic chip, a mixing area on the microfluidic chip fluidically coupling with the first and the second fluidic source, and a detection area coupling with the mixing area for drug information detection using a detection system.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: July 8, 2014
    Assignees: Auburn University, Pukyong National University
    Inventors: Jong Wook Hong, Se-Kwon Kim, Jae Young Yun
  • Publication number: 20140178251
    Abstract: A sample analyzer comprises a container setting part on which a liquid container is to be set, a liquid supplying part configured to supply a liquid to the liquid container, an aspiration tube configured to aspirate a sample or a reagent, a movement mechanism configured to move the aspiration tube, a liquid surface sensor configured to detect contact of the aspiration tube with a liquid surface, and a controller configured to execute an aspiration tube adjustment operation. The aspiration tube adjustment operation comprises supplying the liquid to the liquid container by the liquid supplying part, lowering the aspiration tube by the movement mechanism toward the liquid container set on the container setting part, and obtaining information regarding a position in a height direction of the aspiration tube at a time when the aspiration tube has come into contact with the liquid surface.
    Type: Application
    Filed: December 19, 2013
    Publication date: June 26, 2014
    Applicant: Sysmex Corporation
    Inventors: Miyuki YAMADA, Shuji KAWAGUCHI, Hiroshi KURONO
  • Patent number: 8753894
    Abstract: An integrated microelectronic sensor is provided in a disposable flow membrane sensing device. The integrated sensors detect electromagnetic effect labels in flow detection zones above the sensor in the membrane. The labels are small particles that give off a detectable electromagnetic signal. They are commonly used for isolating and quantifying biochemical targets of interest. The sensors are fabricated using planar integrated circuit technologies. Sensors can detect labels of several types including magnetic, electric, and photonic. These types all have in common the fact that the sensor detects the label at a distance. Magnetoresistive sensors for detecting magnetic labels, and photodiodes for detecting photonic labels are described. A system for using the sensors is described. There are disposable cartridges with a backing that supports the sensors and membrane is described. The integrated sensor in the cartridge is designed to be discarded after use. Also, label excitation sources are provided.
    Type: Grant
    Filed: February 1, 2008
    Date of Patent: June 17, 2014
    Assignee: Diagnostic Biosensors, LLC
    Inventor: Mark Christopher Tondra
  • Patent number: 8748165
    Abstract: This invention provides a method for generating short tandem repeat (STR) profiles on each of a plurality of samples comprising, for each sample: a) isolating DNA from the sample; b) amplifying STR markers in the isolated DNA and c) analyzing the amplification product by electrophoresis.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: June 10, 2014
    Assignee: IntegenX Inc.
    Inventors: Mattias Vangbo, William D. Nielsen, Iuliu I. Blaga, Michael Van Nguyen, Steven B. Jovanovich
  • Publication number: 20140141523
    Abstract: A use composition monitor determines the concentration of peracid and/or peroxide in a use composition using a kinetic assay procedure. A sample mixture containing a sample of the use composition, a diluent and at least one reagent is prepared and analyzed using, for example, an optical detector. A reduced-turbulence optical detector can be used to improve collected response data. A reduced-turbulence optical detector can include a cell body disposed about a length of transparent tubing. The cell body positions one or more emitter/receiver pairs about the transparent tubing. Thus, tube junctions are eliminated and sample flow within the tube is substantially turbulence free.
