Nitrogen Containing Coating (e.g., Metal Nitride, Etc.) Patents (Class 427/255.394)
  • Patent number: 8815751
    Abstract: There is provided a method of manufacturing a semiconductor device, including: forming a film containing a specific element, nitrogen, and carbon on a substrate, by alternately performing the following steps a specific number of times: a step of supplying a source gas containing the specific element and a halogen element, to the substrate; and a step of supplying a reactive gas composed of three elements of carbon, nitrogen, and hydrogen and having more number of a carbon atom than the number of a nitrogen atom in a composition formula thereof, to the substrate.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: August 26, 2014
    Assignees: Hitachi Kokusai Electric Inc., L'Air Liquide-Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Yoshiro Hirose, Atsushi Sano, Kazutaka Yanagita, Katsuko Higashino
  • Publication number: 20140227444
    Abstract: A compound that is useful for forming a metal by reaction with a reducing agent is described by formula (I): wherein M is a metal selected from Groups 2 through 12 of the Periodic Table; and R1, R2, R3, and R4 are each independently H or C1-C8 alkyl.
    Type: Application
    Filed: February 13, 2013
    Publication date: August 14, 2014
    Applicant: Wayne State University
    Inventors: Charles H. Winter, Lakmal C. Kalutarage
  • Publication number: 20140199470
    Abstract: Provided are a polymer composition on a substrate and a surface modification method which is non-selective to substrate materials. Chemical vapor deposition polymerization is used to deposit a maleimide-functionalized poly-p-xylylene coating on a substrate. The substrate is readily available to perform a thiol-maleimide coupling reaction under mild conditions so as to modify the surface thereof. Furthermore, through a tailored thiol-terminal molecule, a designer surface can be created via thiol-maleimide coupling on a substrate, and the resulting surface can exhibit various desired biological functions for biotechnological applications. Therefore, this modification technique can be applied to biological fields extensively.
    Type: Application
    Filed: March 15, 2013
    Publication date: July 17, 2014
    Applicant: National Taiwan University
    Inventors: Hsien-Yeh Chen, Sheng-Tung Huang, Meng-Yu Tsai
  • Patent number: 8765222
    Abstract: The method according to the present invention includes a first step of supplying the Group V source gas at a flow rate B1 (0<B1) and supplying the gas containing magnesium at a flow rate C1 (0<C1) while supplying the Group III source gas at a flow rate A1 (0?A1); and a second step of supplying a Group V source gas at a flow rate B2 (0<B2) and supplying a gas containing magnesium at a flow rate C2 (0<C2) while supplying a Group III source gas at a flow rate A2 (0<A2). The first step and the second step are repeated a plurality of times to form a p-AlxGa1-xN (0?x<1) layer, and the flow rate A1 is a flow rate which allows no p-AlxGa1-xN layer to grow and satisfies A1?0.5 A2.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: July 1, 2014
    Assignee: Dowa Electronics Materials Co., Ltd.
    Inventors: Yoshikazu Ooshika, Tetsuya Matsuura
  • Patent number: 8748016
    Abstract: The invention relates to coated bodies made of metal, hard metal, cermet or ceramic material, coated with a single- or multi-layer coating system containing at least one hard material composite coating, and to a method for coating such bodies. The aim of the invention is to develop a coating system for such bodies, which is single- or multi-layered and comprises at least one hard material composite coating, which contains cubic TiAlCN and hexagonal AlN as the main phases and is characterized by a composite structure having a smooth, homogeneous surface, high oxidation resistance and high hardness. The aim includes the development of a method for cost-effectively producing such coatings. The hard material composite coating according to the invention contains cubic TiAlCN and hexagonal AlN as main phases, wherein the cubic TiAlCN is microcrystalline fcc-Ti1-xAlxCyNz where x>0.75, y=0 to 0.25 and z=0.75 to 1 having a crystallite size of ?=0.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: June 10, 2014
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Ingolf Endler, Mandy Hoehn
  • Patent number: 8741800
    Abstract: A high surface area catalyst with a mesoporous support structure and a thin conformal coating over the surface of the support structure. The high surface area catalyst support is adapted for carrying out a reaction in a reaction environment where the thin conformal coating protects the support structure within the reaction environment. In various embodiments, the support structure is a mesoporous silica catalytic support and the thin conformal coating comprises a layer of metal oxide resistant to the reaction environment which may be a hydrothermal environment.
