Magnetic Coating Patents (Class 427/128)
  • Publication number: 20100226042
    Abstract: NG surface information obtained in a defect inspecting step of a magnetic disk substrate is depicted on the magnetic disc substrate, so that the information can be discriminated at a succeeding film depositing step.
    Type: Application
    Filed: September 1, 2008
    Publication date: September 9, 2010
    Applicants: HOYA CORPORATION, HOYA GLASS DISK (Thailand ) LTD.
    Inventors: Kenichi Nishimori, Tadashi Tomonaga
  • Patent number: 7785662
    Abstract: There is provided a method for manufacturing a magnetoresistive element having a magnetization pinned layer, a magnetization free layer, and a spacer layer including an insulating layer arranged between the magnetization pinned layer and the magnetization free layer and current paths passing through the insulating layer. The method includes, in producing the spacer layer, depositing a first non-magnetic metal layer forming the current paths, depositing a second metal layer to be converted into the insulating layer on the first non-magnetic metal layer, and performing two stages of oxidation treatments in which a partial pressure of an oxidizing gas in a first oxidation treatment is set to 1/10 or less of a partial pressure of an oxidizing gas in a second oxidation treatment, and the second metal layer being irradiated with an ion beam or a RF plasma of a rare gas in the first oxidation treatment.
    Type: Grant
    Filed: October 20, 2006
    Date of Patent: August 31, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshihiko Fuji, Hideaki Fukuzawa, Hiromi Yuasa, Hitoshi Iwasaki
  • Patent number: 7784171
    Abstract: A method is provided for manufacturing a magneto-resistive device. The magneto-resistive device is for reducing the deterioration in the characteristics of the device due to annealing. The magneto-resistive device has a magneto-resistive layer formed on one surface side of a base, and an insulating layer formed of two layers and deposited around the magneto-resistive layer. The layer of the insulating layer closest to the base is made of a metal or semiconductor oxide. This layer extends over end faces of a plurality of layers made of different materials from one another, which make up the magneto-resistive device, and is in contact with the end faces of the plurality of layers with the same materials.
    Type: Grant
    Filed: May 4, 2007
    Date of Patent: August 31, 2010
    Assignee: TDK Corporation
    Inventors: Takeo Kagami, Tetsuya Kuwashima, Norio Takahashi
  • Publication number: 20100215788
    Abstract: A method for producing a mold having a fine groove-ridge pattern on the surface thereof is disclosed. The method includes: a release layer forming step of forming, on a surface of a Si original plate having a groove-ridge pattern, a release layer made of a metal film containing a metal having an ionization tendency lower than that of hydrogen (for example, at least one metal selected from the group consisting of Pt, Os, Ir, Au, Ru and Pd); an electroforming step of electroforming, after the release layer has been formed, a metal substrate forming a mold; and a releasing step of releasing a duplicated plate including the release layer and the metal substrate from the Si original plate after the electroforming step.
    Type: Application
    Filed: February 24, 2010
    Publication date: August 26, 2010
    Applicant: FUJIFILM CORPORATION
    Inventor: Takeo KIDO
  • Publication number: 20100203313
    Abstract: The present invention relates to ferromagnetic materials based on nano-sized bacterial cellulose templates. More specifically, the present invention provides an agglomerate free magnetic nanoparticle cellulose material and a method of forming such magnetic nanoparticle cellulose material. Further, the magnetic nonoparticles are physically attached on the cellulose material and evenly distribute.
    Type: Application
    Filed: March 31, 2008
    Publication date: August 12, 2010
    Applicant: SweTree Technologies AB
    Inventors: Richard T. Olsson, My Ahmed Said Samir Azizi, Lars Berglund, Ulf W. Gedde
  • Patent number: 7767255
    Abstract: An information storage medium with an array of laterally magnetised dots, as well as a process for producing this medium is disclosed. Each dot (2) contains at least one magnetic domain formed by a thin layer (4) of at least a magnetic material laterally covering this flat material and deposited at oblique incidence relative to the normal (z) to the plane (6) of the array. The invention applies in particular to computer hard drives.
    Type: Grant
    Filed: November 20, 2006
    Date of Patent: August 3, 2010
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Bernard Rodmacq, Stéphane Landis, Bernard Dieny
  • Publication number: 20100181522
    Abstract: This invention relates to a magnetic composite powder, a method of preparing the same and an electromagnetic noise suppressing film comprising the same. The magnetic composite powder and the electromagnetic noise suppressing film can effectively suppress unwanted electromagnetic waves emitted by various parts of an advanced digital device having high performance characteristics in terms of speed, frequency and functionality.