    Type: Application
    Filed: October 11, 2013
    Publication date: May 22, 2014
    Inventors: Eugene Tokhtuev, Christopher Owen, Anna Pilipchenko, Paul Schilling, Daniel Kamben
  • Patent number: 8721966
    Abstract: A method for dispensing a sample solution and a reagent into a container in a chemical analyzer includes a first step of dispensing a reagent into a container, a second step of dispensing a sample solution into the container after the first step, and a third step of dispensing the reagent into the container after the second step. A dilution cup includes an inner face where a diameter of a horizontal section increases on at least one position from a bottom to a top, an opening portion surrounding an opening, where a sample solution is dispensed, located on or near the top, a reagent aperture portion surrounding an aperture where a reagent is dispensed such that the sample solution and the reagent create an upswing spiral flow, and a drain aperture portion surrounding a drain aperture, where a mixed solution of the sample solution and the reagent is discharged, located on or near the bottom.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: May 13, 2014
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Medical Systems Corporation
    Inventors: Hitoshi Shibutani, Naoto Sato
  • Patent number: 8715592
    Abstract: An integrated electronic-micro fluidic device an integrated electronic-micro fluidic device, comprising a semiconductor substrate on a first support, an electronic circuit on a first semiconductor-substrate side of the semiconductor substrate, and a signal interface structure to an external device. A micro fluidic structure is formed in the semiconductor substrate, and is configured to confine a fluid and to allow a flow of the fluid to and from the microfluidic structure only on a second semiconductor-substrate side that is opposite to the first semiconductor-substrate side and faces away from the first support.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: May 6, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Ronald Dekker, Remco Henricus Wilhelmus Pijnenburg, Nicolaas Johannes Anthonius Van Veen
  • Patent number: 8715574
    Abstract: A system for managing bulk liquids for an automated clinical analyzer. The system comprises (a) at least one local reservoir for storing a bulk liquid for impending use, (b) at least one container for holding a bulk liquid before the liquid is transferred to a local reservoir, and (c) a controller for monitoring the level of a bulk liquid in a local reservoir. The local reservoir for storing a bulk liquid for impending use can be a trough. The use of troughs for storing a reagent, a diluent, or some other treating agent for impending use enables an aspirating/dispensing device having a plurality of pipettes to aspirate and dispense the reagent, diluent, or other treating agent at a high rate of throughput. The controller can monitor the level of a liquid in (a) a local reservoir for storing a bulk liquid for imminent use and the level of liquid in a (b) container for holding a bulk liquid before the liquid is transferred to a local reservoir.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: May 6, 2014
    Assignee: Abbott Laboratories
    Inventors: Patrick P. Fritchie, Gregory E. Gardner, Richard W. Mahoney
  • Patent number: 8715573
    Abstract: The fluidic system 10 of the preferred embodiment includes a sheath pump 12 to pump sheath fluid 14 from a sheath container 16 through a sample port 34 into an interrogation zone 18 and a waste pump 20 to pump the sheath fluid 14 and a sample fluid 26 as waste fluid 22 from the interrogation zone 18 into a waste container 24, and a processor 30 to calculate a time window based on the flow rate of the sample fluid 26. Preferably the processor 30 also calculates a time window for the sample fluid to reach the interrogation zone 18 from the sample port 34 based on the flow rate of the sample fluid 26. The interrogation zone 18 functions to provide a location for the fluidic system 10 and an optical analysis system 32 of the flow cytometer to cooperatively facilitate the analysis of the sample fluid 26.
    Type: Grant
    Filed: October 15, 2007
    Date of Patent: May 6, 2014
    Assignee: Accuri Cytometers, Inc.
    Inventors: Jack T. Ball, Collin A. Rich
  • Patent number: 8707545
    Abstract: A printed circuit board structure is coated with an encapsulant within which microfluidic channels have been formed. The microfluidic channels are formed by soldering fluidic connections to metal traces on a surface of the printed circuit board structure prior to encapsulation. The metal traces are removed by etching after encapsulation to form microchannels within the encapsulant.
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: April 29, 2014
    Assignee: California Institute of Technology
    Inventors: Samson Chen, Aditya Rajagopal, Axel Scherer
  • Publication number: 20140113840
    Abstract: Methods and systems for detecting analytes using a sensor element having a cleaning cycle and renewable liquid material with an affinity for the analytes are described. An analyte detection system may include a controller in communication with a sensor element and a liquid dispensing assembly. The liquid dispensing assembly, such as an inkjet dispensing device, may deposit the liquid material on or adjacent to the sensor element. The controller may be operative to monitor at least one property associated with the liquid material deposited on the sensor element. In addition, the controller may be configured to generate at least one control signal based on the at least one property. The liquid dispensing assembly may be configured to deposit the at least one liquid material on the sensor element based on the at least one control signal.
