Automated System With Sample Fluid Pressure Transport Means Patents (Class 422/81)
  • Patent number: 8535607
    Abstract: The present invention is to present a sample analyzer which is capable of prevent consumable part which does not adapt to the sample analyzer from being used and maintain measurement precision. The sample analyzer 10 includes barcode reader 60 for obtaining serial number for identifying pipette tip 80 from barcode 83; containing section 21a for containing pipette tips 80 used by a predetermined mechanism section; CPU 34a for obtaining a number of the pipette tips 80 which have been used by the mechanism section; CPU 51a for obtaining a number of the usable pipette tips 80; warning screens 76, 77, 79 for giving a predetermined warning to a user, when the number obtained by CPU 34a is in a predetermined relationship with the number obtained by CPU 51a.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: September 17, 2013
    Assignee: Sysmex Corporation
    Inventors: Yuji Wakamiya, Tomohiro Okuzaki, Hisato Takehara
  • Patent number: 8524506
    Abstract: Methods for sampling a liquid flow are provided. The method includes supplying a continuous liquid flow from a continuous flow fluid input source to a surface along a first flow path. The method additionally includes sampling the continuous liquid flow by performing an electric field-based technique to split off a sample droplet from a portion of the liquid flow, whereby the sample droplet is distinct from the liquid flow and controllable independently of the liquid flow, wherein the electric field-based technique is performed by providing a set of electrodes on the surface and selectively biasing the set of electrodes, whereby the sample droplet is formed on one of the set of electrodes.
    Type: Grant
    Filed: November 7, 2007
    Date of Patent: September 3, 2013
    Assignee: Duke University
    Inventors: Vamsee K. Pamula, Michael G. Pollack, Richard B. Fair
  • Patent number: 8524169
    Abstract: A fluid sample collection device for a disk-based fluid separation system is disclosed. The disk-based separation system includes a compact microfluidic disk with at least one flow channel pattern formed on a side surface of the disk. At least one orifice is formed on an outflow boundary of the disk and is designed in fluid communication with the flow channel pattern through a communication channel. The fluid sample collection device includes at least one collection tube having an open end serving as a fluid receiving end and corresponding to the orifice of the disk with a distance. When the disk is rotated, at least a portion of fluid sample in a sample processing reservoir formed on the disk is delivered by centripetal force through the communication channel and the orifice, and finally the expelling fluid sample is collected in the collection tube.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: September 3, 2013
    Assignee: National Taiwan University
    Inventors: Andrew Man Chung Wo, Chen-Lin Chen, Cheng-Wei Yang, Yu-Cheng Pan
  • Patent number: 8524154
    Abstract: A metabolite monitoring system comprising a microdialysis probe including a semi-permeable membrane and a probe flow path passing from an inlet through a sensing volume adjacent to said semi-permeable membrane to an outlet, a fluid delivery device for delivering dialysate to said inlet; and a metabolite monitoring system associated with said outlet for monitoring a concentration of at least one metabolite in said dialysate from said microdialysis probe, wherein said fluid delivery device is configured to deliver a pulsed flow of said dialysate to said inlet.
    Type: Grant
    Filed: November 8, 2007
    Date of Patent: September 3, 2013
    Assignee: G-Sense Ltd.
    Inventors: Avraham Shekalim, Noam Peleg
  • Patent number: 8513022
    Abstract: A method for determining the amount of a chemical species in a sample, in particular the amount of weak acid dissociable cyanide or total cyanide in a sample, and an apparatus for performing said method. The method comprises the steps of: i) treating the sample to liberate the chemical species into a gaseous stream; ii) directing the gaseous stream to a scrubber; iii) absorbing the chemical species into a scrubber solution; and iv) determining the amount of chemical species absorbed into the scrubber solution, wherein any remaining chemical species not absorbed into the scrubber solution is directed or recirculated to the scrubber in the gaseous stream and step iii) is repeated to increase absorption of the chemical species prior to performing step iv).
