And Means Segmenting Fluid Material Patents (Class 422/82)
  • Publication number: 20010043883
    Abstract: A method of and apparatus for flow injection analysis using a reaction chamber having a continuously variable volume, where the volume of the reaction chamber may be varied before, during or after introduction of an analyte solution and reagent solution into the reaction chamber. A microprocessor may be incorporated to control the volume of the reaction chamber and other components, either in a preprogrammed manner or in response to particular data measured by a detection device.
    Type: Application
    Filed: July 20, 2001
    Publication date: November 22, 2001
    Inventor: Stuart Chalk
  • Patent number: 6318191
    Abstract: A sample testing system has a chamber sealing, apparatus adapted to receive a chamber containing a fluid sample material and to seal portions of a chamber into segments. A reagent injector cartridge actuator is adapted to receive a reagent injector cartridge having at least one needle in fluid communication with a reagent reservoir, and to move a reagent injector cartridge to inject a quantity of reagent into a segment of a chamber. In certain preferred embodiments, a flow control device induces a flow of sample in a segment. A sensor generates a signal corresponding to a condition of the mixture.
    Type: Grant
    Filed: June 23, 1999
    Date of Patent: November 20, 2001
    Assignee: Chen & Chen, LLC
    Inventor: Shuqi Chen
  • Patent number: 6316268
    Abstract: An article of manufacture is provided including a substrate having an oxide surface layer and a layer of a cyclodextrin derivative chemically bonded to said substrate, said layer of a cyclodextrin derivative adapted for the inclusion of selected compounds, e.g., nitro-containing organic compounds, therewith. Such an article can be a chemical microsensor capable of detecting a resultant mass change from inclusion of the nitro-containing organic compound.
    Type: Grant
    Filed: May 17, 1999
    Date of Patent: November 13, 2001
    Assignee: The Regents of the University of California
    Inventors: Xiaoguang Yang, Basil I. Swanson
  • Patent number: 6305212
    Abstract: A method and apparatus for real time gas analysis involving determining individual concentrations of fluid constituents in a mixture of known constituents by measuring properties of the mixture and solving a set of equations, which relate the individual gas concentrations to the measured properties of the mixture, for the unknown individual gas concentrations. The individual concentrations of four gasses in a mixture are determined by: passing the mixture through a flowmeter, a capillary, an orifice, and a sonic oscillator; transducing temperature, pressure and acoustic frequency measurements taken from the sensors; determining the density, viscosity, and the specific heat of the mixture; forming three equations which respectively relate these three properties to individual gas concentrations; and solving the three equations and the constitutive equation which requires that the sum of the concentrations equal unity, for the four unknown individual gas concentrations.
    Type: Grant
    Filed: April 7, 2000
    Date of Patent: October 23, 2001
    Assignee: metaSENSORS, Inc.
    Inventor: Tadeusz M. Drzewiecki
  • Patent number: 6297061
    Abstract: This invention provides a method and apparatus for detecting the presence of analyte particles in a sample fluid also comprising larger particles, particularly blood. It exploits diffusion to provide simultaneous filtering of the larger particles and reaction of the analyte particles. A sample stream and a reagent stream join on the upstream end of a laminar flow reaction channel and flow in adjacent laminar streams. The reagents can be in solution or immobilized on a bead. The analyte particles diffuse from the sample stream into the reagent stream, leaving behind the larger particles in the residual sample stream. In the reagent stream the analyte particles react with reagent particles and form product particles, thereby creating a product stream. At the downstream end of the reaction channel, the residual sample stream and the product stream are divided. The product particles are then detected, preferably optically, in the product stream.
    Type: Grant
    Filed: February 10, 2000
    Date of Patent: October 2, 2001
    Assignee: University of Washington
    Inventors: Caicai Wu, Bernhard Weigl, Margaret A. Kenny, Paul Yager
  • Patent number: 6290910
    Abstract: A method of and apparatus for flow injection analysis using a reaction chamber having a continuously variable volume, where the volume of the reaction chamber may be varied before, during or after introduction of an analyte solution and reagent solution into the reaction chamber. A microprocessor may be incorporated to control the volume of the reaction chamber and other components, either in a preprogrammed manner or in response to particular data measured by a detection device.
    Type: Grant
    Filed: March 3, 1999
    Date of Patent: September 18, 2001
    Assignee: University of North Florida
    Inventor: Stuart Chalk
  • Patent number: 6284196
    Abstract: The present invention is a method and an apparatus for identifying and quantifying components in an effluent stream from an ammoxidation reactor, the apparatus comprising a microprocessor; and a Fourier Transform infrared spectrometer having a sample cell through which may flow a portion of the effluent stream, an infrared source to emit infrared radiation and pass the infrared radiation through the effluent stream, an infrared detector to detect transmitted infrared radiation at the selected infrared wavelengths and to generate absorbance data due to absorbance of the infrared radiation by the components, wherein each of the components absorbs infrared radiation at one or more of the infrared wavelengths, and an output apparatus to provide the absorbance data to the microprocessor; wherein the microprocessor is programmed to identify and quantify each of the plurality of components based upon the absorbance data and calibration data, the calibration data being obtained from recovery run analyses and calibrat
    Type: Grant
    Filed: April 1, 1999
    Date of Patent: September 4, 2001
    Assignee: BP Corporation North America Inc.
