Alkaline Earth Metal (mg, Ca, Sr, Or Ba) Patents (Class 423/155)
  • Patent number: 8173086
    Abstract: A method for recovering base metal values from oxide ore is provided, where the ore includes a first group metal selected from iron, magnesium and aluminum and a second group metal selected from nickel, cobalt and copper. The method includes reducing ore particle size to suit the latter unit operations, favoring contact of the metal elements, contacting the ore with ferric or ferrous chloride, hydrated or anhydrous, to produce a mix of ore and iron(II or III) chloride, subjecting the mixture of the ore and ferric or ferrous chloride to enough energy to decompose the chlorides into hydrochloric acid and a iron oxide, contacting the readily-formed hydrochloric acid with the base metal oxides from the second group, forming their respective chlorides, selectively dissolve the produced base metal chlorides, leaving the metals as oxides and in the solid state, and recovering the dissolved base metal values from aqueous solution.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: May 8, 2012
    Assignee: Vale S.A.
    Inventors: Antonio Clareti Pereira, Tiago Valentim Berni
  • Patent number: 8163828
    Abstract: The invention concerns a process for preparing an additive for polymers, the additive itself and the use of the additive for improving the surface properties of polymers.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: April 24, 2012
    Assignee: Sachtleben Chemie GmbH
    Inventors: Peter Ebbinghaus, Bernhard Becker, Jens Kohnert, Jörg Hocken, Ralf Schellen, Bernd-Michael Klein, Friedrich Müller, Sonja Grothe, Bernd Rohe
  • Patent number: 8158089
    Abstract: Particular aspects provide a method for recovering phosphate, comprising: obtaining an effluent or wastewater, etc. having calcium-sequestered phosphate; adding to the effluent or wastewater a calcium chelating or sequestration agent suitable to chelate or sequester Ca++ ions from the calcium-sequestered phosphate to facilitate release of phosphate from the calcium-sequestered phosphate; transferring, facilitated by said Ca++ ion capture and in the presence of sufficient concentrations of NH4+ and Mg2 ions, of the phosphate into struvite (magnesium ammonium phosphate hexahydrate or MgNH4PO4.6H2O), or hydrated magnesium ammonium complex of phosphate; and recovering the struvite, or the formed hydrated magnesium ammonium complex. Preferably, the method further comprises acidification of the effluent or wastewater to facilitate release of Ca++ ions from the calcium-sequestered phosphate and chelation of sequestration of the Ca++ ions by the calcium chelating or sequestration agent.
    Type: Grant
    Filed: July 14, 2008
    Date of Patent: April 17, 2012
    Assignees: Washington State University Research Foundation, Multiform Harvest, Inc.
    Inventors: Tianxi Zhang, Keith E. Bowers, Joseph H. Harrison, Shulin Chen
  • Patent number: 8153088
    Abstract: A method to prevent build-up of limestone in a slaker that is used for batchwise slaking of burnt lime is described, in which lime slurry is produced with a greater degree of fineness and prolonged sedimentation time, where for immediate cleansing of the slaker before next slaking, after said calibration of the load cell aggregate, a number of valves are opened for given time periods for addition of flushing water to respective nozzles, in that flushing water is supplied sequentially via each valve to associated nozzle(s), until a predetermined amount of flushing water is reached in the slaker.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: April 10, 2012
    Assignee: Poju R. Stephansen AS
    Inventor: Poju R. Stephansen
  • Patent number: 8142752
    Abstract: The method which is the subject of protection is characteristic by the fact that firstly is made the suspension consisting of 10 to 20 mass % of mineral talc and 80 to 90 mass % of water; resulting suspension is homogenized and thereafter is heated to the temperature 50° to 70° C. To heated suspension is then added 37% hydrochloric acid in the amount of 1 to 6 mass % under continuous stirring. After reaching pH 3 to 5 and increasing the temperature up to 85° C., to the suspension is then added concentrated sulphuric acid in the amount of 1 to 5 mass %. The suspension is further maintained at the temperature up to 90° C., then it is chilled to the ambient temperature and thereafter is separated the sediment which is finally dried at the temperature 140° to 160° C. after washing with water and reaching pH 5 to 6.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: March 27, 2012
    Inventors: Ivan Kovanda, Leo Benkovsky, Karol Pobis, Jiri Nemec, Jana Ondrasikova
  • Patent number: 8137844
    Abstract: A method for manufacturing a cathode active material for a lithium rechargeable battery, including: selecting a first metal compound from a group consisting of a halide, a phosphate, a hydrogen phosphate and a sulfate of Mg or Al; selecting a second metal compound from a group consisting of an oxide, a hydroxide and a carbonate of Mg or Al; combining the first metal compound and the second metal compound to obtain a metal compound, the metal compound containing either Mg or Al atoms; mixing a lithium compound, a transition metal compound and the metal compound to obtain a mixture; and sintering the mixture.
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: March 20, 2012
    Assignee: Nippon Chemical Industrial Co., Ltd.