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: August 20, 2013
    Assignee: Cyantific Instruments Pty Ltd
    Inventor: Fraser John Ross
  • Patent number: 8507262
    Abstract: Disclosed is a bubble excluder device (2) adapted for use with, and attachment to, a probe (6) for continuous measurement of the cell density of a culture in a liquid medium; the bubble excluder device comprising an inlet and an outlet to allow flow of liquid through the device and bubble exclusion means (20) to reduce or prevent ingress of bubbles from the liquid medium outside the device.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: August 13, 2013
    Assignee: Cytoprom Ltd
    Inventors: Edmund Kunji, Shane Palmer
  • Patent number: 8502004
    Abstract: Process for evaluating the effect of a refinery feedstock on a refinery process by (i) providing a refinery feedstock (ii) treating the refinery feedstock to produce a plurality of fractions each representative of a feedstock for the refinery process, the plurality of fractions having at least two fractions with different properties; (iii) treating each of the plurality of fractions under experimental conditions representative of those in the refinery process, the treatments being carried out in an essentially parallel manner; and (iv) determining one or more performance criteria for each fraction for the refinery process by analyzing the respective product streams produced from each fraction at least partially in parallel.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: August 6, 2013
    Assignee: BP Oil International Limited
    Inventors: Graham Butler, John William Couves, Paul Greenough, Nicholas John Gudde, Michael Graham Hodges
  • Patent number: 8501115
    Abstract: Systems, devices, and methods for automating laboratory protocols utilizing modular processing components to allow systems to be reconfigured for processing a wide variety of disparate laboratory protocols are provided. In one aspect, a sample processing module is provided, including a housing configured to accommodate a pre-identified sample process, a standardized temperature input capable of interfacing with a temperature controller, a standardized fluid input capable of interfacing with an input fluid controller, and a standardized agitation connector capable of interfacing with an agitator. These standardized components provide interchangeability of the module with a module having a housing configured to accommodate a different pre-identified sample process in a sample processing system.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: August 6, 2013
    Assignee: Statspin, Inc.
    Inventors: Nils Adey, Rob Parry
  • Patent number: 8504147
    Abstract: Methods and apparatus are provided for selective destruction or temporary disruption of nerves and/or conduction pathways in a mammalian body for the treatment of pain and other disorders. Apparatus comprises catheters having electrodes for targeting and affecting nerve tissue at a cellular level to reversible and irreversible nerve poration and incapacitation.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: August 6, 2013
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Mark E. Deem, Hanson S. Gifford
  • Patent number: 8492167
    Abstract: Methods and apparatuses for determining whether a fluid has been introduced into an assay measurement apparatus involving delivering a fluid to a surface of a resonant device. The methods also involve monitoring an electrical signal output by the resonant device, wherein properties of the electrical signal vary based on physical properties of the fluid in contact with the surface of the resonant device and determining if the electrical signal output by the resonant device satisfies a predetermined condition indicative of the presence of the fluid.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: July 23, 2013
    Assignee: BioScale, Inc.
    Inventors: Brett P. Masters, Michael F. Miller
  • Patent number: 8486335
    Abstract: An automated microscope slide staining system and staining apparatus and method that features a plurality of individually operable miniaturized pressurizable reaction compartments or a pressurizable common chamber for individually and independently processing a plurality of microscope slides. The apparatus preferably features independently movable slide support elements each having an individually operable heating element.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: July 16, 2013
    Inventor: Lee H. Angros
  • Patent number: 8480975
    Abstract: Systems and methods for improved measurement of absorbance/transmission through fluidic systems are described. Specifically, in one set of embodiments, optical elements are fabricated on one side of a transparent fluidic device opposite a series of fluidic channels. The optical elements may guide incident light passing through the device such that most of the light is dispersed away from specific areas of the device, such as intervening portions between the fluidic channels. By decreasing the amount of light incident upon these intervening portions, the amount of noise in the detection signal can be decreased when using certain optical detection systems.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: July 9, 2013
    Assignee: OPKO Diagnostics, LLC
    Inventors: David Steinmiller, Vincent Linder
  • Patent number: 8478445
    Abstract: Various embodiments of the present invention provide, for example, a system and method for automatically adjusting the inoculum level of a sample. Certain embodiments of the present invention may measure a concentration of particles present in a preliminary sample using a sensor device and determine an amount of diluent to be added to or removed from a sample container to prepare a sample having a selected concentration of particles, corresponding to a selected inoculum level. Embodiments of the present invention may also automatically add or remove the diluent using an automated fluidics system so as to prepare a sample having the selected particle concentration. Once the selected particle concentration is achieved and verified, some embodiments may also remove at least a portion of the sample from the sample container such that the container contains a selected volume of the sample.