    Inventors: Hector L. Casal, Nazaneen Asker, Michael J. Seely, Linda L. Nero, Jean A. Baldwin
  • Patent number: 6265226
    Abstract: Rapid characterization and screening of polymer samples to determine average molecular weight, molecular weight distribution and other properties is disclosed. Rapid flow characterization systems and methods, including liquid chromatography and flow-injection analysis systems and methods are preferably employed. High throughput, automated sampling systems and methods, high-temperature characterization systems and methods, and rapid, indirect calibration compositions and methods are also disclosed. The described methods, systems, and devices have primary applications in combinatorial polymer research and in industrial process control.
    Type: Grant
    Filed: April 2, 1999
    Date of Patent: July 24, 2001
    Assignee: Symyx Technologies, Inc.
    Inventors: Miroslav Petro, Adam Safir, Ralph B. Nielsen, Thomas S. Lee
  • Patent number: 6261847
    Abstract: The sample dilution module includes an oil filled aspiration probe and mixing chamber that communicate with each other while the mixing chamber is maintained at an angle of approximately 5 to 45 degrees below a horizontal axis. The aspiration probe is maintained in a vertical orientation. A micro-bubble is aspirated between separate aspirations of test sample and diluent to prevent contact between the sample and diluent in the aspiration probe. The test sample and diluent are then drawn from the vertically oriented aspiration probe into the mixing chamber. After the sample and diluent are in the mixing chamber the micro-bubble of air can migrate away from the test sample and diluent to enable the test sample and diluent to contact each other. Mixing of the test sample and diluent is accomplished by moving the test sample and diluent back and forth in the mixing chamber without physical agitation of the mixing chamber and without any mixing element in the mixing chamber.
    Type: Grant
    Filed: July 10, 1998
    Date of Patent: July 17, 2001
    Assignee: Bayer Corporation
    Inventors: Robert W. Eherts, Evandro S. Denunzio
  • Patent number: 6250132
    Abstract: A modular apparatus for analyzing a fluid includes a disposable fluidic sensor module, a replaceable transducer module, and an expendable electronics package. The disposable fluidic sensor includes a fluidic flowmeter and a capillary structure formed in a plate-like member which receives a sample fluid flow. The fluidic flowmeter is responsive to the fluid flow to generate an output indicative of the flow rate of the fluid, and the capillary structure restricts the fluid flow such that a pressure drop across the capillary structure is related to the viscosity of the fluid. The fluidic flowmeter can be a fluidic oscillator whose oscillation frequency is related to the fluid flow rate. The oscillator flowmeter also serves as an orifice, with the pressure drop across the oscillator being related to the density of the fluid.
    Type: Grant
    Filed: December 21, 1999
    Date of Patent: June 26, 2001
    Assignee: metaSENSORS, Inc.
    Inventor: Tadeusz M. Drzewiecki
  • Patent number: 6230551
    Abstract: A component is washed with a fluid to release particulate contaminant. The particulate-containing fluid is passed through a screen (22) having a known number of apertures of identical known size. The change in pressure caused by the accumulation of particles in the screen is measured and compared with the pressure when the screen is clean. From this, a control system (54) determines the number of particles in the fluid having a size greater than the aperture size. This is related to a unit volume by measuring the volume of fluid passing through the screen (22). If the screen blocks before all the fluid is passed through the screen (22), the fluid is pulsed in forward and reverse flow to re-distribute the particles on the screen. The fluid is then back washed from the screen to a second screen (28) having a known number of apertures of identical size. The number of particles per unit volume having a size greater than the size of the apertures of the second screen is then determined.
    Type: Grant
    Filed: October 12, 1999
    Date of Patent: May 15, 2001
    Assignee: Pall Corporation
    Inventor: Ian Burniston
  • Patent number: 6221677
    Abstract: This invention provides a method and apparatus for detecting the presence of analyte particles in a sample fluid also comprising larger particles, particularly blood. It exploits diffusion to provide simultaneous filtering of the larger particles and reaction of the analyte particles. A sample stream and a reagent stream join on the upstream end of a laminar flow reaction channel and flow in adjacent laminar streams. The reagents can be in solution or immobilized on a bead. The analyte particles diffuse from the sample stream into the reagent stream, leaving behind the larger particles in the residual sample stream. In the reagent stream the analyte particles react with reagent particles and form product particles, thereby creating a product stream. At the downstream end of the reaction channel, the residual sample stream and the product stream are divided. The product particles are then detected, preferably optically, in the product stream.
    Type: Grant
    Filed: June 18, 1999
    Date of Patent: April 24, 2001
    Assignee: University of Washington
    Inventors: Caicai Wu, Bernhard Weigl, Margaret A. Kenny, Paul Yager
  • Patent number: 6218193
    Abstract: A high precision, small volume fluid processing system employs open ended capillary tubes to meter, aliquot and mix small volumes of sample fluid and reagents. The system has an automatic mechanism for moving the capillary tubes as well as automated sub-systems for incubating and mixing fluids within the capillary tubes.