    Type: Application
    Filed: October 19, 2012
    Publication date: April 24, 2014
    Applicant: EMPIRE TECHNOLOGY DEVELOPMENT LLC
    Inventors: Mordehai Margalit, Gil Perlberg
  • Patent number: 8703069
    Abstract: This disclosure provides systems, methods, and devices for processing samples on a microfluidic device. One method includes moving a sample from an upstream channel of a microfluidic device into a DNA manipulation module located downstream of the upstream channel. The DNA manipulation module includes a DNA manipulation zone configured to perform amplification of the sample, a first valve disposed upstream of the DNA manipulation zone, and a second valve disposed downstream of the DNA manipulation zone. The method also includes receiving the sample in the DNA manipulation zone; closing the first valve and the second valve such that as and liquid are prevented from flowing into or out of the DNA manipulation zone; and thermal cycling the sample in the DNA manipulation zone.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: April 22, 2014
    Assignee: Handylab, Inc.
    Inventors: Kalyan Handique, Gene Parunak
  • Patent number: 8685751
    Abstract: A method of continuously regulating fluid pressure of a first fluid in a fluid flow path by continuously adjusting at least one fluid flow characteristic of a second fluid flow which is engaged with the first fluid flow through a flexible barrier.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: April 1, 2014
    Assignee: XY, LLC
    Inventor: Thomas B. Gilligan
  • Patent number: 8685325
    Abstract: The system relates to filed-programmable lab-on-chip (FPLOC) microfluidic operations, fabrications, and programming based on Microelectrode Array Architecture are disclosed herein. The FPLOC device by employing the microelectrode array architecture may include the following: (a) a bottom plate comprising an array of multiple microelectrodes disposed on a top surface of a substrate covered by a dielectric layer; wherein each of the microelectrode is coupled to at least one grounding elements of a grounding mechanism, wherein a hydrophobic layer is disposed on the top of the dielectric layer and the grounding elements to make hydrophobic surfaces with the droplets; (b) a field programmability mechanism for programming a group of configured-electrodes to generate microfluidic components and layouts with selected shapes and sizes; and, (c) a FPLOC functional block, comprising: (i) I/O ports; (ii) a sample preparation unit; (iii) a droplet manipulation unit; (iv) a detection unit; and (iv) a system control unit.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: April 1, 2014
    Assignee: Sparkle Power Inc.
    Inventors: Gary Chorng-Jyh Wang, Ching Yen Ho, Wen Jang Hwang, Wilson Wen-Fu Wang
  • Patent number: 8673240
    Abstract: Disclosed herein are devices and methods useful for the detection and analysis of various analytes. The analyte detection device of this invention has the general structure of a substrate and a plurality of pillars attached to the surface of the substrate.
    Type: Grant
    Filed: September 15, 2008
    Date of Patent: March 18, 2014
    Assignee: Zyomyx, Inc.
    Inventors: Paul Jedrzejewski, Nock Steffen, Peter Wagner, Pierre Indermuhle, Frank G. Zaugg
  • Patent number: 8676309
    Abstract: Methods and apparatus are provided for selective destruction or temporary disruption of nerves and/or conduction pathways in a mammalian body for the treatment of pain and other disorders. Apparatus comprises catheters having electrodes for targeting and affecting nerve tissue at a cellular level to reversible and irreversible nerve poration and incapacitation.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: March 18, 2014
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Mark E. Deem, Hanson Gifford, III
  • Patent number: 8663559
    Abstract: A sample analyzer that includes a sample preparing section operative to aspirate a sample from a sample container and a measuring section operative to prepare a plurality of measurement samples from the aspirated sample. A control unit is configured to sequentially measure the plurality of prepared measurement samples, obtain a plurality of measurement data for the respective measurement samples, and obtain an analysis result of a predetermined item of the sample based on the plurality of measurement data.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: March 4, 2014
    Assignee: Sysmex Corporation
    Inventors: Masaharu Shibata, Noriyoshi Yoshida
  • Patent number: 8651138