    Type: Grant
    Filed: October 17, 2011
    Date of Patent: July 2, 2013
    Assignee: Becton, Dickinson and Company
    Inventors: Timothy Roy Hansen, Mark Anthony Messina, John Thulin Page, Thomas Paul Borgoyn, Ammon David Lentz, Robert Michael Novak
  • Patent number: 8475715
    Abstract: A system having reduced gas interference that includes a fluid chamber and a resonant sensor device in fluid communication with a fluid in the fluid chamber. The system includes a fluid control device adapted to change at least one of the fluid flow or pressure within the fluid chamber to achieve substantial wetting of surfaces in proximity to the resonant sensor device. Fluid surfaces of the system can include a material to increase the wettability (e.g., hydrophilicity) of the fluid surfaces.
    Type: Grant
    Filed: August 10, 2006
    Date of Patent: July 2, 2013
    Assignee: BioScale, Inc.
    Inventors: Brett P. Masters, Michael F. Miller
  • Patent number: 8465697
    Abstract: Disclosed are a system and method for regulating flow in an exemplary fluidic device comprising a fluidic stream carrying a transport medium, sample and one or more reagents for analysis and synthesis of reaction products. The flow rate of the fluidic stream is maintained constant by adjusting the flow rate of transport medium to compensate for the introduction of sample and reagents. An embodiment controls the flow rate of transport medium using a pump, a back pressure regulator, and a variable-sized orifice. Single and multiple channel embodiments are disclosed.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: June 18, 2013
    Assignee: O.I. Corporation
    Inventors: Gary L. Erickson, Craig Ranger
  • Patent number: 8460606
    Abstract: The invention relates to a reaction device which is used to study the behavior of a catalyst in the presence of reactants. The inventive device includes: various different mass flow regulators, which are used to supply a known controlled stream of gases, a pump which supplies the system with liquid reactants from a container, a hot box, wherein there have been placed a supply current evaporator and preheater, a valve which can be used to select the process path, a reactor into which the catalyst is introduced inside a furnace, a system which can be used to separate the liquid and gaseous products by cold condensation under pressure and which controls the pressure in the line of output gases, and a system for controlling the level in the decantation operation, the system being automated and computerized.
    Type: Grant
    Filed: June 2, 2005
    Date of Patent: June 11, 2013
    Assignee: Consejo Superior de Investigaciones Cientificas
    Inventors: Jose Prieto Barranco, Consuelo Goberna Selma
  • Patent number: 8460531
    Abstract: An integrated bio-analysis system incorporates built-in sample preparation capabilities. In one aspect of the present invention, a bio-analysis instrument is provided with a built-in sample preparation device based on PCR (or thermal cycling block/module). In one embodiment of the present invention, a peltier unit in the sample preparation device provides thermal cycling of samples supported in a multi-well tray. In another aspect of the present invention, a CE instrument is provided with a built-in sample preparation capability, which may comprise a sample preparation (bio-molecular reaction) device based on thermal cycler type. In another aspect of the present invention, a PCR device is provided with a built-in analysis device, such as a CE device, for verifying the results of the PCR (bio-molecular reaction) process.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: June 11, 2013
    Assignee: Qiagen Sciences, LLC
    Inventors: Varouj Amirkhanian, Ming-Sun Liu
  • Patent number: 8454893
    Abstract: A fluid sampling system for sampling the contents of a container of fluid includes an elongate hollow sampling conduit extending between a first end for withdrawing the fluid from the container and a second end for returning the fluid to the container, pump means for circulating the fluid between the container and the sampling conduit, a sample probe having a tip extending into the sampling conduit so as to contact the fluid within the sampling conduit, and a controller unit for controlling flow of the fluid within the sampling conduit and monitoring the properties of interest of the fluid within the sampling conduit via signals received from the sample probe. The present invention also provides an in-line pH probe.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: June 4, 2013
    Assignee: Medi-Physics, Inc.
    Inventors: Kevin Helle, Jay Reed, Michael T. Schneider
  • Patent number: 8445286
    Abstract: The flow cytometer system of the preferred embodiment includes a flow cell body that functions to contain, protect, and align the components of the flow cytometer system; a flow channel, coupled to the flow cell body, that functions to conduct and focus sample fluid through an interrogation zone; and a sample injection probe, removably coupled to the flow cell body, that functions to provide a uniform flow of sample fluid to the flow channel. The flow cytometer system is preferably designed for the flow cytometer field. The flow cytometer system, however, may be alternatively used in any suitable environment and for any suitable reason.
    Type: Grant
    Filed: November 7, 2007
    Date of Patent: May 21, 2013
    Assignee: Accuri Cytometers, Inc.