    Type: Grant
    Filed: June 30, 1998
    Date of Patent: April 17, 2001
    Assignee: University of Washington
    Inventors: Ray Kraft, Neal A. Friedman, Deirdre Meldrum, Ronald Seubert
  • Patent number: 6171865
    Abstract: A reference sensor system is provided for detecting the presence and/or measuring the concentration of analyte particles in a sample stream. The system includes: a) a laminar flow channel; b) three or more inlet means in fluid connection with the laminar flow channel for respectively conducting into the laminar flow channel (1) an indicator stream which may include an indicator substance which indicates the presence of the analyte particles, (2) the sample stream, and (3) a reference stream, which can be a control stream and/or internal standard stream; and, c) wherein the laminar flow channel has a depth and/or width sufficiently small to allow laminar flow of said streams and a length sufficient to allow particles of the analyte to diffuse into the indicator stream to form a detection area. Branching channels may be provided as outlet means for conducting the streams out of the laminar flow channel.
    Type: Grant
    Filed: August 4, 1999
    Date of Patent: January 9, 2001
    Assignee: University of Washington
    Inventors: Bernhard H. Weigl, Mark R. Holl, Diane Zebert, Margaret Kenny, Caicai Wu
  • Patent number: 6159739
    Abstract: The present invention provides a sheath flow module made from a first plate of material having formed therein a laminar fluid flow channel; at least two inlets, each inlet joining the laminar flow channel at a junction, the first inlet junction being wider than the second inlet junction, and an outlet from the flow channel. A second plate, e.g. a transparent cover plate, seals the module and allows for optical measurements. A first inlet allows for introduction of a first fluid into the flow channel. The first fluid is the sheath fluid. A second inlet allows for introduction of a second fluid into the sheath fluid while it is flowing through the flow channel. The second fluid is the center fluid. Because the second inlet junction is narrower than the first inlet junction, the center fluid becomes surrounded on both sides by the sheath fluid. After all fluids have been introduced and sheath flow has been achieved, the depth of the flow channel can be decreased, leading to vertical hydrodynamic focusing.
    Type: Grant
    Filed: March 26, 1997
    Date of Patent: December 12, 2000
    Assignee: University of Washington
    Inventors: Bernhard Weigl, Paul Yager, James P. Brody
  • Patent number: 6150119
    Abstract: Throughput rates for microfluidic serial analysis systems are optimized by maximizing the proximity and speed with which multiple different samples may be serially introduced into a microfluidic channel network. Devices are included that include optimized parameters based upon desired throughput rates for a given set of reagents, reaction times and the like.
    Type: Grant
    Filed: January 19, 1999
    Date of Patent: November 21, 2000
    Assignee: Caliper Technologies Corp.
    Inventors: Anne R. Kopf-Sill, Andrea W. Chow
  • Patent number: 6130098
    Abstract: The movement and mixing of microdroplets through microchannels is described employing microscale devices, comprising microdroplet transport channels, reaction regions, electrophoresis modules, and radiation detectors. The discrete droplets are differentially heated and propelled through etched channels. Electronic components are fabricated on the same substrate material, allowing sensors and controlling circuitry to be incorporated in the same device.
    Type: Grant
    Filed: September 26, 1997
    Date of Patent: October 10, 2000
    Assignee: The Regents of the University of Michigan
    Inventors: Kalyan Handique, Bishnu Gogoi, Mark A. Burns, Carlos H. Mastrangelo
  • Patent number: 6100096
    Abstract: A detector for detecting and measuring nitric oxide. Gas-permeable capillary membrane fibers transport a reagent solution through a plenum containing gases to be measured. Nitric oxide molecules penetrate the walls of the fibers and undergo a chemiluminescent reaction within. The fibers and the plenum are translucent, allowing photons emitted by the chemiluminescent reaction to escape and be detected by a photodetector. The reagent is buffered at an alkaline pH and mixed with the enzyme carbonic anhydrase to minimize the measurement errors caused by the presence of carbon dioxide in the gas to be measured.
    Type: Grant
    Filed: March 9, 1998
    Date of Patent: August 8, 2000
    Assignee: 2B Technologies, Inc.
    Inventors: Mark J. Bollinger, John W. Birks, Jill K. Gregory
  • Patent number: 6040186
    Abstract: A modular vial autosampler has a storage area for vials containing samples to be analyzed and at least one modular sampling station. A vial transfer mechanism lifts a sample vial from the storage section, moves it to a station for identification and then to a sampling station, and under central control activates the sampling station for obtaining a sample for analysis. The vial transfer mechanism is movable in x, y, and z directions to capture and move a selected vial. The autosampler has a series of valves operable under central control to selectively introduce two different standards into the sample, and after obtaining the sample, for rinsing and purging the conduits or lines and needles to reduce sample carryover. The modular vial autosampler includes controls to selectively sample either a gas or a liquid using many of the same components.