    Type: Application
    Filed: October 2, 2009
    Publication date: July 22, 2010
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Sang Woo KIM, Ji Hea Park, Yoon Bae Kim
  • Patent number: 7758925
    Abstract: A method for preparing a protective layer (38) on a surface of the substrate (36) that requires a bonding temperature (BT) above a detrimental phase transformation temperature range (28) of the substrate, and then cooling the layer and substrate without cracking the layer or detrimentally transforming the substrate. The protective layer (38) and the substrate (36) are cooled from the bonding temperature (BT) to a temperature (46) above the detrimental phase transformation range (28) at a first cooling rate (30) slow enough to avoid cracking the protective layer. Next, the protective layer and the substrate are cooled to a temperature below the detrimental phase transformation range of the substrate at a second cooling rate (27) fast enough to pass the detrimental phase transformation range before a substantial transformation of the substrate into the detrimental phase can occur.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: July 20, 2010
    Assignee: Siemens Energy, Inc.
    Inventor: Brij B. Seth
  • Patent number: 7749620
    Abstract: The present invention is to provide an electromagnetic wave shielding material which comprises a transparent substrate and a fine line pattern formed thereon, wherein the fine line pattern comprises a metal plating film using a physically developed metal silver as a catalytic nucleus and a process for preparing an electromagnetic wave shielding material which comprises exposing a light-sensitive material having a physical development nuclei layer and a silver halide emulsion layer on a transparent substrate in this order, precipitating metal silver with an optional fine line pattern onto the physical development nuclei layer by physical development, then, removing a layer provided on the physical development nuclei layer, and subjecting to plating a metal with the use of the physically developed metal silver as a catalytic nucleus.
    Type: Grant
    Filed: July 11, 2003
    Date of Patent: July 6, 2010
    Assignees: Fujimori Kogyo Co., Ltd., Mitsubishi Paper Mills Limited
    Inventors: Taro Yoshida, Atsushi Suzuki, Yasuo Tsubai, Kazuhisa Kobayashi
  • Patent number: 7744963
    Abstract: In one aspect, a method of nanolithography is provided, the method comprising providing a substrate; providing a scanning probe microscope tip; coating the tip with a deposition compound; and subjecting said coated tip to a driving force to deliver said deposition compound to said substrate so as to produce a desired pattern. Another aspect of the invention provides a tip for use in nanolithography having an internal cavity and an aperture restricting movement of a deposition compound from the tip to the substrate. The rate and extent of movement of the deposition compound through the aperture is controlled by a driving force.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: June 29, 2010
    Assignee: Northwestern University
    Inventors: Chad A. Mirkin, Seunghun Hong, Vinayak P. Dravid
  • Patent number: 7744966
    Abstract: A production process of magnetic recording media is provided in which, when using an oxide magnetic material as a perpendicular magnetic recording layer and forming a carbon protective layer using a plasma CVD method, stripping of the carbon protective layer and separation of a lubrication layer can be prevented, and satisfactory recording and reproduction characteristics can be obtained.
    Type: Grant
    Filed: March 16, 2006
    Date of Patent: June 29, 2010
    Assignee: Showa Denko K.K.
    Inventor: Masahiro Oka
  • Publication number: 20100159286
    Abstract: Disclosed is a perpendicular magnetic recording medium on a substrate. The perpendicular magnetic recording medium has a recording layer. The recording layer includes a first granular recording layer and a second granular recording layer. There may be an exchange layer between the first granular recording layer and the second granular recording layer. Additionally or alternatively, the ratio of saturation magnetization of the first granular recording layer and the second granular recording layer may be greater than 1 and/or the first granular recording layer may have a relatively high magnetic anisotropy compared to the second granular recording layer magnetic anisotropy. A forming method is also disclosed.
    Type: Application
    Filed: December 16, 2009
    Publication date: June 24, 2010
    Applicant: Showa Denko HD Singapore Pte Ltd.