    Inventors: Nathaniel C. Bair, Collin A. Rich, Mark Robert Eadie, Rebecca Ann Lehrmann
  • Publication number: 20130121880
    Abstract: Dispensing failure occurs when air-sucking or clogging is caused at the time of sucking sample or reagent by using a dispensing probe.
    Type: Application
    Filed: June 30, 2011
    Publication date: May 16, 2013
    Inventor: Isao Yamazaki
  • Patent number: 8440140
    Abstract: A sample analyzer prepares a measurement sample from a blood sample or a body fluid sample which differs from the blood sample; measures the prepared measurement sample; obtains characteristic information representing characteristics of the components in the measurement sample; sets either a blood measurement mode for measuring the blood sample, or a body fluid measurement mode for measuring the body fluid sample as an operating mode; and measures the measurement sample prepared from the blood sample by executing operations in the blood measurement mode when the blood measurement mode has been set, and measuring the measurement sample prepared from the body fluid sample by executing operations in the body fluid measurement mode that differs from the operations in the blood measurement mode when the body fluid measurement mode has been set, is disclosed. A computer program product is also disclosed.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: May 14, 2013
    Assignee: Sysmex Corporation
    Inventors: Takaaki Nagai, Noriyuki Narisada, Daigo Fukuma
  • Publication number: 20130109082
    Abstract: An apparatus for delivering a plurality of liquid volumes sequentially to a reaction site is provided, the apparatus comprising a vessel having a plurality of solid spacers arranged in linear order therein so as to define a series of adjacent voids, separated by individual solid spacers, for receiving said liquid volumes, the vessel being provided in a lateral wall with a plurality of reversibly sealable openings through which the liquid volumes for delivery to the reaction site may be introduced into the voids defined therein, and an outlet port, the spacers being movable within the vessel such that, in use, liquid volumes disposed in the individual voids are deliverable sequentially through the ‘outlet port to the reaction site. Also provided are units, such as disposable cartridge units, comprising such an apparatus coupled to a reaction site and systems comprising such units together with means for interrogating the reaction site to determine the outcome of the reaction.
    Type: Application
    Filed: April 8, 2011
    Publication date: May 2, 2013
    Applicant: AVACTA LIMITED
    Inventors: Edward John Quinn, Simon Webster, David Alistair Smith, Robert Harrand
  • Patent number: 8425844
    Abstract: Apparatus comprising surface site comprising substantially inorganic surface having chemical composition selected from group consisting of metals, semiconductors, insulators, and mixtures thereof, the surface positioned within polypeptide bonding region and having selective bonding affinity for polypeptide; plurality of interlayers between which surface site is interposed; distal site end on surface site and distanced from interlayers, the surface being provided on distal site end; surface site and interlayers being interposed between first and second supports; first and second conductors provided on first and second supports and having respective first and second distal conductor ends positioned within polypeptide bonding region; conductors being capable of applying external voltage potential across polypeptide bonding region.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: April 23, 2013
    Assignee: Alcatel Lucent
    Inventors: Robert L. Willett, Kirk W. Baldwin, Loren N. Pfeiffer
  • Patent number: 8425839
    Abstract: A sample analyzer is disclosed that comprising: a first reagent container to hold a first reagent container with a first record section which contains a first reagent management information; a second reagent container holder to hold a second reagent container with a second record section which contains a second reagent management information; a first information reader; a second information reader; a registration section for registering the combination of the first reagent and the second reagent based on the first reagent management information; a measurement section for conducting a measurement of a predetermined analysis item by using the first reagent and the second reagent corresponding to the combination registered by the registration section; and a processing section for processing a measurement result obtained by the measurement section, and for obtaining an analysis result of the sample.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: April 23, 2013
    Assignee: Sysmex Corporation
    Inventors: Yuji Wakamiya, Tomohiro Okuzaki, Hisato Takehara
  • Patent number: 8420397
    Abstract: Fluid flow devices include a small plate (2), at least one flow channel (20) formed into this small plate, at least one storage channel (221-226) extending from this connection channel, and a set of valves (V1-V6), each of which is suitable for allowing or stopping the flow of fluid in a corresponding storage channel.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: April 16, 2013
    Assignees: Rhodia Operations, Centre National de la Recherche Scientifique (C.N.R.S.)