    Type: Grant
    Filed: April 24, 1997
    Date of Patent: March 21, 2000
    Assignee: Tekmar Company
    Inventors: Edmund T. Lewis, Thomas B. Green
  • Patent number: 6007776
    Abstract: A measurement instrument for analyzing a body fluid of a human body comprises a casing having a pair of liquid inlets and a pair of liquid outlets, and a sensor assembly slidably telescoped in the casing. The sensor assembly comprises a pair of liquid passages each aligned with a corresponding one the pair of liquid inlets and a corresponding one of the pair of liquid outlets at a specified position of the sensor assembly. One of the liquid passages is associated with a sensor for being a specific ingredient in the body fluid.
    Type: Grant
    Filed: June 8, 1998
    Date of Patent: December 28, 1999
    Assignee: NEC Corporation
    Inventor: Toru Matsumoto
  • Patent number: 5981289
    Abstract: A hydrogen sulfide analyzer that continuously samples waste water from a waste stream or reservoir and measures the concentration of purgeable H.sub.2 S present (H.sub.2 SP) This information, when combined with the volume of water present, provides a control quality signal that regulates the feed rate of the destructor chemical into the waste stream. This results in chemical savings for the user. A second result is the reduction in odor complaints and the corrosion problems associated with H.sub.2 S emissions. The analyzer measures only the purgeable H.sub.2 S contained in the liquid sample. The analyzer violently agitates the sample containing dissolved H.sub.2 S in solution to simulate actual conditions at points of agitation in the waste water stream. It also provides nearly optimal partial pressure conditions for the H.sub.2 S to exit the solution as a free gas. Any H.sub.
    Type: Grant
    Filed: October 13, 1998
    Date of Patent: November 9, 1999
    Assignee: Isco, Inc.
    Inventors: Paul G. Wright, David J. Shannon, Lowell R. Nickolaus, Randy J. Forman, Clifford L. McDonald, Bennett K. Horenstein
  • Patent number: 5965450
    Abstract: A system for measuring the amount of cyanide species in a sample, namely total cyanide, dissociable cyanide, complex cyanide and thiocyanate, by using a single apparatus for simultaneous ultraviolet irradiation and distillation. The system which can be used with either segmented flow or flow injection sampling utilizes filter components which pass only lower frequency ultraviolet radiation interposed between a photoillumination source and the alkaline or acidified sample to first breakdown the strong complex cyanide from the sample without dissociation of thiocyanates. The system then distills the irradiated sample in the same apparatus by utilizing heat emitted from the photoillumination source to recover the total cyanides for measurement. Dissociable cyanides, as well as thiocyanate, are measured using the same apparatus by altering the filter components.
    Type: Grant
    Filed: July 2, 1998
    Date of Patent: October 12, 1999
    Inventor: Nabih P. Kelada
  • Patent number: 5948684
    Abstract: A reference T-sensor system is provided for detecting the presence and/or measuring the concentration of analyte particles in a sample stream. The system includes: a) a laminar flow channel; b) three or more inlet means in fluid connection with the laminar flow channel for respectively conducting into the laminar flow channel (1) an indicator stream which may include an indicator substance which indicates the presence of the analyte particles, (2) the sample stream, and (3) a reference stream, which can be a control stream and/or internal standard stream; c) wherein the laminar flow channel has a depth and/or width sufficiently small to allow laminar flow of the streams and a length sufficient to allow particles of the analyte to diffuse into the indicator stream to form a detection area; and d) outlet means for conducting the streams out of the laminar flow channel preferably to form a single mixed stream.
    Type: Grant
    Filed: July 25, 1997
    Date of Patent: September 7, 1999
    Assignee: University of Washington
    Inventors: Bernhard H. Weigl, Mark R. Holl, Diane Zebert, Margaret Kenny, Caicai Wu
  • Patent number: 5889195
    Abstract: A measuring arrangement for determining the concentration of gases dissolved in a liquid is proposed, which has a simple design and makes possible the use of known gas-measuring apparatus based on color reaction tubes or color reaction capillaries. A preferably flexible tube-like body is provided which is formed of a material that is permeable to the gases to be measured but is impermeable to the liquid. A carrier gas flows on the inside of this body and the body is connected to the gas-measuring apparatus upstream in the direction of the gas flow. The semipermeable material is preferably microporous polytetrafluoroethylene (PTFE).
    Type: Grant
    Filed: August 12, 1997
    Date of Patent: March 30, 1999
    Assignee: Dragerwerk AG
    Inventor: Ingo Kaneblei
  • Patent number: 5879629
    Abstract: A method and analyzer for monitoring the progress of a chemical process in which a fixed volume sample of the reactive mixture of the chemical process is periodically gathered and injected into a fluid stream of a liquid carrier. The sample in the liquid carrier is passed through an infrared detector which detects the amount present in the sample of a species of the reaction mixture which is indicative of the progress of the chemical process.