    Inventors: Amarendra Kumar SINGH, Daizo Endo
  • Patent number: 7739787
    Abstract: In an MR element, each of a pinned layer and a free layer includes a Heusler alloy layer. The Heusler alloy layer has two surfaces that are quadrilateral in shape and face toward opposite directions. The Heusler alloy layer includes one crystal grain that touches four sides of one of the two surfaces. In a method of manufacturing the MR element, a layered film to be the MR element is formed and patterned, and then heat treatment is performed on the layered film patterned, so that crystal grains included in a film to be the Heusler alloy layer in the layered film grow and one crystal grain that touches four sides of one of the surfaces of the film to be the Heusler alloy layer is thereby formed.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: June 22, 2010
    Assignee: TDK Corporation
    Inventors: Koji Shimazawa, Yoshihiro Tsuchiya, Tomohito Mizuno, Daisuke Miyauchi, Shinji Hara, Takahiko Machita
  • Patent number: 7733613
    Abstract: A magnetic disk apparatus having a highly sensitive reproducing head and a method for manufacturing the magnetic disk apparatus are disclosed. A spin-value-type multilayer film composed of an antiferromagnetic layer, a ferromagnetic layer, a nonmagnetic layer and a free magnetic layer is used as a magnoresistive-effect device for the reproducing head. An antiferromagnetic reaction layer is formed between the antiferromagnetic layer and the ferromagnetic layer. The antiferromagnetic reaction layer is formed of a metallic compound containing oxygen.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: June 8, 2010
    Assignee: Panasonic Corporation
    Inventor: Akifumi Aono
  • Patent number: 7718262
    Abstract: Microspheres, populations of microspheres, and methods for forming microspheres are provided. One microsphere configured to exhibit fluorescent and magnetic properties includes a core microsphere and a magnetic material coupled to a surface of the core microsphere. About 50% or less of the surface of the core microsphere is covered by the magnetic material. The microsphere also includes a polymer layer surrounding the magnetic material and the core microsphere. One population of microspheres configured to exhibit fluorescent and magnetic properties includes two or more subsets of microspheres. The two or more subsets of microspheres are configured to exhibit different fluorescent and/or magnetic properties. Individual microspheres in the two or more subsets are configured as described above.
    Type: Grant
    Filed: January 19, 2006
    Date of Patent: May 18, 2010
    Assignee: Luminex Corporation
    Inventors: Don J. Chandler, Jason Bedre
  • Patent number: 7691468
    Abstract: The invention discloses a device and a method for transferring a predeterminable, high-resolution magnetic design onto a document printed with a magnetic ink, in particular a magnetic optically variable ink. The device comprises a body of a composite permanent-magnetic material, having at least one flat or curved surface engraved with indicia corresponding to the design to be transferred, wherein the said magnetic material is permanently magnetized, preferably in a direction substantially perpendicular to the said surface. The method comprises imprinting or coating a first surface of a sheet or web with a magnetic ink or coating composition, and approaching the imprinted sheet or web to the engraved surface of a body of magnetized composite permanent-magnetic material while the ink is wet, followed by hardening the ink.
    Type: Grant
    Filed: June 29, 2004
    Date of Patent: April 6, 2010
    Assignee: SICPA Holding S.A.
    Inventors: Nathalie Benninger, Claude-Alain Despland, Pierre Degott, Edgar Müller
  • Publication number: 20100073819
    Abstract: Servo patterns and associated methods of fabricating servo patterns are described. For patterned storage media, data sectors and servo sectors may be patterned using self-assembly. In one embodiment, self-assembly is used to form a first array of islands and a second array of islands in servo sectors that are track-wise offset. A servo writing process is then performed to write a desired servo pattern in the arrays, such as for burst fields, synchronization fields, etc.
    Type: Application
    Filed: November 30, 2009
    Publication date: March 25, 2010
    Inventors: Thomas R. Albrecht, Zvonimir Z. Bandic, Xiao Z. Wu
  • Publication number: 20100075180
    Abstract: Provided is a magnetic recording medium substrate suitable for preparation of a DT medium and a patterned medium, and the magnetic recording medium substrate is possible to be of easy preparation of the DT medium and the patterned medium with no complicated processes. Disclosed is a magnetic recording medium substrate comprising a circular plate-shaped substrate made of a nonmagnetic base material, wherein a predetermined region of a surface of the substrate to form a magnetic film on the surface is more roughened than another region of the surface. When forming a magnetic film on this substrate, the magnetic film is formed in the region of the substrate surface, which is more roughened than the other region, to easily prepare the DT medium and the patterned medium.
    Type: Application
    Filed: September 22, 2007
    Publication date: March 25, 2010
    Inventors: Hiroaki Ueda, Masahiro Morikawa, Hideki Kawai
  • Patent number: 7682837
    Abstract: The invention includes devices and methods for forming random arrays of magnetic particles, arrays formed using these devices and methods, and to methods of using the arrays. The invention provides an assembly (chip) with magnetic domains that produce localized magnetic fields capable of immobilizing magnetic particles such as commercially available magnetic beads. Probe or sensor molecules can be coupled to the beads, which are then dispersed on the assembly, forming a random order array. The arrays can be used for analyzing samples, targets, and/or the interaction between samples and targets. The invention finds particular use in processes such as high-throughput genotyping and other nucleic acid hybridization-based assays.