    Inventors: Mathieu Joanicot, Philippe Laval, Jean-Baptiste Salmon
  • Patent number: 8409509
    Abstract: Systems and methods are provided for analyzing particulates. A liquid having a plurality of particulates substantially linearly ordered in a streamline can be externally controlled to provide flow in first and second directions, where, generally, the first direction is opposite to the second direction. A target particulate can be measured from the plurality of particulates at or near a measurement area while the liquid flows in the first flow direction. The flow direction can be reversed and measured at the measurement area while flowing in the second direction. The particulates substantially retain the same linear order during at least one cycle, a cycle being defined by movement in the first direction followed by movement in the second direction.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: April 2, 2013
    Assignee: Regents of the University of Minnesota
    Inventors: Friedrich Srienc, Greg Sitton
  • Publication number: 20130065316
    Abstract: A system and method for analyzing a biological substance, the device comprising: a specimen input device; at least one pumping device in flow communication with a chemical reservoir and said specimen input device; and at least one flow cell in flow communication with said at least one pumping device via at least one flow valve, wherein said at least one flow cell is configured to contain said specimen and includes a sensing device configured to sense at least one characteristic of said specimen.
    Type: Application
    Filed: November 9, 2012
    Publication date: March 14, 2013
    Inventor: David Baltimore
  • Publication number: 20130065256
    Abstract: An assay apparatus comprising: i) an assay cartridge (52, 53) comprising at least one well (57-62) and a pipette (50) positionable in at least one said well; ii) a holder arranged to received said cartridge; iii) drive means operable to position said pipette in selected wells of said cartridge; iv) a gas pressure applicator couplable to said pipette whereby to cause liquid flow through said membrane; and v) a radiation detector operable to detect radiation from a well of said cartridge of said cartridge or from said pipette.
    Type: Application
    Filed: September 14, 2012
    Publication date: March 14, 2013
    Applicant: AXIS-SHIELD AS
    Inventors: Jostein HOLTLUND, Stig Morten Borch, Thorstein Seim, Tore Janson, Hege Tøn, Jan Roger Karlson, Inger Lise Lauvstad
  • Patent number: 8394642
    Abstract: The invention provides a system that can process a raw biological sample, perform a biochemical reaction and provide an analysis readout. For example, the system can extract DNA from a swab, amplify STR loci from the DNA, and analyze the amplified loci and STR markers in the sample. The system integrates these functions by using microfluidic components to connect what can be macrofluidic functions. In one embodiment the system includes a sample purification module, a reaction module, a post-reaction clean-up module, a capillary electrophoresis module and a computer. In certain embodiments, the system includes a disposable cartridge for performing analyte capture. The cartridge can comprise a fluidic manifold having macrofluidic chambers mated with microfluidic chips that route the liquids between chambers. The system fits within an enclosure of no more than 10 ft3. and can be a closed, portable, and/or a battery operated system. The system can be used to go from raw sample to analysis in less than 4 hours.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: March 12, 2013
    Assignee: IntegenX Inc.
    Inventors: Stevan B. Jovanovich, William D. Nielsen, David S. Cohen, Michael Recknor, Mattias Vangbo, Ezra Van Gelder, Lars Majlof, Omar El-Sissi
  • Patent number: 8389294
    Abstract: A microfluidic device and method is provided for coupling discrete channels and for co-culture. The microfluidic device includes first and second bodies. Each body has a bottom surface and defines a channel. The channel in each body includes an inlet and an outlet communicating with the bottom surface. A first fluid, such as a first cell suspension, is provided within the channel of the first body and a second fluid, such a second cell suspension, is provided within the channel of the second body. The first and second bodies are movable between a first position wherein the outlet of the channel of the first body is spaced from the inlet of the channel of the second body and a second position wherein the fluid at the outlet of the channel of the first body communicates with the fluid at the inlet of the channel of the second body.
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: March 5, 2013
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: David J. Beebe, Jay W. Warrick
  • Patent number: 8389272
    Abstract: A method and apparatus for delivering one or more fluids. Fluids may be delivered sequentially from a common vessel to a chemical, biological or biochemical process.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: March 5, 2013
    Assignee: President and Fellows of Harvard College
    Inventors: Vincent Linder, Samuel K. Sia, George M. Whitesides
  • Patent number: 8383060
    Abstract: An integrated electronic-micro fluidic device an integrated electronic-micro fluidic device, comprising a semiconductor substrate on a first support, an electronic circuit on a first semiconductor-substrate side of the semiconductor substrate, and a signal interface structure to an external device. A micro fluidic structure is formed in the semiconductor substrate, and is configured to confine a fluid and to allow a flow of the fluid to and from the microfluidic structure only on a second semiconductor-substrate side that is opposite to the first semiconductor-substrate side and faces away from the first support.