    Inventors: Hidekazu Awano, Minoru Fukuchi, Yuuki Anbe
  • Publication number: 20110280778
    Abstract: The present invention relates to a method of precipitation of metal ions. Mineral(s), oxide(s), hydroxide(s) of magnesium and/or calcium are adopted as raw materials, and the raw material(s) is processed through at least one step of calcination, slaking, or carbonization to produce aqueous solution(s) of magnesium bicarbonate and/or calcium bicarbonate, and then the solution(s) is used as precipitant(s) to deposit rare earth, such as nickel, cobalt, iron, aluminum, gallium, indium, manganese, cadmium, zirconium, hafnium, strontium, barium, copper and zinc ions. And at least one of metal carbonates, hydroxides or basic carbonates is obtained, or furthermore the obtained products are calcined to produce metal oxides. The invention takes the cheap calcium and/or magnesium minerals or their oxides, hydroxides with low purity as raw materials to instead common precipitants such as ammonium bicarbonate and sodium carbonate etc.
    Type: Application
    Filed: February 9, 2010
    Publication date: November 17, 2011
    Inventors: Xiaowei Huang, Zhiqi Long, Hongwei Li, Dali Cui, Xinlin Peng, Guilin Yang, Yongke Hou, Chunmei Wang, Shunli Zhang
  • Publication number: 20110274597
    Abstract: The application of aqueous solution of magnesium bicarbonate and/or calcium bicarbonate in the process of extraction separation and purification of metals is disclosed, wherein the aqueous solution of magnesium bicarbonate and/or calcium bicarbonate is used as an acidity balancing agent, in order to adjust the balancing pH value of the extraction separation process which uses an acidic organic extractant, improve the extraction capacity of organic phase, and increase the concentration of metal ions in the loaded organic phase.
    Type: Application
    Filed: January 14, 2010
    Publication date: November 10, 2011
    Inventors: Xiaowei Huang, Zhiqi Long, Xinlin Peng, Hongwei Li, Guilin Yang, Dali Cui, Chunmei Wang, Na Zhao, Liangshi Wang, Ying Yu
  • Patent number: 8029702
    Abstract: An electrostatic dissipative paint including a plurality of particles having a composition selected from the group consisting of gallium magnesium oxide, gallium aluminum magnesium oxide and combinations thereof. The paint further includes an inorganic binder mixed with the particles to form a mixture. A method of making a thermal paint, a method of applying thermal paint and painted components are also disclosed.
    Type: Grant
    Filed: February 1, 2008
    Date of Patent: October 4, 2011
    Assignee: The Boeing Company
    Inventors: James F. Cordaro, Lynn E. Long
  • Patent number: 8029817
    Abstract: The invention is a silicon substituted oxyapatite compound (Si-OAp) for use as a synthetic bone biomaterial either used alone or in biomaterial compositions. The silicon substituted oxyapatite compound has the formula Ca5(PO4)3-x(SiO4)xO(1-x)/2, where 0<x<1.0.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: October 4, 2011
    Assignee: Warsaw Orthopedic, Inc.
    Inventors: Michael Sayer, Joel Reid, Timothy J. N. Smith, Jason Hendry
  • Patent number: 7985390
    Abstract: The invention relates to hydrotalcite intercalated by precipitated silica, and to the use thereof as a charge in a polymer composition. The invention also relates to polymer compositions comprising one such charge, and to finished articles based on such compositions.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: July 26, 2011
    Assignee: Rhodia Chimie
    Inventors: Michel Foulon, Laurence Stelandre
  • Publication number: 20110160040
    Abstract: This invention is directed to a method for removing calcium material from a substrate or catalytic converter. In particular, this invention is directed to a method for removing calcium material, particularly in the form of calcium-containing fly ash, from a substrate using a partially protonated or non-protonated polycarboxylic acid treatment material.
    Type: Application
    Filed: December 30, 2009
    Publication date: June 30, 2011
    Applicant: CoaLogix Tech Inc.
    Inventors: Michael D. Cooper, Nagesh Patel
  • Patent number: 7927566
    Abstract: The present invention relates to a treatment of high-level waste of radiochemical production containing radionuclides and macro-admixtures including sodium. The method of extraction of radionuclides by processing acidic aqueous waste solutions by extractants containing macrocyclic compounds selected from the group of crown ethers having aromatic fragments containing alkyl and/or hydroxyalkyl substituents of a linear and/or branched structure, and/or cyclohexane fragments containing alkyl and/or hydroxyalkyl substituents of a linear and/or branched structure, and/or fragments of —O—CHR—CH2O—, where R is the normal or branched alkyl or hydroxyalkyl in organic solvents containing polyfluorinated telomeric alcohol 1,1,7-trihydrododecafluoroheptanol-1 having the formula H(CF2CF2)nCH2OH, where n=3, and a mixture of polyoxyethylene glycol ethers of synthetic primary higher aliphatic alcohols of a fraction C12-C14 of a general formula CnH2n+1O(C2H4O)mH, where n=12-14, m=2 is proposed.