    Type: Grant
    Filed: August 7, 2001
    Date of Patent: March 23, 2010
    Assignee: Board of Trustees of Leland Stanford Junior University
    Inventors: Maneesh Jain, Robert L. White, Lester A. Roberts
  • Publication number: 20100062285
    Abstract: An aspect of the present invention relates to a magnetic recording medium comprising a magnetic layer on a nonmagnetic organic material support, wherein the magnetic layer comprises a magnetic material comprising a hard magnetic material comprising a rare earth element, and on a portion of a surface of the hard magnetic material, a soft magnetic region, and the soft magnetic region is exchange-coupled with the hard magnetic material. Another aspect of the present invention relates to a method of manufacturing a magnetic recording medium comprising forming a hard magnetic layer by coating a coating liquid comprising a hard magnetic material comprising a rare earth element on a nonmagnetic organic material support, and forming, on at least a portion of a surface of the hard magnetic material comprised in the hard magnetic layer, a soft magnetic region, the soft magnetic region being exchange-coupled with the hard magnetic material.
    Type: Application
    Filed: September 4, 2009
    Publication date: March 11, 2010
    Applicant: FUJIFILM Corporation
    Inventor: Yasushi HATTORI
  • Publication number: 20100047442
    Abstract: Apparatuses, methods and systems for applying a coating to an ear of corn in a high throughput manner are disclosed. The system includes means for moving the ear of corn through the system and means for coating the ear of corn with a coating while passing through the system. The apparatus includes a carrying position for an ear of corn, an automated line having a plurality of the carrying positions, and an automated coating station adapted to apply a coating to the ear of corn on the automated line. The method includes staging a plurality of ears of corn on an automated line, passing the automated line through an ear coating process, and coating the plurality of ears of corn with a coating.
    Type: Application
    Filed: August 21, 2009
    Publication date: February 25, 2010
    Applicant: PIONEER HI-BRED INTERNATIONAL, INC.
    Inventor: DAVID KURTH
  • Publication number: 20100021771
    Abstract: An aspect of the present invention relates to a method of manufacturing a hexagonal ferrite magnetic powder comprising preparing a melt by melting a starting material mixture, wherein the starting material mixture comprises at least one hexagonal ferrite-forming component and glass-forming component comprising at least one B2O3 component and a content of the B2O3 component in the mixture ranges from 15 to 27 mole percent in terms of B2O3; rapidly cooling the melt to obtain a solid having a saturation magnetization level of equal to or lower than 0.6 A·m2/kg; and heating the solid to a temperature range of 600 to 690° C. and maintaining the solid within the temperature range to precipitate a hexagonal ferrite magnetic powder having an average plate diameter ranging from 15 to 25 nm.
    Type: Application
    Filed: July 21, 2009
    Publication date: January 28, 2010
    Applicant: FUJIFILM Corporation
    Inventors: Nobuo YAMAZAKI, Toshio Tada
  • Publication number: 20100014192
    Abstract: A magnetic recording medium, a manufacturing method thereof, and a magnetic recording/reproducing apparatus are provided, capable, with a configuration having a magnetic recording film only on one side, of suppressing warp occurrence, and obtaining a high quality and thin-type magnetic recording medium. When forming a recording layer having at least a magnetic recording film on one main surface of a substrate by means of a vapor-phase film forming method, a thin film is formed on the other main surface of the substrate using a vapor-phase film forming method. When the recording layer is formed as a multiple layer structure, the thin film is also formed as a multiple layer structure with the same number of laminations as for the recording layer 5, and layer pairs of the same lamination order as the recording layer and the thin film are preferably formed concurrently in the same chamber.
    Type: Application
    Filed: July 9, 2009
    Publication date: January 21, 2010
    Applicant: SHOWA DENKO K.K.
    Inventor: Masahiro OKA
  • Publication number: 20100007990
    Abstract: Provided are a magnetic recording medium substrate whereupon a magnetic layer can be regularly formed in a recording area, a magnetic recording medium and a method for manufacturing the magnetic recording medium substrate. A plurality of recording areas wherein the magnetic layer is to be formed are formed on the surface of the disk-shaped magnetic recording medium substrate. The size of the recording area is an integral multiple of a lattice constant of a unit lattice of a single crystal structure constituting the magnetic layer. For instance, the width of a protruding section (3) to be used as the recording area is an integral multiple of the lattice constant of the unit lattice of the single crystal structure configuring the magnetic layer.
    Type: Application
    Filed: October 31, 2007
    Publication date: January 14, 2010
    Applicant: KONICA MINOLTA OPTO, INC.
    Inventor: Hideki Kawai
  • Publication number: 20100009218
    Abstract: The invention relates to a perpendicular magnetic recording medium comprising a substrate and a granular magnetic layer comprising ruthenium or ruthenium oxide in the grain boundaries.