    Abstract: An apparatus for creating sheathed flow includes an inlet section comprising an array of tubes including at least one sheath inlet port and a sample inlet port, a flow focusing section downstream from the inlet section, an optical access section downstream from the flow focusing region and comprising opposing flat surfaces, and an outlet section downstream from the optical access section, wherein the apparatus is operable to create a sheathed flow around a fluid introduced into the sample inlet port and to maintain the sheathed flow through the optical access section. Applications of the apparatus and method include bead/particle counting, flow cytometry, waveguiding, and fluid control.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: February 18, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Carl A. Villarruel, Janet W. Lou, Ross Schermer
  • Publication number: 20140037503
    Abstract: The present invention performs cleaning on the inner and outer surfaces of a dispensing nozzle without reducing the processing speed of a device. To achieve the object, a feature of the invention is that a dispensing nozzle rinse tank includes a rinse liquid supply port. More specifically, by suctioning rinse liquid from the rinse liquid supply port provided on the dispensing nozzle rinse tank and discharging the rinse liquid into the rinse tank, the inner and outer surfaces of the dispensing nozzle can be rinsed in a short amount of time. According to the invention, it is only required that a rinse liquid supply port be provided on the dispensing nozzle rinse tank, the structure is simple. Moreover, because the inner and outer surfaces of the dispensing nozzle can be rinsed in a short amount of time by shortening the movement distance of the dispensing nozzle, analyses can be performed without reducing the processing speed of the device.
    Type: Application
    Filed: January 26, 2012
    Publication date: February 6, 2014
    Applicant: Hitachi High-Technologies Corporation
    Inventors: Yukinori Sakashita, Katsuaki Takahashi, Tomoyuki Nemoto
  • Patent number: 8632734
    Abstract: A microreaction device or system (4) includes at least one thermal control fluidic passage (C,E) and a principal working fluidic passage (A) with average cross-sectional area in the range of 0.25 to 100 mm2, and having a primary entrance (92) and multiple secondary entrances (94) with the spacing between secondary entrances (94) having a length along the passage (A) of at least two times the root of the average cross-sectional area of the passage (A). The device or system (4) also includes at least one secondary working fluidic passage (B) having an entrance (102) and multiple exits (106) including a final exit (106), each exit (106) being in fluid communication with a corresponding one of the multiple secondary entrances (94) of the principal fluidic passage (A).
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: January 21, 2014
    Assignee: Corning Incorporated
    Inventors: Philippe J Barthe, Nikolaus Bieler, Celine Claude Guermeur, Olivier Lobet, Maxime Moreno, Dominique Roberge, Pierre Woehl
  • Patent number: 8613889
    Abstract: The present invention relates to droplet-based washing. According to one embodiment, a method of providing a droplet in contact with a surface with a reduced concentration of a substance is provided, wherein the method includes: (a) providing a surface in contact with a droplet comprising a starting concentration and starting quantity of the substance and having a starting volume; (b) conducting one or more droplet operations to merge a wash droplet with the droplet provided in step (a) to yield a combined droplet; and (c) conducting one or more droplet operations to divide the combined droplet to yield a set of droplets comprising: (i) a droplet in contact with the surface having a decreased concentration of the substance relative to the starting concentration; and (ii) a droplet which is separated from the surface.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: December 24, 2013
    Assignees: Advanced Liquid Logic, Inc., Duke University
    Inventors: Michael G. Pollack, Vamsee K. Pamula, Vijay Srinivasan, Richard B. Fair
  • Patent number: 8613890
    Abstract: Disclosed herein is a microparticle sorting apparatus, including: a discharge direction confirming section configured to confirm a discharge direction of a discharged liquid discharged from a discharge outlet of a flow path; opposite electrodes disposed downstream with respect to the discharge outlet; an opposite electrode position controlling section configured to control positions of the opposite electrodes in accordance with the discharge direction confirmed by the discharge direction confirming section; a droplet generating section configured to generate a droplet from the discharge outlet; and a charging section configured to electrically charge the droplet with electric charges.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: December 24, 2013
    Assignee: Sony Corporation
    Inventor: Yosuke Muraki
  • Patent number: 8603414