    Type: Grant
    Filed: September 9, 2004
    Date of Patent: April 19, 2011
    Assignees: Designing-Contructing and Industrial-Inculcating Enterprise “Daymos Ltd.”, Federal State Institute “Federal Agency for Legal Protection of Military Special and Dual Use, Intellectual Activity Results” under Ministry of Justice of the Russian Federation (FSI “FALPIAR”)
    Inventors: Jury Vasilievich Glagolenko, Mikhail Vasilievich Logunov, Igor Vitalievich Mamakin, Vladimir Mikhailovich Polosin, Sergey Ivanovich Rovny, Vadim Alexandrovich Starchenko, Jury Pavlovich Shishelov, Nikolay Gennadievich Yakovlev
  • Patent number: 7883681
    Abstract: A method for making a white synthetic carbide lime filler composition of calcium hydroxide and calcium carbonate, wherein the calcium carbonate is in the form of surface carbonation on the calcium hydroxide. The method can include calcining calcium carbonate, hydrating the calcined material under controlled conditions which maintain a low moisture content and fracture the hydrated material into small particles of calcium hydroxide, carbonating the small calcium hydroxide particles to create the surface carbonation of calcium carbonate, and classifying the carbonated synthetic carbide lime particles to separate off oversized particles. The method can use a combined classifying and carbonating process, and a modified classifying vessel can be provided to carry out the combined process.
    Type: Grant
    Filed: May 7, 2004
    Date of Patent: February 8, 2011
    Inventor: D. Mark Meade
  • Publication number: 20110020199
    Abstract: The present invention provides reagents that may be useful for treating wastes such as impure aqueous materials including wastewater to remove a significant proportion of the heavy metals that may be contained therein. The reagents include a calcium aluminosilicate (CAS) source and may include one or more of the following elements as an oxide: calcium oxide, aluminum oxide, silicon oxide, iron oxide, magnesium oxide, sodium oxide, potassium oxide, and sulfate. Further, the reagent comprises lime either as CaO or Ca(OH)2. In addition, the invention proyides methods for treating wastes such as impure aqueous materials to remove a significant proportion of the heavy metals contained therein.
    Type: Application
    Filed: June 11, 2010
    Publication date: January 27, 2011
    Inventors: Raymond T. Hemmings, Bruce J. Cornelius
  • Patent number: 7857680
    Abstract: A method for producing a glass substrate for a magnetic disk by polishing a circular glass plate, which comprises a step of polishing the principal plane of the circular glass plate by using a slurry containing a CeO2 crystal powder, the CeO2 crystal powder being obtained in such a manner that a melt containing CeO2 is quenched to obtain an amorphous material, and the amorphous material is subjected to heat treatment to obtain a CeO2 crystals-precipitated amorphous material, which is subjected to acid treatment to separate and extract the CeO2 crystal powder from the CeO2 crystals-precipitated amorphous material.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: December 28, 2010
    Assignee: Asahi Glass Company, Limited
    Inventors: Katsuaki Miyatani, Osamu Miyahara, Yuzuru Tanabe, Hiroshi Usui, Yoshihisa Beppu, Kazuo Sunahara, Mitsuru Horie, Satoshi Kashiwabara, Tomohiro Sakai, Yoshinori Kon, Iori Yoshida
  • Patent number: 7811535
    Abstract: The present invention provides an improved process for the preparation of MgO of high purity >99% from salt bitterns via intermediate formation of Mg(OH)2 obtained from the reaction of MgCl2 and lime, albeit indirectly, i.e., MgCl2 is first reacted with NH3 in aqueous medium and the slurry is then filtered with ease. The resultant NH4Cl-containing filtrate is then treated with any lime, to regenerate NH3 while the lime itself gets transformed into CaCl2 that is used for desulphatation of bittern so as to recover carnallite and thereafter MgCl2 of desired quality required in the present invention. The crude Mg(OH)2 is dried and calcined directly to produce pure MgO, taking advantage of the fact that adhering impurities in the Mg(OH)2 either volatilize away or get transformed into the desired product, i.e., MgO.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: October 12, 2010
    Assignee: Council of Scientific & Industrial Research
    Inventors: Pushpito Kumar Ghosh, Himanshu Labhshanker Joshi, Hasina Hajibhai Deraiya, Maheshkumar Ramniklal Gandhi, Rohit Harshadrai Dave, Kaushik Jethalal Langalia, Vadakke Puthoor Mohandas
  • Publication number: 20100226837
    Abstract: A process for producing metal compounds directly from underground mineral deposits including the steps of forming a borehole at a site into a mineral deposit containing metal compounds, inserting a slurry-forming device having a nozzle into the borehole adapted to direct pressurized water through the nozzle into the mineral deposit, supplying pressured water through the nozzle into the mineral deposit forming a mineral slurry containing metal compounds, extracting the mineral slurry containing metal compounds through the borehole, leaching the mineral slurry to convert the metal compounds to a soluble form in a leach solution, and removing metals and metal compounds by treating the leach solution with an extraction treatment adapted to remove the metal products. Steps of leaching the mineral slurry and removing metal products are performed at a location remote from the borehole site. Alternatively, the step of removing metal products from mineral slurry may be accomplished by pyrometallurgical processes.
    Type: Application
    Filed: January 27, 2010
    Publication date: September 9, 2010
    Applicant: COOPERATIVE MINERAL RESOURCES, LLC
    Inventors: Steven C. CARLTON, Steven G. AXEN, Kevin P. KRONBECK
  • Patent number: 7763221
    Abstract: A novel process for complete utilization of olivine is based on purification of brine by oxidation and precipitation of iron and nickel compounds.
    Type: Grant
    Filed: June 6, 2005
    Date of Patent: July 27, 2010
    Assignee: Cod Technologies A.S.