    Type: Application
    Filed: July 8, 2008
    Publication date: January 14, 2010
    Applicant: Seagate Technology LLC
    Inventors: Jeffrey Shane Reiter, Steven Eric Barlow
  • Publication number: 20100000769
    Abstract: There are provided a composite magnetic body exhibiting a sufficiently low magnetic loss at frequencies of several hundreds of megahertz to several gigahertz, and a method of manufacturing the same. The composite magnetic body contains a magnetic powder dispersed in an insulating material. The magnetic powder is in a spherical shape or an elliptic shape. The composite magnetic body has any one of the following characteristics (a) to (c): (a) the relative magnetic permeability ?r is larger than 1 and the loss tangent tan ? is 0.1 or less, at a frequency of 1 GHz or 500 MHz; (b) the real part ?r? of the complex permeability is more than 10 and the loss tangent tan ? is 0.3 or less, at a frequency of 1.2 GHz or less; and (c) the real part ?r? of the complex permeability is more than 1 at a frequency of 4 GHz or less, and the loss tangent tan ? is 0.1 or less at a frequency of 1 GHz or less.
    Type: Application
    Filed: January 22, 2008
    Publication date: January 7, 2010
    Inventors: Tadahiro Ohmi, Akinobu Teramoto, Masayuki Ishizuka, Nobuhiro Hidaka, Yasushi Shirakata
  • Patent number: 7641774
    Abstract: A perpendicular magnetic recording medium is manufactured having excellent thermal stability and recording performances across the entire disk surface. In one embodiment, the recording layer includes at least two layers deposited by using a reactive sputtering method under an oxygen-containing atmosphere at a deposition rate larger than the second recording layer which is formed on the first recording layer while depositing the first recording layer on the intermediate layer.
    Type: Grant
    Filed: October 25, 2005
    Date of Patent: January 5, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Yoshinori Honda, Takayuki Ichihara, Hiroyuki Nakagawa, Kiwamu Tanahashi
  • Publication number: 20090324813
    Abstract: An in-line film forming apparatus capable of conveying a carrier at a high speed, increasing the exhaust capability within a film forming chamber, and easily realizing a high vacuum degree in a short time is provided. A conveyor mechanism has a linear motor drive mechanism which drives the carrier in a noncontact state, a horizontal guide mechanism which is provided so as to be able to contact a side portion of the carrier, and guides the carrier driven by the linear motor drive mechanism in a horizontal direction, and a vertical guide mechanism which is provided so as to be able to contact a lower end of the carrier, and guides the carrier driven by the linear motor drive mechanism in the vertical direction.
    Type: Application
    Filed: June 25, 2009
    Publication date: December 31, 2009
    Applicant: SHOWA DENKO K. K.
    Inventor: Satoru UENO
  • Publication number: 20090314411
    Abstract: An electromagnetic noise suppressor of the present invention includes a base material containing a binding agent and a composite layer formed by integrating the binding agent that is a part of the base material and the magnetic material. This electromagnetic noise suppressor has high electromagnetic noise suppressing effect in the sub-microwave band, and enables it to reduce the space requirement and weight. The electromagnetic noise suppressor can be manufactured by forming the composite layer on the surface of the base material by physical vapor deposition of the magnetic material onto the surface of the base material. The article with an electromagnetic noise suppressing function of the present invention is an electronic component, a printed wiring board, a semiconductor integrated circuit or other article of which at least a part of the surface is covered by the electromagnetic noise suppressor of the present invention.
    Type: Application
    Filed: August 31, 2009
    Publication date: December 24, 2009
    Inventors: Toshiyuki Kawaguchi, Hironao Fujiki, Atsushi Taniguchi, Takashi Gonda, Kazutoki Tahara
  • Patent number: 7635498
    Abstract: A perpendicular magnetic recording medium and method thereof, includes a nonmagnetic substrate; a soft magnetic under layer; an intermediate layer; a bilayer magnetic recording layer; a protective layer; and a liquid lubricant layer. According to a following order, the soft magnetic under layer, the intermediate layer, the bilayer magnetic recording layer, the protective layer, and the liquid lubricant layer are sequentially stacked on the nonmagnetic substrate. The bilayer magnetic recording layer includes a first magnetic layer including a CoCr alloy crystalline film, and a second magnetic layer including a rare earth-transition metal alloy noncrystalline film.
    Type: Grant
    Filed: April 27, 2005
    Date of Patent: December 22, 2009
    Assignee: Fuji Electric Device Technology, Co., Ltd.
    Inventors: Yasushi Sakai, Hiroyuki Uwazumi, Kazuo Enomoto, Sadayuki Watanabe
  • Patent number: 7635499
    Abstract: The present invention provides a method of manufacturing a magnetic recording medium that is made by applying a magnetic paint containing a ferromagnetic powder and a binder to a nonmagnetic support, wherein the magnetic paint contains a magnetic liquid, which contains the ferromagnetic powder and the binder, and a polishing material liquid, which contains a polishing material and a solvent, and wherein the magnetic liquid and the polishing material liquid are individually subjected to dispersion treatment, the magnetic liquid and the polishing material liquid are then mixed together, and after that, a mixed liquid of the magnetic liquid and the polishing material liquid are subjected to dispersion treatment by application of ultrasonic waves.