    Type: Grant
    Filed: July 22, 2010
    Date of Patent: June 3, 2014
    Assignee: UChicago Argonne, LLC
    Inventors: Jeffrey W. Elam, Christopher L. Marshall, Joseph A. Libera, James A. Dumesic, Yomaira J. Pagan-Torres
  • Patent number: 8741385
    Abstract: The present invention relates to the field of semiconductor processing and provides methods that improve chemical vapor deposition (CVD) of semiconductor materials by promoting more efficient thermalization of precursor gases prior to their reaction. In preferred embodiments, the method provides heat transfer structures and their arrangement within a CVD reactor so as to promote heat transfer to flowing process gases. In certain preferred embodiments applicable to CVD reactors transparent to radiation from heat lamps, the invention provides radiation-absorbent surfaces placed to intercept radiation from the heat lamps and to transfer it to flowing process gases.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: June 3, 2014
    Assignee: Soitec
    Inventors: Chantal Arena, Christiaan J. Werkhoven, Ronald Thomas Bertram, Jr., Ed Lindow
  • Patent number: 8728575
    Abstract: A method for synthesizing a thin film, the method containing the steps of: (a) providing a substrate support assembly containing at least two selectively interdigitable substrate support fixtures; (b) loading a substrate for thin film synthesis onto said at least two fixtures; (c) interdigitating said at least two fixtures; (d) positioning said at least two fixtures in a reaction chamber and forming a thin film on a surface of the substrate; and (e) unloading the substrate from said at least two fixtures.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: May 20, 2014
    Inventors: Xuesong Li, Yu-Ming Lin, Chun-Yung Sung
  • Patent number: 8715779
    Abstract: Apparatus, systems and methods for characteristics of glass components through use of one or more coatings are disclosed. The coatings are typically thin coatings, such as thin film coatings. The coatings can serve to increase strength of the glass components and/or provide durable user interfacing surfaces. Accordingly, glass articles that have received coatings are able to be not only thin but also sufficiently strong so as to resist damage from impact events. The coated glass articles are well suited for use in consumer products, such as consumer electronic devices (e.g., electronic devices).
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: May 6, 2014
    Assignee: Apple Inc.
    Inventors: Anna-Katrina Shedletsky, Christopher Prest
  • Publication number: 20140106071
    Abstract: Transition metal-containing precursors are disclosed. Also disclosed are methods of synthesizing and using the disclosed precursors to deposit transition metal-containing films on one or more substrates via a vapor deposition process.
    Type: Application
    Filed: December 13, 2013
    Publication date: April 17, 2014
    Applicant: L'Air Liquide, Société Anonyme pour I'Etude et I'Exploitation des Procédés Georges Claude
    Inventors: Clément LANSALOT-MATRAS, Wontae Noh
  • Publication number: 20140102599
    Abstract: A method of coating all surfaces of a plurality of piston rings in a single run by a chemical vapor deposition (CVD) process is provided. The method can include providing a coil formed of an iron-based material; heating the coil; and depositing a coating on all surfaces of the coil during a single continuous period of time, without having to move the coil during the CVD process. The coil is maintained in a fixed position during the depositing step. The method next includes splitting the coil into a plurality of separate coated piston rings. Alternatively, the method can include providing a plurality of stacked keystone piston ring bodies; and disposing a cylinder around the stack to maintain the keystone piston ring bodies in position while depositing the CVD coating on all surfaces of the keystone piston ring bodies during the single coating run.
    Type: Application
    Filed: October 11, 2013
    Publication date: April 17, 2014
    Applicant: Federal-Mogul Corporation
    Inventors: Robert Aharonov, Haron Gekonde
  • Publication number: 20140087076
    Abstract: The invention relates generally to processes for enhancing the deposition of noble metal thin films on a substrate by atomic layer deposition. Treatment with gaseous halides or metalorganic compounds reduces the incubation time for deposition of noble metals on particular surfaces. The methods may be utilized to facilitate selective deposition. For example, selective deposition of noble metals on high-k materials relative to insulators can be enhanced by pretreatment with halide reactants. In addition, halide treatment can be used to avoid deposition on the quartz walls of the reaction chamber.
    Type: Application
    Filed: July 24, 2013
    Publication date: March 27, 2014
    Applicant: ASM International N.V.