    Inventors: Oddmund Wallevik, Tom Rames Jørgensen, Aage Aasheim, Birger Langseth
  • Patent number: 7753987
    Abstract: The present invention concerns a high vacuum in-situ refining method for high-purity and superhigh-purity materials and the apparatus thereof, characterized in heating the upper part and lower part of crucible separately using double-heating-wires diffusion furnace under vacuum, thereby forming the temperature profile which is high at upper part and low at lower part of crucible, or in reverse during different stages; then heating the crucible in two steps to remove impurities with high saturation vapor pressure and low saturation vapor pressure respectively in efficiency; and obtaining high-purity materials eventually. The whole procedure is isolated from atmosphere, reducing contamination upon stuff remarkably. The present invention could provide products with high-quality and high production capacity, which are stable in performance, therefore is reliable and free from contamination.
    Type: Grant
    Filed: April 11, 2006
    Date of Patent: July 13, 2010
    Assignee: The Chinese Academy of Sciences Institute of Physics
    Inventors: Xiaolong Du, Zhaoquan Zeng, Hongtao Yuan, Handong Li, Qikun Xue, Jinfeng Jia
  • Patent number: 7740814
    Abstract: A novel solution route has been developed that after heat-treatment to 500-600° C. under inert atmosphere, yields highly porous composites of nano-sized metal (Ni) particle inclusions in ceramics (Al2O3). Metal loadings could be made from <1% to >95% Ni. The metal inclusion sizes in the Ni—Al2O3 system with the 10 atom % Ni sample were 4-7 nm, while for the 75 atom % Ni sample they were 5-8 nm. It was shown that the 10 atom % Ni sample could be used as a catalyst for the conversion of CO2 and CH4 in the temperature range 550-700° C., while higher temperatures led to growth of the Ni particles and carbon poisoning over time. The solution routes could also be deposited as thin dense films containing <10 nm Ni particles. Such films with high Ni-particle loadings deposited on aluminium substrates have shown very good solar heat absorber proficiency and provide good substrates for carbon tube growth.
    Type: Grant
    Filed: January 3, 2006
    Date of Patent: June 22, 2010
    Inventors: Gunnar Westin, Annika Pohl, Åsa Ekstrand
  • Patent number: 7731921
    Abstract: A process for sequestration of carbon dioxide comprising the following steps: (a) dispersing solid waste material comprising calcium oxide and a calcium-comprising mixed oxide in water to dissolve at least part of the calcium oxide and to form calcium oxide-depleted solid waste material in a calcium hydroxide solution; (b) separating the calcium hydroxide solution from the calcium oxide-depleted solid waste material; (c) converting the calcium hydroxide in the separated calcium hydroxide solution in precipitated calcium carbonate; and (d) contacting an aqueous slurry of the calcium oxide-depleted solid waste material with carbon dioxide for mineral carbonation of the carbon dioxide to form carbonated solid waste material.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: June 8, 2010
    Assignee: Shell Oil Company
    Inventors: Jacobus Johannes Cornelis Geerlings, Gerardus Antonius Franciscus Van Mossel, Bernardus Cornelis Maria In' T Veen
  • Patent number: 7727497
    Abstract: Disclosed herein are a particle production method whereby spherical fine particles of a crystalline calcium phosphate-based compound can be efficiently produced at low cost, fine particles (especially, spherical particles) with good flowability produced by the particle production method, and a high-quality sintered body obtained by sintering a molded body of the particles.
    Type: Grant
    Filed: August 9, 2006
    Date of Patent: June 1, 2010
    Assignees: Hoya Corporation, Nisshin Engineering Inc.
    Inventors: Shintaro Kobayashi, Kazuhiro Yubuta
  • Patent number: 7722841
    Abstract: The present invention is directed to the use of a combination of a polymeric chelant and coagulant to treat metal containing wastewater. More particularly, the invention is directed at removing copper from CMP wastewater. The composition includes a combination of (a) a polymeric chelant derived from a polyamine selected from the group consisting of diethylenetriamine (DETA), triethylenetetraamine (TETA), tertraethylenepentaamine (TEPA), poly[vinylamine], and branched or linear poly[ethylenimine] (PEI); and (b) a water soluble or dispersible copolymer of a tannin and a cationic monomer selected from the group consisting of methyl chloride or dimethyl sulfate quaternary salt of dimethyl aminoethyl acrylate, diethylaminoethyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, dimethylaminopropyl methacrylamide, dimethylaminopropyl acrylamide, and diallyl dimethyl ammonium chloride.
    Type: Grant
    Filed: April 25, 2006
    Date of Patent: May 25, 2010
    Assignee: General Electric Company
    Inventors: Baraka Kawawa, Stephen R. Vasconcellos, William Sean Carey, Nicholas R. Blandford
  • Patent number: 7695699
    Abstract: A metal sulfate alcohol composition as well as a process to produce such composition is disclosed. Also disclosed is a process to produce polyester containing the metal sulfate alcohol composition.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: April 13, 2010
    Inventor: Jiwen F. Duan
  • Patent number: 7668578
    Abstract: A solid structure includes a substrate and a layer located on a surface of the substrate. The layer includes crystalline or polycrystalline MgB2.
    Type: Grant
    Filed: December 2, 2004
    Date of Patent: February 23, 2010
    Assignee: Alcatel-Lucent USA Inc.