    Type: Grant
    Filed: January 13, 2005
    Date of Patent: December 22, 2009
    Assignee: FUJIFILM Corporation
    Inventor: Koji Naoe
  • Publication number: 20090311558
    Abstract: A magnetic recording medium that includes: a disc-shaped substrate; and plural magnetization retainers arranged on the disc-shaped substrate in plural circulations around a center of the substrate, each of the magnetization retainers having a length in a circumferential direction in such a manner that the length becomes longer as closer to outer circumference at least in a predetermined area, each retaining magnetization individually, each being formed of a magnetic material having axis of easy magnetization of magnetocrystalline anisotropy in a direction perpendicular to front and back surfaces of the substrate, each being filled with an ion that weakens the magnetocrystalline anisotropy of the magnetic material such that an amount of ion implantation becomes less as closer to the outer circumference in the predetermined area.
    Type: Application
    Filed: March 20, 2009
    Publication date: December 17, 2009
    Applicant: FUJITSU LIMITED
    Inventor: Hiroto Takeshita
  • Patent number: 7621038
    Abstract: A method for fabricating a three terminal magnetic (TTM) sensor of a magnetic head according to one embodiment includes fabricating a P-type semiconductor material; fabricating an N-type semiconductor material at an upper surface of a portion of said P-type semiconductor material; fabricating a spin valve structure upon said N-type semiconductor material; engaging a collector lead to said P-type semiconductor material; engaging a base lead to said N-type semiconductor material; and engaging an emitter lead to said spin valve structure.
    Type: Grant
    Filed: January 17, 2008
    Date of Patent: November 24, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventor: Jeffrey S. Lille
  • Patent number: 7621036
    Abstract: A method of manufacturing a sensor for in vivo applications includes the steps of providing two wafers of an electrically insulating material. A recess is formed in the first wafer, and a capacitor plate is formed in the recess of the first wafer. A second capacitor plate is formed in a corresponding region of the second wafer, and the two wafers are affixed to one another such that the first and second capacitor plates are arranged in parallel, spaced-apart relation.
    Type: Grant
    Filed: August 16, 2005
    Date of Patent: November 24, 2009
    Assignee: CardioMEMS, Inc.
    Inventors: Florent Cros, David O'Brien, Michael Fonseca, Matthew Abercrombie, Jin Woo Park, Angad Singh
  • Publication number: 20090286106
    Abstract: Methods and apparatus provide a refill configuration adjacent a back-edge that defines a height of a magnetoresistive read sensor. Milling through layers of the sensor forms the back-edge and may be initially conducted at a first angle of incidence greater than a second angle of incidence. In combination, an insulating material and a polish resistant material, such as a non-magnetic metal, disposed on the insulating material fills a void created by the milling. The sensor further includes first and second magnetic shields with the layers of the sensor along with the polish resistant material and insulating material disposed between the first and second magnetic shields.
    Type: Application
    Filed: May 16, 2008
    Publication date: November 19, 2009
    Inventors: Hardayal S. Gill, Wipul P. Jayasekara
  • Patent number: 7617577
    Abstract: A digital variable capacitor package is provided as having a ground plane disposed on predetermined portion of the top surface of a substrate. An elongated signal electrode may also be disposed on the substrate and including a first end defining an input and a second end extending to a substantially central region of the top surface of the substrate. This elongated signal electrode is disposed to be electrically isolated from the ground plane. A number of elongated cantilevers are disposed on the substrate and each include first ends coupled to the second end of the signal electrode and each further include second ends suspended over different predetermined portions of the ground plane. In operation, one or more of the cantilevers may be actuated to move portion thereof into close proximity to the ground plane for providing one or more discrete capacitance values.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: November 17, 2009
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: John L. Ebel, Rebecca Cortez, Richard E. Strawser, Kevin D. Leedy
  • Publication number: 20090274837
    Abstract: The invention provides a process for the formation of a sensor site of a magnetoresistive device in which the first ferromagnetic layer and a nonmagnetic intermediate layer are formed in order, then surface treatment is applied to the surface of the nonmagnetic intermediate layer, and thereafter the second ferromagnetic layer is formed on the thus treated surface of the nonmagnetic intermediate layer. The surface treatment is implemented by a method of letting a modification element hit right on the surface of the nonmagnetic intermediate layer using a vacuum. The nonmagnetic intermediate layer is composed mainly of an oxide or nitride, and the modification element is a low-melting element having a melting point of 500° C. or lower. It is thus possible to reduce spin scattering while reducing oxidization or nitriding of the surfaces of the ferromagnetic layers used for the sensor site, thereby achieving high MR change rates.