    Inventors: Suvi P. Haukka, Marko J. Tuominen, Antti Rahtu
  • Patent number: 8668957
    Abstract: Method of deposition on a substrate, of a metal containing dielectric film comprising a compound of the formula (I): (M11-aM2a)ObNc,??(I) wherein 0?a<1, 0<b?3, 0?c?1, M1 represents a metal selected from (Hf), (Zr) and (Ti); and M2 represents a metal atom atoms, which comprises the following steps: A step a) of providing a substrate into a reaction chamber; A step (b) of vaporizing a M1 metal containing precursor of the formula (II): (R1yOp)x(R2tCp)zM1R?4-x-z??(II) wherein 0?x?3, preferably x=0 or 1, 0?z?3, preferably z=1 or 2, 1?(x+z)?4, 0?y?7, preferably y=2 0?t?5, preferably t=1, (R1yOp) represents a pentadienyl ligand, which is either unsubstituted or substituted; (R2tCp) represents a cyclopentadienyl (Cp) ligand, which is either unsubstituted or substituted, to form a first gas phase metal source; A step c) of introducing the first gas phase metal source in the reaction chamber, in order to provoke their contact with said substrate, to generate the deposition of a metal containing dielectric
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: March 11, 2014
    Assignee: L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude
    Inventors: Christian Dussarrat, Nicolas Blasco, Audrey Pinchart, Christophe Lachaud
  • Patent number: 8669185
    Abstract: A method of tailoring conformality of a film deposited on a patterned surface includes: (I) depositing a film by PEALD or pulsed PECVD on the patterned surface; (II) etching the film, wherein the etching is conducted in a pulse or pulses, wherein a ratio of an etching rate of the film on a top surface and that of the film on side walls of the patterns is controlled as a function of the etching pulse duration and the number of etching pulses to increase a conformality of the film; and (III) repeating (I) and (II) to satisfy a target film thickness.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: March 11, 2014
    Assignee: ASM Japan K.K.
    Inventors: Shigeyuki Onizawa, Woo-Jin Lee, Hideaki Fukuda, Kunitoshi Namba
  • Publication number: 20140065368
    Abstract: This disclosure relates to methods that include depositing a first component and a second component to form a film including a plurality of nanostructures, and coating the nanostructures with a hydrophobic layer to render the film superhydrophobic. The first component and the second component can be immiscible and phase-separated during the depositing step. The first component and the second component can be independently selected from the group consisting of a metal oxide, a metal nitride, a metal oxynitride, a metal, and combinations thereof. The films can have a thickness greater than or equal to 5 nm; an average surface roughness (Ra) of from 90 to 120 nm, as measured on a 5 ?m×5 ?m area; a surface area of at least 20 m2/g; a contact angle with a drop of water of at least 120 degrees; and can maintain the contact angle when exposed to harsh conditions.
    Type: Application
    Filed: August 28, 2012
    Publication date: March 6, 2014
    Applicant: UT-BATTELLE, LLC
    Inventors: Tolga AYTUG, Mariappan Parans PARANTHAMAN, John T. SIMPSON, Daniela Florentina BOGORIN
  • Patent number: 8652573
    Abstract: Method of depositing a film having a substantially uniform thickness by means of chemical vapor deposition, comprising: providing a reaction chamber; providing a substrate in said reaction chamber; subjecting the substrate to a series of deposition cycles, wherein each deposition cycle includes the steps of: (a) during a first time interval, supplying a first reactant to the reaction chamber; (b) during a second time interval, supplying a second reactant to the reaction chamber; and (c) during a third time interval, supplying neither the first nor the second reactant to the reaction chamber; wherein a start of the second time interval lies within the first time interval, such that a pre-exposure interval exists between a start of the first time interval and the start of the second time interval, during which pre-exposure interval the first reactant is supplied to the reaction chamber while the second reactant is not.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: February 18, 2014
    Assignee: ASM International N.V.