    Inventors: Sang-Wook Cheong, Namjung Hur
  • Patent number: 7662475
    Abstract: The invention relates to an alkaline-earth metal carbonate powder comprising a core consisting essentially of at least one alkaline-earth metal carbonate and a shell consisting essentially of at least one Group IV transition metal compound, to the method for manufacturing the same and to an improved method for preparing highly crystalline alkaline-earth metal containing mixed oxide powder. The highly crystalline mixed oxides obtained by means of the process according to the invention are used as starting material for high-performance dielectric, especially multi-layer capacitors, and for high performance dielectrics.
    Type: Grant
    Filed: July 26, 2005
    Date of Patent: February 16, 2010
    Assignee: Solvay (Société Anonyme)
    Inventors: Rocco Alessio, Vincenzo Buscaglia, Maria Teresa Buscaglia
  • Patent number: 7648687
    Abstract: Purification techniques have been developed for ceramic powder precursors, e.g., barium nitrate. These techniques can be performed using one or more of the following operations: (1) removal of impurities by precipitation or coprecipitation and separation using a nonmetallic-ion-containing strong base, e.g., tetraalkylammonium hydroxides; (2) reduction of higher oxidation-state-number oxymetal ions and subsequent precipitation as hydroxides that are separated from the solution; and (3) use of liquid-liquid exchange extraction procedures to separate certain impurities.
    Type: Grant
    Filed: June 15, 2006
    Date of Patent: January 19, 2010
    Assignee: EEStor, Inc.
    Inventors: Richard D. Weir, Carl W. Nelson
  • Patent number: 7615206
    Abstract: Methods for the production of shaped nanoscale-to-microscale structures, wherein a nanoscale-to-microscale template is provided having an original chemical composition and an original shape, and the nanoscale-to-microscale template subjected to a chemical reaction, so as to partially or completely convert the nanoscale-to-microscale template into the shaped nanoscale-to-microscale structure having a chemical composition different than the original chemical composition and having substantially the same shape as the original shape, being a scaled version of the original shape. The shaped nanoscale-to-microscale structure formed comprises an element (such as silicon), a metallic alloy (such as a silicon alloy), or a non-oxide compound (such as silicon carbide or silicon nitride).
    Type: Grant
    Filed: August 13, 2007
    Date of Patent: November 10, 2009
    Assignee: Georgia Tech Research Corporation
    Inventors: Kenneth Henry Sandhage, Zhihao Bao
  • Patent number: 7604892
    Abstract: The invention disclosed relates to novel materials of the general formula (Sr1-1.5xM1x)1-y/2Ti1-yM2yO3??[I] wherein M1 is a first trivalent dopant metal atom replacing some of the strontium atoms on a strontium sub-lattice, x is a mole percent of said dopant atoms M1 on the strontium sublattice and 0<x?0.04, and M2 is a second pentavalent dopant metal atom replacing some titanium atoms on a titanium sublattice, y is a mole percent of said dopant atoms M2 on the titanium sublattice and 0<y?0.2. Also disclosed is a novel reduced form of the compounds of formula I, ie. compounds of formula (Sr1-1.5xM1x)1-y/2Ti1-yM2yO3-? II. The variability in oxygen content between the oxidized and reduced forms of these compounds corresponds to 0<??0.7. These novel compounds maintained a stable single phase at both high and low oxygen partial pressures. Also disclosed is a solid oxide fuel cell including an anode made of the novel compounds of formula I.
    Type: Grant
    Filed: June 25, 2004
    Date of Patent: October 20, 2009
    Assignee: National Research Council of Canada
    Inventors: Yeong Yoo, Serguei Koutcheiko
  • Patent number: 7598194
    Abstract: It is aimed at providing an oxynitride powder, which is suitable for usage as a phosphor, is free from coloration due to contamination of impurities, and mainly includes a fine ?-sialon powder. An oxynitride powder is produced by applying a heat treatment in a reducing and nitriding atmosphere, to a precursor compound including at least constituent elements M, Si, Al, and O (where M is one element or mixed two or more elements selected from Li, Mg, Ca, Sr, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu), thereby decreasing an oxygen content and increasing a nitrogen content of the precursor.
    Type: Grant
    Filed: April 22, 2005
    Date of Patent: October 6, 2009
    Assignee: National Institute for Materials Science
    Inventors: Naoto Hirosaki, Takayuki Suehiro
  • Patent number: 7553474
    Abstract: It is an object to provide a method for producing stable alkaline metal oxide sols having a uniform particle size distribution. The method comprises the steps of: heating a metal compound at a temperature of 60° C. to 110° C. in an aqueous medium that contains a carbonate of quaternary ammonium; and carrying out hydrothermal processing at a temperature of 110° C. to 250° C. The carbonate of quaternary ammonium is (NR4)2CO3 or NR4HCO3 in which R represents a hydrocarbon group, or a mixture thereof. The metal compound is one, or two or more metal compounds selected from a group of compounds based on a metal having a valence that is bivalent, trivalent, or tetravalent.
    Type: Grant
    Filed: August 8, 2005
    Date of Patent: June 30, 2009
    Assignee: Nissan Chemical Industries, Ltd.