    Type: Application
    Filed: April 30, 2008
    Publication date: November 5, 2009
    Applicant: TDK CORPORATION
    Inventors: Shinji Hara, Yoshihiro Tsuchiya, Tomohito Mizuno
  • Patent number: 7610674
    Abstract: Concerns about inadequate electromigration robustness in CCP CPP GMR devices have been overcome by adding magnesium to the current confining structures that are presently in use. In one embodiment the alumina layer, in which the current carrying copper regions are embedded, is fully replaced by a magnesia layer. In other embodiments, alumina is still used but a layer of magnesium is included within the structure before it is subjected to ion assisted oxidation.
    Type: Grant
    Filed: February 13, 2006
    Date of Patent: November 3, 2009
    Assignee: Headway Technologies, Inc.
    Inventors: Kunliang Zhang, Daniel G Abels, Min Li, Yu-Hsia Chen
  • Patent number: 7610673
    Abstract: A vertical recording magnetic head and a method of manufacturing the same is provided. The magnetic head includes a main magnetic pole layer on a surface opposite to a recording medium and a pair of neck height markers which is exposed on the surface around the main magnetic pole layer and which indicates a neck height position of the main magnetic pole layer by way of inter-exposure area ratios. The neck height markers have one cross sections that increases and the other that decreases even though the cross sections in a plane parallel to the surface are oriented toward forward or backward directions in a neck height direction. The neck height markers have the same cross sections at a specific cross sectional position parallel to the surface.
    Type: Grant
    Filed: April 4, 2005
    Date of Patent: November 3, 2009
    Assignee: TDK Corporation
    Inventor: Toru Takahashi
  • Patent number: 7601395
    Abstract: A high recording density magnetic recording medium and a manufacturing method therefor are provided. The dilution stability during preparation of magnetic paint is improved and, thereby, even when the magnetic paint concentration is lowered, no problem occurs with the surface roughness and the output of the thin magnetic layer. The magnetic recording medium includes at least a magnetic layer on one surface of a non-magnetic support, wherein the magnetic layer contains a magnetic powder, a vinyl chloride resin having a degree of polymerization of at least 270 and an aliphatic polyester polyurethane resin to serve as binder resins, an aromatic compound having a substituent R (where R is —COOH, —(COOH)2, —OPO(OH)2, —PO(OH)2, or —SO3H), and a phosphoric acid ester. The ratio of binder resins in the magnetic paint is set at 2.0 percent by weight or less relative to a total sum of the binder resins and a solvent.
    Type: Grant
    Filed: January 11, 2005
    Date of Patent: October 13, 2009
    Assignee: TDK Corporation
    Inventors: Takayoshi Kuwajima, Sadafumi Iijima
  • Patent number: 7596853
    Abstract: The method of manufacturing a thin film magnetic head includes forming a first recessed portion for insulation and a second recessed portion for contact that reach the substrate through the first insulating layer from a side of the first insulating layer of the substrate having the first insulating layer thereon; forming a second insulating layer on the substrate in the first recessed portion; and forming the lower shield layer in the first recessed portion and a contact portion in the second recessed portion.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: October 6, 2009
    Assignee: TDK Corporation
    Inventors: Kenji Ichinohe, Yosuke Goto
  • Publication number: 20090237835
    Abstract: A patterned disk for a hard disk drive. The patterned disk includes an anti-ferromagnetic layer of FexNi1-xO over a substrate. The disk also includes a magnetic layer that is adjacent to the anti-ferromagnetic layer of FexNi1-xO, and is formed into a plurality of dots separated by a non-magnetic material. The anti-ferromagnetic layer of FexNi1-xO with the magnetic layer create an exchange-spring system that has a relatively low switching field. The anti-ferromagnetic layer of FexNi1-xO has a Neel temperature that maintains thermal stability. The low switching field improves reliability when the disk is a bit pattern media used in perpendicular recording.
    Type: Application
    Filed: March 20, 2008
    Publication date: September 24, 2009
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Sooyoul Hong, Kiseok Moon, Carl (Xiao) Che
  • Patent number: 7587811
    Abstract: A method for manufacturing a magnetic write head for perpendicular magnetic recording having a write pole with a very narrow track width and well controlled critical dimensions. The write pole is formed by depositing an electrically conductive seed layer over a substrate, and then depositing a photo resist layer over the seed layer. The photo resist layer is photolithographically exposed and developed to form an opening or trench in the photoreist layer, the opening defining the pattern of the write pole. A magnetic material is then plated into the opening in the photoresist layer. The photo resist layer can then be removed by a chemical lift off, and portions of the seed layer that are not covered by the write pole can be removed by ion milling.