    Type: Grant
    Filed: March 7, 2007
    Date of Patent: February 26, 2013
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Ronald Dekker, Remco Henricus Wilhelmus Pijnenburg, Nicolaas Johannes Anthonius Van Veen
  • Patent number: 8383061
    Abstract: Fluid-based no-moving part logic devices are constructed from complex sequences of micro- and nanofluidic channels, on-demand bubble/droplet modulators and generators for programming the devices, and micro- and nanofluidic droplet/bubble memory elements for storage and retrieval of biological or chemical elements. The input sequence of bubbles/droplets encodes information, with the output being another sequence of bubbles/droplets or on-chip chemical synthesis. For performing a set of reactions/tasks or process control, the modulators can be used to program the device by producing a precisely timed sequence of bubbles/droplets, resulting in a cascade of logic operations within the micro- or nanofluidic channel sequence, utilizing the generated droplets/bubbles as a control. The devices are based on the principle of minimum energy interfaces formed between the two fluid phases enclosed inside precise channel geometries.
    Type: Grant
    Filed: April 4, 2011
    Date of Patent: February 26, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Manu Prakash, Neil Gershenfeld
  • Patent number: 8372341
    Abstract: Assay device processing apparatus includes a rotatably mounted assay device vessel support; and a drive for rotating the support. The support is rotatable about a substantially horizontal first axis so that, upon rotation, an assay device vessel attached to the support can be inverted.
    Type: Grant
    Filed: January 25, 2007
    Date of Patent: February 12, 2013
    Assignee: Randox Laboratories Ltd.
    Inventors: Aiden John Walsh, Stephen Peter Fitzgerald
  • Patent number: 8323887
    Abstract: The present invention provides a method for combining a fluid delivery system with an analysis system for performing immunological or other chemical of biological assays. The method comprises a miniature plastic fluidic cartridge containing a reaction chamber with a plurality of immobilized species, a capillary channel, and a pump structure along with an external linear actuator corresponding to the pump structure to provide force for the fluid delivery. The plastic fluidic cartridge can be configured in a variety of ways to affect the performance and complexity of the assay performed.
    Type: Grant
    Filed: August 16, 2006
    Date of Patent: December 4, 2012
    Inventors: James Russell Webster, Ping Chang, Shaw-Tzuv Wang, Chi-Chen Chen, Rong-I Hong
  • Patent number: 8313712
    Abstract: The current invention provide a microfluidic valve having a housing that includes a microfluid control port disposed adjacent to a microfluid exhaust port, where a movable rigid material having a first diameter is disposed in the housing between the microfluid control port and the microfluid exhaust port. The housing further includes a microfluid pressure port having a first microfluid pressure. The microfluid pressure port is connected to the microfluid exhaust port by a microfluid valve orifice having a second diameter, where the first diameter is larger than the second diameter, and when a second microfluid pressure is applied to the control port the moveable rigid material closes the microfluid valve orifice, where the first microfluid pressure is greater than the second microfluid pressure.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: November 20, 2012
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Jessica E. Melin, Donald C. Stark, James A. Weaver
  • Patent number: 8313957
    Abstract: Binding an analyte can cause a change in fluorescence emission of a sensor. The change in fluorescence can be related to the amount of analyte present. The sensor can include a semiconductor nanocrystal linked to a fluorescent moiety. Upon excitation, the fluorescent moiety can transfer energy to the semiconductor nanocrystal, or vice versa.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: November 20, 2012
    Assignee: Massachusetts Institute of Technology
    Inventors: Preston T. Snee, Rebecca C. Somers, Daniel G. Nocera, Moungi G. Bawendi
  • Patent number: 8303909
    Abstract: Embodiments of a microfluidic assembly comprise at least two adjacent microstructures and a plurality of interconnecting fluid conduits which connect an outlet port of one microstructure to an inlet port of an adjacent microstructure. Each microstructure comprises an inlet flow path and an outlet flow path not aligned along a common axis. Moreover, the microfluidic assembly defines a microfluidic assembly axis along which respective inlet ports of adjacent microstructures are oriented or alternatively along which respective outlet ports of adjacent microstructures are oriented, and each microstructure is oriented relative to the microfluidic assembly axis at a nonorthogonal angle.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: November 6, 2012
    Assignee: Corning Incorporated
    Inventor: Mark Stephen Friske
  • Patent number: 8298497
    Abstract: A delivery apparatus for selectively delivering one or more liquid reagents into a reaction or test chamber (2), especially of an assay apparatus, the apparatus comprising: one or more respective storage chambers (5,6) for containing the one or more liquid reagents and arranged generally above the reaction or test chamber (2); and a plunger element (4) arranged and operable for insertion into the mouth of a selected storage chamber so as to displace a selected reagent from therewithin into the reaction or test chamber (2) generally therebelow by gravitational liquid overflow from the mouth of the chamber. The apparatus may conveniently be provided as a discrete delivery unit, with the storage chambers (5,6) prefilled with the selected reagents.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: October 30, 2012