    Type: Grant
    Filed: October 3, 1996
    Date of Patent: March 9, 1999
    Assignee: Olin Corporation
    Inventors: Italo A. Capuano, William T. Lefebvre, Kenneth E. Creasy
  • Patent number: 5869773
    Abstract: An analysis method is disclosed, in which several samples are passed in succession through a reaction channel to a detector (17), and at least one reagent is introduced into the reaction channel (16) for reaction with the samples. An apparatus for implementing the method is also disclosed. Using the method and the apparatus, it is intended to specify an analysis method more capable of coping with different flow characteristics of the samples in fluid form. For that purpose, each sample and its associated reagent is introduced in a controlled manner into the reaction channel so that they form a block, along the length of which the local volume ratio between sample and reagent, averaged over a segment of predetermined length, is substantially constant, the length of the segment being substantially shorter than half the length of the block.
    Type: Grant
    Filed: May 2, 1997
    Date of Patent: February 9, 1999
    Assignee: Danfoss A/S
    Inventors: Bo Karlberg, Ole Ploug
  • Patent number: 5854072
    Abstract: The invention relates to a method and an apparatus for determining product-specific quality parameters of liquid, especially liquid (14) containing alcohol and held in a container (12) such as a bottle or can, the quality parameters being determined by means of sensors (22, 24, 26). To enable performing measurements with simply provisions and without complicated specimen preparation, and avoiding cross-sensitivities, it is proposed that the quality parameters of the liquid are determined under the conditions prevailing in the container, and liquid is initially delivered, under the pressure prevailing in the container, to a temperature unit (32) and adjusted to a temperature that corresponds to that of the sensors, and is then delivered to the sensors.
    Type: Grant
    Filed: August 6, 1996
    Date of Patent: December 29, 1998
    Inventors: Stephan Dittrich, Hubert Koukol, Robert Koukol
  • Patent number: 5846396
    Abstract: The present invention provides a liquid distribution system, which is useful in a number of contexts, including in accomplishing various synthetic, diagnostic and drug screening reactions. The distribution system can comprise an alpha reservoir and a beta reservoir, a first set of parallel and adjacent first and second feeder channels and a second set of parallel and adjacent third and fourth feeder channels which are offset from the first and second feeder channels, wherein (a) the first and third feeder channels are connected to the alpha reservoir via a first connector channel that is situated above or below the second and fourth feeder channels and are independent of the beta reservoir and (b) the second and fourth feeder channels are connected to the beta reservoir via a second connector channel that is situated above or below the first and third feeder channels and are independent of the alpha reservoir. The distribution system is preferably a microscale distribution system.
    Type: Grant
    Filed: November 9, 1995
    Date of Patent: December 8, 1998
    Assignee: Sarnoff Corporation
    Inventors: Peter John Zanzucchi, Satyam Choudary Cherukuri, Sterling Edward McBride, Robert R. Demers, Aaron W. Levine, Barry Jay Thaler, Robert Leon Quinn, Paul Leonard Braun, William Chiang, Zhonghui Hugh Fan, Steven A. Lipp, James R. Matey
  • Patent number: 5834314
    Abstract: Embodiments disclosed involve methods and constructions for metering, and in some instances combining, fluids. One such method includes fluidly connecting a source of first fluid to be metered with a pressure source capable of moving the first fluid with a first valve and a conduit. The first valve is operated such that first fluid moves in the conduit. The conduit is fluidly connected with a source of second fluid that has a fluid flow rate greater than the first fluid with a second valve. The second valve is operated such that the second fluid moves into the conduit. One construction for metering a fluid comprises a source of first fluid to be metered, a pressure source for moving the first fluid to be metered, and a first valve. A conduit fluidly connects the source of first fluid, the pressure source for moving the first fluid and the first valve such that operation of the first valve causes movement of the first fluid responsive to the pressure source.
    Type: Grant
    Filed: August 6, 1997
    Date of Patent: November 10, 1998
    Assignee: Abbott Laboratories
    Inventors: James D. Gates, Jeffrey Y. Pan, Tung-Ming Huang, Donald Ver Lee, Alan J. Alcock, Conan K. N. Li, Karen A. Egan
  • Patent number: 5817519
    Abstract: The present invention provides a highly sensitive and accurate method and system for the discrimination and quantification of platelets in a whole blood sample using automated hematology instruments. The method and system of the invention provide the accurate measurements of platelet dry mass and platelet component concentration in both normal blood samples and in abnormal blood samples, such as those from thrombocytopenic patients. The determination of platelet dry mass and platelet component concentration can serve to assess the activation state of platelets since activated platelets possess measurably lower component concentrations and refractive indices than do unactivated platelets. The method and system of the invention also allows the clinician or skilled practitioner to determine the age of a blood sample on the basis of the measured parameter of platelet component concentration.
    Type: Grant
    Filed: November 1, 1996
    Date of Patent: October 6, 1998
    Assignee: Bayer Corporation
    Inventors: David Zelmanovic, Gregory M. Colella, Edward J. Hetherington, Evelyn Sabrinah Chapman, Lynn Paseltiner
  • Patent number: 5798035
    Abstract: A high throughput chemical synthesis system utilizing cylindrical reaction vessels is disclosed. Reaction vessels are utilized which include a tubular member adapted for placement of electronically readable identifying indicia thereon. The identifying indicia are representative of reaction conditions within the tubular member and of one or more reagents utilized in a reaction within the tubular members. A method of performing chemical synthesis on solid phase reactive material within a plurality of reaction vessels using a plurality of reaction stages resulting in final products and employing identifying indicia representing the reaction stages is also disclosed. The method includes reading the identifying indicia located on the reaction vessels, reacting one or more reagents within the reaction vessels under particular reaction conditions which may be determined by reading the identifying indicia, thereby synthesizing chemical compounds within the reaction vessels.