    Inventors: Yutaka Ohmori, Hirokazu Kato, Yoshinari Koyama, Kenji Yamaguchi
  • Patent number: 7554098
    Abstract: Medical isotope generator systems are disclosed according to some aspects. In one aspect, a 90Y generator system comprises a generator column, a concentration column, and a flow control system, through which the generator column and the concentration column are in fluid communication. The flow control system provides a plurality of flow configurations for delivering a milking solution to the generator column, the concentration column, or both, and for delivering an eluent solution to the concentration column in either a forward or a reverse flow direction. The generator column can comprise a 90Sr stock adsorbed on a sorbent. The milking solution preferentially elutes 90Y from the generator column. The concentration column comprises a sorbent that captures 90Y from the milking solution without altering the milking solution. The eluent solution elutes 90Y from the concentration column.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: June 30, 2009
    Assignee: Battelle Memorial Institute
    Inventors: Matthew J. O'Hara, Brian M. Rapko, Matthew K. Edwards, Dennis W. Wester
  • Publication number: 20090123351
    Abstract: The objective of the present innovation is a new process for the preparation of calcium phosphate granules of the hydroxyapatite type. The preparation process of a business for the said granules based on the invention is a hydrolysis process of a brushite dicalcium phosphate, in a basic milieu which is characterised by the fact that an aqueous suspension of brushite dicalcium phosphate is treated with lime, in the presence of an effective quantity of a carboxylic acid.
    Type: Application
    Filed: July 7, 2005
    Publication date: May 14, 2009
    Applicant: INNOPHOS, INC.
    Inventors: Lorraine Leite, Frederic Cobo
  • Patent number: 7482298
    Abstract: The composition of compounds containing a multiplicity of different elements are optimized in general by full or partial substitutions of one or more of the atoms in such compounds so as to effect an Ne/? value which represents a peak or near peak value in ? (the electron-phonon coupling constant) so as to maximize Tc for such compositions of matter.
    Type: Grant
    Filed: November 27, 2006
    Date of Patent: January 27, 2009
    Inventor: Daniel A. Nepela
  • Patent number: 7468169
    Abstract: This invention provides a production process, which can stably produce high-quality satin white (calcium trisulfoaluminate) having very small and homogeneous particulate shapes suitable for incorporation into coated paper for printing, and an apparatus for use in said process. In this process for producing calcium trisulfoaluminate, a calcium hydroxide suspension (A) is reacted with an aqueous aluminum sulfate solution (B) to produce calcium trisulfoaluminate (C). The aqueous aluminum sulfate solution (B) is added in plurality of stages to the calcium hydroxide suspension (A). At least any one stage of the plurality of stages addition, addition of the aqueous aluminum sulfate solution (B) to the calcium hydroxide suspension (A) is carried out in such a manner that the aqueous aluminum sulfate solution (B) is continuously added to the calcium hydroxide suspension (A) being continuously transferred.
    Type: Grant
    Filed: February 2, 2007
    Date of Patent: December 23, 2008
    Assignee: OJI Paper Co., Ltd.
    Inventors: Takayuki Kishida, Yuichi Ogawa, Yoshiki Kojima, Takuya Ono, Kenichi Mitsui, Tetsuya Hirabayashi, Masaki Nakano
  • Patent number: 7455763
    Abstract: A recycling process for the demetalization of hydrocarbon oil comprises recycling the following steps: a demetalizing composition for hydrocarbon oil or an aqueous solution thereof is sufficiently mixed with hydrocarbon oil in a desired proportion, and the resultant mixture is subjected to a conventional electrically desalting process to obtain a demetalized hydrocarbon oil and an aqueous desalted solution containing the desalted metal salts; the aqueous desalted solution containing the metal salts is then sufficiently mixed with a precipitating agent in a desired proportion and is subjected to a displacement reaction, and an aqueous solution containing the demetalizing composition is recovered by separating out the residue of the metal salts produced in the displacement reaction, which is poorly soluble or insoluble in water, with a solid-liquid separator; and the recovered aqueous solution containing the demetalizing composition for hydrocarbon oil, which meets the requirements for metal ions in demetalized
    Type: Grant
    Filed: June 2, 2004
    Date of Patent: November 25, 2008
    Assignee: Karamay Jinshan Petrochemical Limited Company
    Inventors: Lailong Luo, Chunge Niu, Shuyan Yu, Zhongting Ma, Xiangsheng Meng, Bo Ouyang, Yun Han
  • Patent number: 7438756
    Abstract: The invention relates to a method of improving a material comprising a pozzolanic component. According to the invention the material is treated with an aqueous liquid resulting in treated, calcium-depleted material and a calcium-enriched aqueous solution, which are subsequently separated. This provides a material having an increased pozzolanity and/or increased specific surface area.
    Type: Grant
    Filed: March 19, 2003
    Date of Patent: October 21, 2008
    Assignee: Minplus B.V.
    Inventors: Joseph Jan Peter Biermann, Nicolaas Voogt
  • Patent number: 7419643
    Abstract: The present invention provides methods and apparatus for treating flue gas containing sulfur dioxide using a scrubber, and more particularly relates to recovering gypsum and magnesium hydroxide products from the scrubber blowdown. The gypsum and magnesium hydroxide products are created using two separate precipitation reactions. Gypsum is crystallized when magnesium sulfate reacts with calcium chloride. Magnesium hydroxide is precipitated when magnesium chloride from the gypsum crystallization process reacts with calcium hydroxide. The process produces a high quality gypsum with a controllable pH and particle size distribution, as well as high quality magnesium hydroxide.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: September 2, 2008
    Assignee: Allegheny Energy, Inc.