    Inventors: Maarten Stokhof, Hessel Sprey, Tatsuya Yoshimi, Bert Jongbloed, Noureddine Adjeroud
  • Patent number: 8646407
    Abstract: A method is provided for using a film formation apparatus including a process container having an inner surface, which contains as a main component a material selected from the group consisting of quartz and silicon carbide. The method includes performing a film formation process to form a silicon nitride film on a product target substrate inside the process container, and then, unloading the product target substrate from the process container. Thereafter, the method includes supplying an oxidizing gas into the process container with no product target substrate accommodated therein, thereby performing an oxidation process to change by-product films deposited on the inner surface of the process container into a composition richer in oxygen than nitrogen, at a part of the by-product films from a surface thereof to a predetermined depth.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: February 11, 2014
    Assignee: Tokyo Electron Limited
    Inventor: Hiroyuki Matsuura
  • Patent number: 8642127
    Abstract: According to the method of forming a titanium nitride film, first, an inside of a reaction pipe accommodating a semiconductor wafer is heated up to 200° C. to 350° C. by using a temperature increasing heater. Then, the titanium nitride film is formed on the semiconductor wafer by supplying a film forming gas including a titanium raw material into the reaction pipe. Methylcyclopentadienyl tris(dimethylamino)titanium that does not include a chlorine atom and includes titanium is used as the titanium raw material.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: February 4, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Yuichiro Morozumi, Shingo Hishiya, Katsushige Harada
  • Publication number: 20140030434
    Abstract: A device for depositing at least one especially thin layer onto at least one substrate includes a process chamber housed in a reactor housing and includes a movable susceptor which carries the at least one substrate. A plurality of gas feed lines run into said process chamber and feed different process gases which comprise layer-forming components. Said process gases can be fed to the process chamber in subsequent process steps, thereby depositing the layer-forming components onto the substrate. In order to increase throughput, the process chamber is provided with a plurality of separate deposition chambers into which different gas feed lines run, thereby feeding individual gas compositions. The substrate can be fed to said chambers one after the other by moving the susceptor and depositing different layers or layer components.
    Type: Application
    Filed: September 26, 2013
    Publication date: January 30, 2014
    Applicant: AIXTRON INC.
    Inventors: Piotr Strzyzewski, Peter Baumann, Marcus Schumacher, Johannes Lindner, Antonio Mesquida Küsters
  • Patent number: 8617652
    Abstract: Embodiments relate to depositing on one or more layers of materials on a fiber or fiber containing material using atomic layer deposition (ALD) to provide or enhance functionalities of the fibers or fiber containing material. A layer of material is deposited coated on the fibers or fiber containing textile by causing the relative movement between a fiber or the fiber containing textile and a source injector. The surface of the material is oxidized, nitrified or carbonized to increase the volume of the deposited material. By increasing the volume of the material, the material is subject to compressive stress. The compressive stress renders the fibers or the fiber containing material more rigid, stronger and more resistant against bending force, impact or tensile force.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: December 31, 2013
    Assignee: Veeco ALD Inc.
    Inventor: Sang In Lee
  • Patent number: 8614147
    Abstract: A TiN film is formed by a first step of forming a TiN intermediate film on a wafer by supplying TiCl4 and NH3 reacting with TiCl4 to the wafer and controlling a processing condition for causing a bonding branch that has not undergone a substitution reaction to remain at a predetermined concentration at a part of TiCl4 and a second step of substituting the bonding branch contained in the TiN intermediate film by supplying H2 to the wafer, the first step and the second step being performed in this order.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: December 24, 2013
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Masanori Sakai, Tatsuyuki Saito
  • Publication number: 20130333835
    Abstract: Hybrid inorganic-organic, polymeric alloys are prepared by combining atomic layer deposition and molecular layer deposition techniques provide barrier protection against intrusion of atmospheric gases such as oxygen and water vapor. The alloy may be formed either directly on objects to be protected, or on a carrier substrate to form a barrier structure that subsequently may be employed to protect an object. The alloy thus formed is beneficially employed in constructing electronic devices such as photovoltaic cell arrays, organic light-emitting devices, and other optoelectronic devices.
    Type: Application
    Filed: June 14, 2012
    Publication date: December 19, 2013
    Applicant: E I DU PONT DE NEMOURS AND COMPANY
    Inventors: Peter Francis Carcia, Robert Scott Mclean
  • Publication number: 20130330482
    Abstract: The present invention relates to carbon-doped silicon nitride thin film and forming method and device thereof The carbon-doped silicon nitride thin film is prepared by using a precursor having at least one of bis(dimethylamino)diethylsilane, N,N-Dimethyltrimethylsilylamine and a cyclic structure with a N—Si bond. The method for forming a carbon-doped silicon nitride thin film includes: providing a precursor having at least one of bis(dimethylamino)diethylsilane, N,N-Dimethyltrimethylsilylamine and a cyclic structure with a N—Si bond to form the carbon-doped silicon nitride thin film. The device for forming the carbon-doped silicon nitride thin film includes a reactor and a container with the aforementioned precursor coupled to the reactor.