    Type: Grant
    Filed: April 25, 2006
    Date of Patent: September 15, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Hamid Balamane, Christian Rene Bonhote, Yimin Hsu, Aaron Neuhaus, Aron Pentek, Yi Zheng
  • Patent number: 7585682
    Abstract: The invention involves methods, assays, and components for the detection and analysis of binding between biological or chemical species, and can specifically be used for drug discovery. In an example where drug discovery is carried out, different candidate drugs can be attached to different articles such as magnetic beads. The beads can be exposed to colloid particles carrying signaling entities, or other signaling entities, immobilized with respect to protein targets of the drug candidates. After incubation, all beads are drawn to separate surface locations magnetically. Beads are released from surface locations where it is determined that signaling entities do not exist, and are removed from the assay. Beads held at other surface locations then are released, re-distributed, and re-attracted to surface locations. This is repeated with appropriate wash steps, until individual drug candidates can be isolated and identified.
    Type: Grant
    Filed: October 3, 2001
    Date of Patent: September 8, 2009
    Assignee: Minerva Biotechologies Corporation
    Inventor: Cynthia C. Bamdad
  • Patent number: 7571535
    Abstract: A suspension load beam used for attachment to a slider assembly and an actuation arm in a disc drive for data storage has a rigid middle beam section comprising a rigid bottom layer, a rigid top layer and a composite core layer sandwiched between the bottom layer and the top layer. A method for fabricating a vibration resistant mechanical member used a disc drive subject to high frequency motion operations is also disclosed. The method involves making an integral laminate structure and fabricating the mechanical member from the integral laminate structure. The integral laminate structure has a rigid bottom layer, a composite core layer on top of the rigid bottom layer, and a rigid top layer on top of the core layer so that the composite core layer is sandwiched between the rigid bottom layer and the rigid top layer.
    Type: Grant
    Filed: April 16, 2007
    Date of Patent: August 11, 2009
    Assignee: Seagate Technology LLC
    Inventor: John S. Wright
  • Publication number: 20090169731
    Abstract: Patterned magnetic recording media and associated methods of fabrication are described. The patterned magnetic recording media includes a perpendicular magnetic recording layer that is patterned into a plurality of discrete magnetic islands. The patterned magnetic recording media also includes an exchange bridge structure formed from magnetic material that connects the islands of the perpendicular magnetic recording layer. Connecting the islands with magnetic material increases exchange coupling between the islands, which makes the islands more magnetically stable.
    Type: Application
    Filed: December 26, 2007
    Publication date: July 2, 2009
    Inventors: Thomas R. Albrecht, Manfred E. Schabes
  • Patent number: 7553513
    Abstract: The present invention provides an electrochemical electrode wherein transition metal (nickel) nanoparticles are used to form an active layer having a large surface area without using a conductive support while maintaining dispersibility and stability, and a method for producing the same.
    Type: Grant
    Filed: August 8, 2006
    Date of Patent: June 30, 2009
    Assignee: Panasonic Corporation
    Inventors: Yuka Yamada, Nobuyasu Suzuki, Hidehiro Sasaki
  • Patent number: 7549215
    Abstract: A structure and method for performing magnetic inductance testing of write heads formed on a wafer. The structure and method allows for the effective inductive testing of magnetic write heads at wafer level even if the write heads have an inductance that is too low to be effectively measured directly. A test head is constructed having a structure similar to that of the write heads, but having a significantly higher magnetic inductance. The higher magnetic inductance of the write head can be provided by extending the shaping layer to or beyond the air bearing surface plane ABS. The inductance of the test head can be further increased by increasing the width of the portion of the shaping layer that extends to the ABS (ie. shaping layer throat) and by increasing the width of the write pole throat.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: June 23, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Wen-Chien David Hsiao, Michael Ming Hsiang Yang
  • Publication number: 20090154013
    Abstract: Embodiments of the present invention provide a perpendicular magnetic recording head which can suppress reduction in recording field and efficiently reduce a fringe field. According to one embodiment, a side shield disposed at a side of each side face in a cross track direction of a main pole is arranged at a far leading side compared with the main pole.
    Type: Application
    Filed: November 21, 2008
    Publication date: June 18, 2009
    Inventors: Mikito Sugiyama, Isao Nunokawa, Hiroyuki Hoshiya
  • Patent number: 7536776
    Abstract: A fabrication method for thin film magnetic heads, comprises, forming a Current Perpendicular to a Plane (CPP) sensor film over a lower shield and a first chemical mechanical polishing (CMP) stop film over the CPP sensor film, etching the CPP sensor film and forming a track width on the CPP sensor film, and covering at least the etching section of the CPP sensor film with an insulating film. The method further comprises forming a CMP dummy film over the insulating film and a second CMP stop film over the CMP dummy film, exposing the first CMP stop film, and removing the first CMP stop film and the second CMP stop film by oxygen reactive ion etching (RIE) and the CMP dummy film by fluorine RIE, and forming an upper shield film over the insulating film and over the CPP sensor film.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: May 26, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Nobuo Yoshida, Taku Shintani, Hisako Takei