    Abstract: A micro-cassette 1 stores a sample, a reagent, and an additive, and comprises a sensor measures the component of measurement item. Analysis device 2 comprises liquid control unit controls each liquid in micro-cassette 1. Mixing controller 33 mixes the sample and the additive sent to sample processing unit 13, and generates the first sample includes a formed element. Isolation unit 14 generates the second sample from the first sample sent from sample processing unit 13. Sensor 18 measures the compound liquid of the second sample and reagent, and generates the analysis signal.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: December 10, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Naoko Omuro, Shoichi Kanayama
  • Patent number: 8603396
    Abstract: Particular embodiments of the inventive technology relate to ‘off-axis detector’ technology that employs a third detector 23 exhibiting a flow orthogonal axis 43 as defined by its EMR collection angle, where such axis is from 30 degrees to 60 degrees from an intended, flow orthogonal, cell cross section long axis alignment line 13, in addition to employing a fourth detector 24 exhibiting a flow orthogonal axis 44 as defined by its collection angle, where such axis is orthogonal to the flow orthogonal, third detector axis 43. Particular embodiments of the inventive technology relate to ‘axially spaced illumination’ technology featuring more than one cell illumination site, where, other than the most upflow illumination site (e.g., 121), all illumination site(s) are downflow of at least one other illumination site. Particular embodiments of the inventive technology may feature aspects of both technologies.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: December 10, 2013
    Assignee: XY, LLC
    Inventors: Johnathan Sharpe, Kenneth Michael Evans
  • Patent number: 8603412
    Abstract: A microchannel structure is provided wherein supplied fluids are prevented from transuding via a lamination interface into channels for a mixture or reaction product. A method is further provided for producing an emulsion having a uniform particle size under a high pressure condition by using the microchannel structure. The microchannel structure comprises one or more layers having notches to constitute channels, laminated and pressed between a pair of frames having an outside communicating hole to constitute a channel, so as to form microchannels to mix/react fluids, channels to supply the fluids to the microchannels, and a channel to discharge the fluids from the microchannels, wherein a channel for discharging a transudation fluid is provided to recover a fluid having transuded at a lamination interface so as not to let it enter into the channels including the microchannels and discharge it to the outside.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: December 10, 2013
    Assignees: Asahi Glass Company, Limited, AGC Si-Tech Co., Ltd.
    Inventor: Hajime Katayama
  • Publication number: 20130323126
    Abstract: Instrument-cartridge interfaces for fluidic analyzers that have an instrument and a removable cartridge are disclosed. For example, and in one illustrative embodiment, the instrument may include a needle that is adapted to penetrate a septum on a removable cartridge. In another illustrative embodiment, the instrument may include a plunger that is adapted to deform a deformable membrane on a removable cartridge. In yet another illustrative embodiment, the instrument may include a nozzle that is adapted to mate and seal with a flow channel on a removable cartridge. Techniques for detecting the flow rate in a flow channel on a removable cartridge, as well as the position of fluid in a flow channel of a removable cartridge, are also disclosed.
    Type: Application
    Filed: August 6, 2013
    Publication date: December 5, 2013
    Applicant: Honeywell International Inc.
    Inventors: Aravind Padmanabhan, Tom M. Rezachek, Ron L. Bardell
  • Patent number: 8597573
    Abstract: A fluid flow characteristic regulator (58) which provides a variable volume flow path in which a fluid flow can be continuously adjusted by a control fluid (57) to regulate at least one fluid flow characteristic of the fluid flow (11) within the variable volume flow path.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: December 3, 2013
    Assignee: XY, LLC
    Inventor: Thomas Boyd Gilligan
  • Patent number: 8591813
    Abstract: A reaction cartridge comprises a first liquid reservoir having a first aperture exposed to the atmosphere and a second aperture, a first flow channel connected to the first liquid reservoir, a reaction chamber communicating with the first liquid reservoir by way of the first flow channel, a second flow channel connected to the reaction chamber and a third aperture connected to the second flow channel and exposed to the atmosphere. A probe carrier is arranged in the reaction chamber and externally supplied liquid is stored in the first liquid reservoir. The reaction cartridge is adapted to move liquid between the liquid reservoir and the reaction chamber by increasing or reducing the pressure at the third aperture.