    Type: Grant
    Filed: October 3, 1996
    Date of Patent: August 25, 1998
    Assignee: Pharmacopeia, Inc.
    Inventors: Gregory L. Kirk, Robert H. Grubbs
  • Patent number: 5795788
    Abstract: The present invention relates to a method and apparatus for managing liquid flow through small bore tubing (1,2,3) or channels (13) by freezing the liquid or thawing the frozen liquid in a small segment of the tube or channel.
    Type: Grant
    Filed: November 21, 1995
    Date of Patent: August 18, 1998
    Assignee: Glaxo Group Limited
    Inventors: Christopher David Bevan, Ian Martin Mutton
  • Patent number: 5785926
    Abstract: A high precision, small volume fluid processing system employs open ended capillary tubes to meter, aliquot and mix small volumes of sample fluid and reagents. The system has an automatic mechanism for moving the capillary tubes as well as automated sub-systems for incubating and mixing fluids within the capillary tubes.
    Type: Grant
    Filed: September 19, 1995
    Date of Patent: July 28, 1998
    Assignees: University of Washington, GeneTools, Inc.
    Inventors: Ronald Seubert, Maynard V. Olson, Deirdre Meldrum, Blake Hannaford, Peter Wiktor, Neal A. Friedman, Donald B. Snow, Ray Kraft
  • Patent number: 5780754
    Abstract: An analysis method is disclosed, in which several samples are passed in succession through a reaction channel (16) to a detector (17), and at least one reagent is introduced into the reaction channel (16) for reaction with the samples. An apparatus for implementing the method is also disclosed. Using the method and the apparatus, it is intended to specify an analysis method more capable of coping with different flow characteristics of the samples in fluid form. For that purpose, each sample and its associated reagent is introduced in a controlled manner into the reaction channel so that they form a block, along the length of which the local volume ratio between sample and reagent, averaged over a segment of predetermined length, is substantially constant, the length of the segment being substantially shorter than half the length of the block.
    Type: Grant
    Filed: November 21, 1996
    Date of Patent: July 14, 1998
    Assignee: Danfoss A/S
    Inventors: Bo Karlberg, Ole Ploug
  • Patent number: 5744099
    Abstract: An apparatus and method is disclosed for transferring biological fluids such as blood and serum from closed containers to multiple receiving containers. The disclosed methods and apparatus perform the transfer of an accurate and precise amount of biological liquid without dilution of the biological liquid, and without splattering of the biological liquid on the walls of the receiving container. Furthermore, the method discloses how to obtain equal concentrations of white blood cells in multiple receiving containers characteristic of their concentration in the sealed container.
    Type: Grant
    Filed: September 15, 1995
    Date of Patent: April 28, 1998
    Assignee: Cytek Development Inc.
    Inventors: Eric S. Chase, Harvey L. Schulte
  • Patent number: 5728532
    Abstract: An apparatus and method for selectively attracting and inhibiting attraction of at least one predetermined molecule to a site in a molecular detection device utilizes a first electrode and a second electrode proximate to the site. The first electrode selectively generates a first electric field proximate to the site in response to a first signal applied thereto. The first electric field provides an attractive force to attract the at least one predetermined molecule toward the site. The second electrode selectively generates a second electric field proximate to the site in response to a second signal applied thereto. The second electric field selectively inhibits attraction of the at least one predetermined molecule toward the site by providing a repulsive force which dominates the attractive force provided by the first electric field.
    Type: Grant
    Filed: May 31, 1996
    Date of Patent: March 17, 1998
    Inventor: Donald E. Ackley
  • Patent number: 5695720
    Abstract: A computer-controlled fluid manipulation and analysis apparatus for chemical, biochemical and clinical analysis, sample preparation, and microscale chemical and biochemical synthesis, having one or more stream selection hubs with multiple ports through which microliter volumes of multiple fluid streams may be accessed, stacked, mixed and otherwise transferred by two or more cooperant pumping systems in a highly repeatable and fully software programmable manner. The inherent or resulting properties of said fluids may be automatically recorded via one or more appropriate electronic detectors and data recording systems. Systems comprised of two or more hubs exhibit higher properties of a flow network, and allow more than one fluid segment to be processed simultaneously. Bi-directional flow may occur in each inter-hub connection, and a plurality of possible transport routes can exist between hubs. This leads to enhanced flexibility in sequential processing of each fluid segment.
    Type: Grant
    Filed: April 4, 1995
    Date of Patent: December 9, 1997
    Assignee: B.C. Research Inc.