    Assignee: The Secretary of State for Defence
    Inventor: David James Squirrell
  • Patent number: 8298496
    Abstract: A fluidic configuration, both structural and methodological, for the injection of sample greatly reduces dead volume allowing rapid transition to 100% sample in a flow cell. For a continuous flow injection analysis system the structure and method provide counter flows to remove in one direction the dispersed region of the sample to waste before injecting non-dispersed sample into the flow cell by reversing the effective flow direction. The injection point itself is directly adjacent to the flow cell where all channels are microfluidic channels. Therefore, only the flow cell volume needs to be displaced during injection of sample in order to achieve 100% transition to sample within the flow cell. This greatly accelerates the rise and fall times thereby extending the kinetic range of the real-time interaction analysis instrument. In addition such rapid transition to sample improves overall data quality thereby improving kinetic model fitting.
    Type: Grant
    Filed: January 16, 2008
    Date of Patent: October 30, 2012
    Assignee: FLIR Systems, Inc.
    Inventor: John Gerard Quinn
  • Patent number: 8287820
    Abstract: The technology described herein generally relates to systems for extracting polynucleotides from multiple samples, particularly from biological samples, and additionally to systems that subsequently amplify and detect the extracted polynucleotides. The technology more particularly relates to microfluidic systems that carry out PCR on multiple samples of nucleotides of interest within microfluidic channels, and detect those nucleotides. The technology still more particularly relates to automated devices for carrying out pipetting operations, particularly on samples in parallel, consistent with sample preparation and delivery of PCR-ready nucleotide extracts to a cartridge wherein PCR is run.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: October 16, 2012
    Assignee: HandyLab, Inc.
    Inventors: Jeff Williams, Kerry Wilson
  • Patent number: 8273297
    Abstract: An apparatus and a related method for performing particle agglutination reactions in at least one disposable probe tip are disclosed. The at least one probe tip includes a sample cavity for sample acquisition, at least one flanking cavity for the capture of particles by centrifugation or other means, a transition zone for the mixing of the sample with reagents for agglutination and a detection zone for the optical detection of particle agglutination. A mechanism may be attached to the probe tip for the controlled movement of fluids through the internal volume of the probe tip. The probe tip is particularly useful for the automation of high-throughput agglutination-type assays.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: September 25, 2012
    Assignee: Ortho-Clinical Diagnostics, Inc.
    Inventors: Zhong Ding, Amy M. Wilson-Colley
  • Patent number: 8273308
    Abstract: This disclosure provides systems, methods, and devices for processing samples on a microfluidic device. One system includes a microfluidic device having an upstream channel, a DNA manipulation zone located downstream from the upstream channel and configured to perform PCR amplification of a sample, a first valve disposed upstream of the DNA manipulation zone, and a second valve disposed downstream of the DNA manipulation zone. The system also includes a controller programmed to close the first and second valves to prevent gas and liquid from flowing into or out of the DNA manipulation zone, and a computer-controlled heat source in thermal contact with the DNA manipulation zone.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: September 25, 2012
    Assignee: HandyLab, Inc.
    Inventors: Kalyan Handique, Gene Parunak
  • Patent number: 8268249
    Abstract: An analytical cell including a lightguide with a plurality of conduits filled with a migration medium. The medium, the lightguide and a surrounding medium have refractive indices selected such that light entering the lightguide is internally reflected within the lightguide to provide substantially uniform illumination of the conduits.
    Type: Grant
    Filed: November 16, 2006
    Date of Patent: September 18, 2012
    Assignees: 3M Innovative Properties Company, Life Technologies Corporation
    Inventors: Larry J. Carson, Joel R. Dufresne, Patrick R. Fleming, Michael C. Lea, Nicholas A. Lee, John Shigeura
  • Patent number: 8268245
    Abstract: A method for determining analytes in a liquid is provided comprising applying a liquid volume to be examined to a substrate of a transport plane; moving the liquid volume to be examined on the substrate of the transport plane to a site of examination; contacting the liquid volume to be examined with at least one sensory element, wherein the sensory element is located in a detection plane opposite to the substrate of the transport plane; and determining an analyte in the liquid volume to be examined by the sensory element, wherein the liquid volume is only in contact with the substrate of the transport plane during the step of moving the liquid volume to be examined on the substrate of the transport plane to a site of examination. The application also concerns a device for determining analytes in a liquid corresponding to the method according to the invention.