    Type: Grant
    Filed: August 9, 2006
    Date of Patent: November 26, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventor: Katsumi Munenaka
  • Patent number: 8574513
    Abstract: A printed circuit board structure is coated with an encapsulant within which microfluidic channels have been formed. The microfluidic channels are formed by soldering fluidic connections to metal traces on a surface of the printed circuit board structure prior to encapsulation. The metal traces are removed by etching after encapsulation to form microchannels within the encapsulant.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: November 5, 2013
    Assignee: California Institute of Technology
    Inventors: Samson Chen, Aditya Rajagopal, Axel Scherer
  • Patent number: 8562918
    Abstract: The invention provides a system that can process a raw biological sample, perform a biochemical reaction and provide an analysis readout. For example, the system can extract DNA from a swab, amplify STR loci from the DNA, and analyze the amplified loci and STR markers in the sample. The system integrates these functions by using microfluidic components to connect what can be macrofluidic functions. In one embodiment the system includes a sample purification module, a reaction module, a post-reaction clean-up module, a capillary electrophoresis module and a computer. In certain embodiments, the system includes a disposable cartridge for performing analyte capture. The cartridge can comprise a fluidic manifold having macrofluidic chambers mated with microfluidic chips that route the liquids between chambers. The system fits within an enclosure of no more than 10 ft3. and can be a closed, portable, and/or a battery operated system. The system can be used to go from raw sample to analysis in less than 4 hours.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: October 22, 2013
    Assignee: IntegenX Inc.
    Inventors: Stevan B. Jovanovich, William D. Nielsen, David S. Cohen, Michael Recknor, Mattias Vangbo, Ezra Van Gelder, Lars Majlof, Omar El-Sissi
  • Patent number: 8563320
    Abstract: A use composition monitor determines the concentration of peracid and/or peroxide in a use composition using a kinetic assay procedure. A sample mixture containing a sample of the use composition, a diluent and at least one reagent is prepared and analyzed using, for example, an optical detector. A reduced-turbulence optical detector can be used to improve collected response data. A reduced-turbulence optical detector can include a cell body disposed about a length of transparent tubing. The cell body positions one or more emitter/receiver pairs about the transparent tubing. Thus, tube junctions are eliminated and sample flow within the tube is substantially turbulence free.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: October 22, 2013
    Assignee: Ecolab USA Inc.
    Inventors: Eugene Tokhtuev, Christopher Owen, Anna Pilipchenko, Paul Schilling, Daniel Kamben
  • Patent number: 8545758
    Abstract: Disclosed herein is a microparticle sorting apparatus, including: a discharge direction confirming section configured to confirm a discharge direction of a discharged liquid discharged from a discharge outlet of a flow path; opposite electrodes disposed downstream with respect to the discharge outlet; an opposite electrode position controlling section configured to control positions of the opposite electrodes in accordance with the discharge direction confirmed by the discharge direction confirming section; a droplet generating section configured to generate a droplet from the discharge outlet; and a charging section configured to electrically charge the droplet with electric charges.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: October 1, 2013
    Assignee: Sony Corporation
    Inventor: Yosuke Muraki
  • Patent number: 8541238
    Abstract: A carrier tape (20) wound on and extending between first and second spools (40) rotatably mounted to a read head (12) is submerged with a detector (44) mounted on a guide mechanism (42) into a fluid thermal media in the form of water or air contained in tanks (76-79). While submerged, the carrier tape (20) can be wound from one spool (40) to another. Further, the read head (12) can be plunged multiple times in opposite directions in the fluid thermal media. The detector (44) allows readings while the carrier tape (20) and the contents carried thereby are submerged in the fluid thermal media and can be a multi-channel, time-resolving photometer measuring fluorescence with at least one channel per row of wells (30) arranged in an array.
    Type: Grant
    Filed: September 9, 2009
    Date of Patent: September 24, 2013
    Assignee: Douglas Machine Inc.
    Inventor: Richard Jerome Schoeneck