    Inventors: Adrian P. Wade, James McKinley
  • Patent number: 5668014
    Abstract: To estimate nitric acid ions and nitrous acid ions in a sample solution, a method is proposed which comprises the steps of (a) feeding both the sample solution and a reducing agent to an acidic solution which is flowing in a thin pipe; (b) positively mixing the sample solution and the reducing agent and thus reacting the same in a given portion of the pipe; (c) leading the reacted solution to a gas/liquid separator thereby to separate a gaseous phase from the reacted solution; and (d) estimating the nitric acid ions and nitrous acid ions in the gaseous phase.
    Type: Grant
    Filed: June 2, 1995
    Date of Patent: September 16, 1997
    Assignee: Kabushiki Kaisha Meidensha
    Inventors: Toyoaki Aoki, Hiroshi Tsugura
  • Patent number: 5633168
    Abstract: continuous flow analysis system measures the cholesterol distribution among different lipoprotein classes in a blood sample. A blood plasma sample is separated into different lipoprotein classes by single vertical spin density gradient ultracentrifugation. The sample is then introduced in a continuous succession into a reagent stream which flows continuously through a detector. A sensor detects the end of the sample in a sample stream before it is introduced into said reagent stream. A wash solution is introduced into the sample stream in response to detection of the end of said sample. The wash solution back flows through the sample stream into the sample container to wash any residue and/or air bubbles from the sample stream. After a predetermined time period, the sample stream is closed and the process is repeated for the next sample.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: May 27, 1997
    Inventors: Larry M. Glasscock, Alice Glasscock, Krishnaji R. Kulkarni, David W. Garber
  • Patent number: 5630987
    Abstract: An apparatus for measuring the concentration of a contaminant in a fluid includes a measuring chamber in a fluid path, a first source of optical radiation of a predetermined wavelength adapted to direct the radiation through the measuring chamber, and a detector for detecting the radiation after passage through the measuring chamber. The fluid path also has a pump provided to urge a test fluid from a fluid source to the measuring chamber, the test fluid being subjected to containing the contaminant, a fluid processor to process the fluid to change an optical effect of the contaminant, an acid wash to inhibit the effect of precipitation of cations within the fluid path, a fluid bypass to bypass the fluid processor and a valve to alternately direct the fluid to the fluid processor and the bypass.
    Type: Grant
    Filed: January 24, 1995
    Date of Patent: May 20, 1997
    Assignee: British Technology Group Limited
    Inventors: Ronald Briggs, Kenneth T. V. Grattan, Zoheir Movaziz
  • Patent number: 5624846
    Abstract: A continuous flow analyzing method and an apparatus for carrying out the analyzing method wherein a sample is injected in a continuously flowing carrier and the sample is introduced into a detector by the carrier to thereby perform a quantitative analysis contained in the sample. In the method the sample to be analyzed is filled into a sample introduction switchover valve (SISV); a portion of the sample from the SISV is injected into the carrier and an analysis of this sample is conducted to obtain a detection peak for the analyzed sample. These steps are repeated and the sample is continuously analyzed by, in the case where a detection peak obtained in the detector is under an optimum analysis range, increasing an injection amount of the sample, and in the case where the detection peak obtained in the detector is over the optimum range, decreasing the injection amount of the sample. Adjustment of the detection peak is repeated until the detection peak reaches the optimum analysis range.
    Type: Grant
    Filed: April 28, 1995
    Date of Patent: April 29, 1997
    Assignee: Mitsubishi Materials Corporation
    Inventors: Yutaka Hayashibe, Yasumasa Sayama
  • Patent number: 5601784
    Abstract: An on-line control and monitoring system for automatically and continuously analyzing key process indicators in a wet lime/limestone flue gas desulfurization process is provided. The on-line control and monitoring system obtains a slurry and/or a slurry flitrate which is directed at selected fluid flow rates to one or more analytical devices each selected to analyze a flue gas desulfurization process indicator. Data is provided to a data acquisition system which processes the analysis results from the analytical devices and provides flue gas desulfurization process control information. This on-line monitoring and control system can be used to monitor and control the addition rate of performance enhancement additives such as organic acids, thiosulfate, oxidation air and the like.
    Type: Grant
    Filed: September 9, 1994
    Date of Patent: February 11, 1997
    Assignee: Electric Power Research Institute
    Inventors: Robert L. Glover, Robert E. Moser, Frank Meserole, Carl Richardson, Gerard B. Maybach, Gordon Maller, Timothy Hanley
  • Patent number: 5571396
    Abstract: The present invention provides sensing electrodes and electrode assemblies for use in measuring the activity of ions in a fluid sample; measuring blocks which include a sensing module housing such sensing electrodes and a reference electrode; and a fluid analysis system which includes such measuring blocks.
    Type: Grant
    Filed: July 12, 1993
    Date of Patent: November 5, 1996
    Assignee: Dade International Inc.
    Inventors: Alan D. Cormier, Melvin S. Weinberg, Ronald L. Jones, Janet D. Vitiello
  • Patent number: 5565172
    Abstract: A method and apparatus for detecting the presence of a vapor of an alkyl ester of phosphoric acid, particularly tributylphosphate, in ambient air. A sample of ambient air is heated to convert any alkyl ester of phosphoric acid to an alkene. The heated sample of air is then passed to a sample loop. Carrier air periodically carries a fixed volume of sample from the sample loop through a chromatographic column to a photoionization detector which detects the presence and amount of the alkene in the sample.