    Inventor: Dennis K. Jones
  • Patent number: 7371356
    Abstract: Calcium carbonate with high brightness is prepared by treating calcium carbonate and/or the milk of lime used for its preparation by reacting milk of lime with carbon dioxide and/or at least one of the calcium-containing preliminary products used for the preparation of the milk of lime before, during and/or after this reaction with a bleaching agent which comprises at least one compound of the formula (I): A[(CR1R2)SOpM(1/q)]r??(I) where the variables have the following meanings: A is NR3R4, NR3, N or OH; R1, R2, R3, R4 independently of one another, are hydrogen or an organic radical; M is ammonium or metal p is 2 or 3; q is the valency of M; and r is 1 when A = OH or NR3R4, is 2 when A = NR3 and is 3 when A = N; and where variables, if a mixture of compounds is used and/or r=2 or 3, are chosen independently of one another for each individual compound and/or for each [(CR1R2)SOpM(1/q)] group.
    Type: Grant
    Filed: March 11, 2003
    Date of Patent: May 13, 2008
    Assignee: BASF Aktiengesellschaft
    Inventors: Andrea Misske, Reinhard Schneider
  • Patent number: 7347983
    Abstract: Complex ceramic oxides of the general formula Mg2MM?O6+x where M=Rare metal ion or Yttrium or Lanthanum and M?=Sn, Sb, Zr, Hf, Ta, and Nb; and where ?0.5<x<0.5; having a defective pyrochlore structure are useful for active and passive electronic applications, as dielectrics, catalyst sensors, hosts for radioactive waste, etc. This process for the preparation of this class of compounds comprises: (i) mixing the compounds of magnesium, M and M? to get the molar ratio as 2:1:1 (ii) the mixture obtained in step (i) along with a wetting medium may be ball milled or mixed; (iii) the resultant slurry may be dried to obtain dry powder, (iv) the resultant mixture may be heated to a temperature in the range of 1000-1600° C. for the duration ranging from 3 hours to 50 hours, either in a single step or by taking out the reactant after heating, checking for the structure formation and heating again after grinding, if necessary.
    Type: Grant
    Filed: March 31, 2003
    Date of Patent: March 25, 2008
    Assignee: Council of Scientific & Industrial Research
    Inventors: Jose James, Selvaraj Senthilkumar, Kallumelthekethil Vasudevan Pillaj Oonnikrishnan Nair
  • Publication number: 20080038170
    Abstract: Methods for the production of shaped nanoscale-to-microscale structures, wherein a nanoscale-to-microscale template is provided having an original chemical composition and an original shape, and the nanoscale-to-microscale template subjected to a chemical reaction, so as to partially or completely convert the nanoscale-to-microscale template into the shaped nanoscale-to-microscale structure having a chemical composition different than the original chemical composition and having substantially the same shape as the original shape, being a scaled version of the original shape. The shaped nanoscale-to-microscale structure formed comprises an element (such as silicon), a metallic alloy (such as a silicon alloy), or a non-oxide compound (such as silicon carbide or silicon nitride).
    Type: Application
    Filed: August 13, 2007
    Publication date: February 14, 2008
    Applicant: Georgia Tech Research Corporation
    Inventors: Kenneth Henry Sandhage, Zhihao Bao
  • Patent number: 7300539
    Abstract: A method of treating solid containing material derived from effluent or sludge from a plant for deinking paper, the material containing calcium in the form of one or more insoluble calcium compounds, the method including the steps of treating the material with an acid to cause dissolution of the calcium thereby forming a calcium ion-containing solution in which insoluble solids are suspended, separating the solution from the insoluble solids and incinerating the separated solids. The solution containing calcium ions may be treated by adding one or more reagents to form a calcium compound precipitate, eg calcium carbonate. The particulate solids produced following the incineration step and following the precipitate formation may be employed as pigments or fillers in paper making or paper coating.
    Type: Grant
    Filed: November 21, 2002
    Date of Patent: November 27, 2007
    Assignee: Imerys Minerals Limited
    Inventor: Jonathan Stuart Phipps
  • Patent number: 7288239
    Abstract: The invention relates to synthesis of nanoparticles, in particular to methods for producing nanoparticles with networks consisting of Z sulphate (Z=magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba) or the binary mixtures thereof). The inventive method consists in synthesising the nanoparticles by crystal growth from an ion Z source and a sulphate ion source in a liquid phase mixture. The invention produces Z sulphate nanoparticles having a small diameter and uniformly dispersible in water or other solvents in a simple way. Co-ordinating solvents like glycerine, glycol ethylene and other polyethylene glycols, polyalcohols or dimethylsulphoxide (DMSO) are used for the synthesis mixture.