    Type: Grant
    Filed: August 26, 2004
    Date of Patent: September 18, 2012
    Assignee: Roche Diagnostics Operations, Inc.
    Inventor: Hans-Peter Wahl
  • Patent number: 8268633
    Abstract: A method for conducting a broad range of biochemical analyses or manipulations on a series of nano- to subnanoliter reaction volumes and an apparatus for carrying out the same are disclosed. The invention is implemented on a fluidic microchip to provide high serial throughput. In particular, the disclosed device is a microfabricated channel device that can manipulate nanoliter or subnanoliter reaction volumes in a controlled manner to produce results at rates of 1 to 10 Hz per channel. The reaction volumes are manipulated in serial fashion analogous to a digital shift register. The invention has application to such problems as screening molecular or cellular targets using single beads from split-synthesis combinatorial libraries, screening single cells for RNA or protein expression, genetic diagnostic screening at the single cell level, or performing single cell signal transduction studies.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: September 18, 2012
    Assignee: UT-Battelle, LLC
    Inventors: J. Michael Ramsey, Stephen C. Jacobson
  • Patent number: 8268247
    Abstract: An electrophoresis apparatus is generally disclosed for sequentially analyzing a single sample or multiple samples having one or more analytes in high or low concentrations. The apparatus comprises a relatively large-bore transport capillary which intersects with a plurality of small-bore separation capillaries and includes a valve system. Analyte concentrators, having antibody-specific (or related affinity) chemistries, are stationed at the respective intersections of the transport capillary and separation capillaries to bind one or more analytes of interest. The apparatus allows the performance of two or more dimensions for the optimal separation of analytes. The apparatus may also include a plurality of valves surrounding each of the analyte concentrators to localize each of the concentrators to improve the binding of one or more analytes of interest.
    Type: Grant
    Filed: May 5, 2009
    Date of Patent: September 18, 2012
    Assignee: Princeton Biochemicals, Inc.
    Inventor: Norberto A. Guzman
  • Patent number: 8268246
    Abstract: Alternative approaches to fabricating printed circuit boards for use in droplet actuator operations are provided. In one embodiment, a method of manufacturing a droplet actuator for conducting droplet operations includes positioning a dielectric material between a first metal layer configured to include an electrode and a second metal layer configured to include an interconnect pad. The method additionally includes forming a connection between the first and second metal layers. Droplet actuators and methods of fabricating and supporting printed circuit boards of droplet actuators are also provided.
    Type: Grant
    Filed: August 11, 2008
    Date of Patent: September 18, 2012
    Assignee: Advanced Liquid Logic Inc
    Inventors: Vijay Srinivasan, Vamsee K. Pamula, Michael G. Pollack
  • Patent number: 8262990
    Abstract: The fluidic system with an unclogging feature of the preferred embodiment includes a flow channel, a sheath pump to pump sheath fluid from a sheath container into an interrogation zone, and a waste pump to pump waste fluid from the interrogation zone into a waste container. The sheath pump and/or the waste pump draw sample fluid from a sample container into the interrogation zone. The fluidic system also includes a controller to adjust the flow rate of the sample fluid from the sample container into the interrogation zone. The pump and controller cooperate to propagate a pulsation through the flow channel from the pump if the flow channel is clogged. The fluidic system is preferably incorporated into a flow cytometer with a flow cell that includes the interrogation zone.
    Type: Grant
    Filed: August 16, 2010
    Date of Patent: September 11, 2012
    Assignee: Accuri Cytometers, Inc.
    Inventors: Nathaniel C. Bair, Collin A. Rich
  • Patent number: 8262995
    Abstract: The invention concerns a pluggable data transfer module and a method that can be used to transfer data from an analytical system to a data processing unit in a galvanically decoupled manner. This invention is particularly suitable for medical fields of application in which recently it has become more and more desirable to process analytical data of a patient.
    Type: Grant
    Filed: December 11, 2002
    Date of Patent: September 11, 2012
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Udo Manser, Dieter Schaefer, Michael Schabbach, Peter Kuenstler