    Type: Grant
    Filed: June 13, 1994
    Date of Patent: October 15, 1996
    Assignee: Olin Corporation
    Inventors: Italo A. Capuano, Kenneth E. Creasy
  • Patent number: 5561068
    Abstract: A system and method for minimizing the effects of background signals in masking signals indicating the presence of substances to be detected such as contaminants in materials moving rapidly along a conveyor. The contaminants detected may include nitrogen containing compounds and hydrocarbons. The system and method minimize, during detection of the presence or absence of such substances, the number of falsely positive indications of the presence of such substances due to background signals and changes in background signals. The substances detected are divided into first and second sample portions and the respective portions are heated. The first heated portion is mixed with ozone to cause a chemical action therewith in order to generate radiation by chemiluminescence having characteristic wavelengths related to substances in the first portion.
    Type: Grant
    Filed: April 4, 1995
    Date of Patent: October 1, 1996
    Assignee: The Coca-Cola Company
    Inventors: David P. Rounbehler, David H. Fine, Eugene K. Achter, Stephen J. MacDonald, Daniel B. Dennison
  • Patent number: 5559339
    Abstract: Embodiments disclosed herein provide apparatuses and methods for verifying dispense of a fluid from a dispense nozzle. According to one method, a path of electromagnetic radiation from a source to a receiver is obstructed with the fluid dispensed from the dispense nozzle. The intensity of the electromagnetic radiation received by the receiver is measured. The measured intensity is compared with a predetermined intensity to verify the dispense of fluid from the dispense nozzle. One apparatus for verifying dispense of a fluid comprises a source of electromagnetic radiation, and a receiver of the electromagnetic radiation from the source of the electromagnetic radiation operatively associated with the source of the electromagnetic radiation such that the electromagnetic radiation from the source is received by the receiver.
    Type: Grant
    Filed: October 31, 1994
    Date of Patent: September 24, 1996
    Assignee: Abbott Laboratories
    Inventors: Richard A. Domanik, Gordon Sohl, John Kotlarik, Noman Abunimeh
  • Patent number: 5550053
    Abstract: A method for calibrating an automatic chemical analyzer whereby an improved baseline value is calculated. The analyzer uses a photodetector to detect the amount of light passing through a flow cell and correlates this value to the amount of analyte present in a sample solution. In the preferred embodiment, silica is the analyte under investigation. A baseline solution of a specified (preferably zero) analyte concentration, or a sample solution of unknown analyte concentration, is introduced into a chemical module after chemical reagents have reacted with themselves to form a color complex. The resulting solution is passed to the photodetector which determines the amount of analyte present. This value corresponds to the analyte contaminants within the reagents and can be subtracted out by further calculations.
    Type: Grant
    Filed: January 5, 1995
    Date of Patent: August 27, 1996
    Assignee: SI Industrial Instruments, Inc.
    Inventor: Jerome Salpeter
  • Patent number: 5547875
    Abstract: A method and apparatus for recalibrating analytical instruments such as atomic absorption and inductively coupled plasma spectrophotometers comprises the use of coupled piston pumps and valves in a fluid conduit system to obtain a sample value (h) during one half of a pump cycle and standard gradients (S1-S6) during the other half cycle. The piston pumps are actuated by cams of selected profiles to obtain a predetermined flow rate from each pump, the flow from each pump being selectively combined to construct standard gradients from two or more standard solutions and to effect autoranging of the standards in response to a previously determined sample value.
    Type: Grant
    Filed: January 10, 1995
    Date of Patent: August 20, 1996
    Assignee: Ionode Pty Ltd.
    Inventors: John D. Petty, Russell M. Peachey
  • Patent number: 5510244
    Abstract: A method, apparatus and kit for assaying the L- and D-optical isomers and optionally the oxidation product derived from a L- (or D-) optical isomer.
    Type: Grant
    Filed: May 27, 1993
    Date of Patent: April 23, 1996
    Assignee: Kanzaki Paper Manufacturing Co., Ltd.
    Inventors: Yukie Inoue, Ryuzo Hayashi, Naoka Matsuya
  • Patent number: RE37194
    Abstract: A high throughput chemical synthesis system utilizing cylindrical reaction vessels is disclosed. Reaction vessels are utilized which include a tubular member adapted for placement of electronically readable identifying indicia thereon. The identifying indicia are representative of reaction conditions within the tubular member and of one or more reagents utilized in a reaction within the tubular members. A method of performing chemical synthesis on solid phase reactive material within a plurality of reaction vessels using a plurality of reaction stages resulting in final products and employing identifying indicia representing the reaction stages is also disclosed. The method includes reading the identifying indicia located on the reaction vessels, reacting one or more reagents within the reaction vessels under particular reaction conditions which may be determined by reading the identifying indicia, thereby synthesizing chemical compounds within the reaction vessels.
    Type: Grant
    Filed: May 9, 2000
    Date of Patent: May 29, 2001
    Assignee: Pharmacopeia, Inc.
    Inventors: Gregory L. Kirk, Robert H. Grubbs