    Type: Grant
    Filed: November 19, 2003
    Date of Patent: October 30, 2007
    Assignee: Nanosolutions GmbH
    Inventors: Fernando Ibarra, Christiane Meyer, Stephan Haubold, Thorsten Heidelberg
  • Patent number: 7288241
    Abstract: A black composite oxide particle includes a composite oxide having Fe, Mg and Al as metal components. The particle contains Fe, Mg and Al in amounts of 30 to 55 mass %, 1 to 10 mass %, and 1 to 10 mass %, respectively, and has an atomic ratio of Fe3+/Fe2+ of 0.8 to 10. Also described is a method for producing the black composite oxide particle. In an embodiment, the particle includes a hydrated composite oxide represented by an empirical formula: Fe2+aFe3+bMgcAldOe·nH2O. The black composite oxide particle is suitable as a black pigment for a coating material, an ink, toner particles, a rubber and a plastic, and is reduced with respect to the load on the environment and excellent in blackness.
    Type: Grant
    Filed: December 12, 2002
    Date of Patent: October 30, 2007
    Assignee: Mitsui Mining and Smelting Co., Ltd.
    Inventors: Koji Aga, Hiroyuki Shimamura
  • Patent number: 7282188
    Abstract: The invention concerns a method and an apparatus for producing a metal hydroxide, in particular magnesium hydroxide, from a salt solution, wherein the metal is firstly precipitated from the salt solution and the suspension produced in that way is then filtered. The object of the invention is to provide a method and an apparatus which permit simple inexpensive and rapid production of metal hydroxide, in particular magnesium hydroxide, in a high state of purity. According to the invention that is achieved in that the suspension is filtered through at least one filter (13-17) of a cross-flow filtration installation (13-17), and that a permeate produced by filtration of the suspension is fed to the cross-flow filtration installation (14-17) again.
    Type: Grant
    Filed: March 19, 2003
    Date of Patent: October 16, 2007
    Assignee: IMB + Frings Watersystems GmbH
    Inventors: Johannes Lindemann, Karl Manderscheld, Manfred Schneider
  • Patent number: 7217406
    Abstract: Granular secondary particles of a lithium-manganese composite oxide suitable for use in non-aqueous electrolyte secondary batteries showing high-output characteristics which are granular secondary particles made up of aggregated crystalline primary particles of a lithium-manganese composite oxide and have many micrometer-size open voids therein with a defined average diameter and total volume of open voids. A process for producing the granular secondary particles which includes spray-drying a slurry of at least a manganese oxide, a lithium source, and an agent for open-void formation to thereby granulate the slurry and then calcining the granules.
    Type: Grant
    Filed: February 20, 2003
    Date of Patent: May 15, 2007
    Assignee: Tosoh Corporation
    Inventors: Koji Tsukuma, Minoru Kuniyoshi
  • Patent number: 7204971
    Abstract: The present invention is focused on a revolutionary, low-cost (highly-scaleable) approach for the mass production of three-dimensional microcomponents: the biological reproduction of naturally-derived, biocatalytically-derived, and/or genetically-tailored three-dimensional microtemplates (e.g., frustules of diatoms, microskeletons of radiolarians, shells of mollusks) with desired dimensional features, followed by reactive conversion of such microtemplates into microcomponents with desired compositions that differ from the starting microtemplate and with dimensional features that are similar to those of the starting microtemplate. Because the shapes of such microcomponents may be tailored through genetic engineering of the shapes of the microtemplates, such microcomposites are considered to be Genetically-Engineered Materials (GEMs).
    Type: Grant
    Filed: May 30, 2002
    Date of Patent: April 17, 2007
    Assignee: The Ohio State University
    Inventor: Kenneth H. Sandhage
  • Patent number: 7182929
    Abstract: A method for producing nanostructured multi-component or doped oxide particles and the particles produced therein. The process includes the steps of (i) dissolving salts of cations, which are either dopants or components of the final oxide, in an organic solvent; (ii) adding a dispersion of nanoparticles of a single component oxide to the liquid solution; (iii) heating the liquid solution to facilitate diffusion of cations into the nanoparticles; (iv) separating the solids from the liquid solution; and (v) heat treating the solids either to form the desired crystal structure in case of multi-component oxide or to render the homogeneous distribution of dopant cation in the host oxide structure. The process produces nanocrystalline multi-component or doped oxide nanoparticles with a particle size of 5–500 nm, more preferably 20–100 nm; the collection of particles have an average secondary (or aggregate) particle size is in the range of 25–2000 nm, preferably of less than 500 nm.
    Type: Grant
    Filed: August 18, 2004
    Date of Patent: February 27, 2007
    Assignee: NEI, Inc.
    Inventors: Amit Singhal, Ganesh Skandan, Mohit Jain
  • Patent number: 7182930
    Abstract: A method of fabricating barium titanate powders uses titanium tetrachloride and barium hydroxide as reactants in a reaction solution. The pH value of the reaction solution is adjusted to strongly alkaline range by adding potassium hydroxide. Nitrogen is charged into a reaction tank at normal pressure, and the reaction solution is heated at 80–102°. The solution is intensively stirred at constant temperature, and then subjected to a hydro-thermal reflux. Then, the solution is treated through an ion exchange resin and dried to obtain a cubic BaTiO3 powders.
    Type: Grant
    Filed: June 18, 2004
    Date of Patent: February 27, 2007
    Assignee: Chung Shan Institute of Science and Technology
    Inventors: Ming-Tseh Tsay, Zong-Whie Shih, Pao-Yen Lin