    Type: Application
    Filed: January 30, 2013
    Publication date: December 12, 2013
    Applicant: NATIONAL CHIAO TUNG UNIVERSITY
    Inventors: Jihperng Leu, Hung-En Tu, Wei-Gan Chiu
  • Patent number: 8603582
    Abstract: Non-stick fixtures for selectively masking portions of a workpiece during application of a workpiece coating are described herein. These fixtures have predetermined surfaces thereon having an average surface roughness of about 25 Ra or less and a Rockwell hardness of about 65 Rc or more. The controlled average surface roughness ensures that these fixtures are non-stick with respect to the workpiece coating being applied to the workpieces disposed therein. The controlled Rockwell hardness ensures that the desired average surface roughness can be maintained throughout repeated use of the fixture in harsh coating environments. These fixtures reduce the workpiece coating bridging that occurs between the fixture and the workpiece, and also reduce the amount of overspray that occurs on the workpiece, thereby minimizing the amount of handwork and/or rework that is necessary after the workpiece is coated. This improves process cycle times and yields significantly.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: December 10, 2013
    Assignee: United Technologies Corporation
    Inventors: Ryan Richard Bernaski, Bartolomeo Palmieri
  • Publication number: 20130323652
    Abstract: Methods of preparing organosilane-functionalized regions on a substrate surface and more specifically fabricating patterned functionalized substrates suitable to be optically read, the methods generally comprising employing a vapor deposition process of an organosilane gas onto a lithographically patterned silicon surface followed by removal of the patterning media in a bath of organic solvents and ultrasonic excitation. The inventive methods provide optimized surface density of functional species while avoiding deleterious effects that can occur when lithographically patterned substrates are exposed to various gaseous species during the functionalization process.
    Type: Application
    Filed: June 5, 2012
    Publication date: December 5, 2013
    Applicant: Complete Genomics, Inc.
    Inventors: Andres Fernandez, Shaunak Roy, Jay Shafto, Norman L. Burns, Claudia Richter, Pierre F. Indermuhle
  • Publication number: 20130323435
    Abstract: Described herein are precursors and methods for forming silicon-containing films. In one aspect, there is provided a precursor of Formula I: wherein R1 is selected from linear or branched C3 to C10 alkyl group, linear or branched C3 to C10 alkenyl group, linear or branched C3 to C10 alkynyl group, C1 to C6 dialkylamino group, electron withdrawing group, and C6 to C10 aryl group; R2 is selected from hydrogen, linear or branched C1 to C10 alkyl group, linear or branched C3 to C6 alkenyl group, linear or branched C3 to C6 alkynyl group, C1 to C6 dialkylamino group, C6 to C10 aryl group, linear or branched C1 to C6 fluorinated alkyl group, electron withdrawing group, and C4 to C10 aryl group; optionally wherein R1 and R2 are linked together to form ring selected from substituted or unsubstituted aromatic ring or substituted or unsubstituted aliphatic ring; and n=1 or 2.
    Type: Application
    Filed: May 24, 2013
    Publication date: December 5, 2013
    Applicant: Air Products And Chemicals, Inc.
    Inventors: Manchao Xiao, Xinjian Lei, Daniel P. Spence, Haripin Chandra, Bing Han, Mark Leonard O'Neill, Steven Gerard Mayorga, Anupama Mallikarjunan
  • Publication number: 20130302536
    Abstract: The invention relates to a method for producing a transparent bather layer system, wherein in a vacuum chamber at least two transparent barrier layers and a transparent intermediate layer disposed between the two barrier layers are deposited on a transparent plastic film, wherein for deposition of the barrier layers aluminium is vaporised and simultaneously at least one first reactive gas is introduced into the vacuum chamber and wherein for deposition of the intermediate layer aluminium is vaporised and simultaneously at least one second reactive gas and a gaseous or vaporous organic component are introduced into the vacuum chamber.
    Type: Application
    Filed: February 15, 2012
    Publication date: November 14, 2013
    Applicant: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    Inventors: Steffen Guenther, Bjoern Meyer, Steffen Straach, Thomas Kuehnel, Sebastian Bunk, Nicolas Schiller
  • Patent number: 8580378
    Abstract: An organic glass for automobile is provided which has excellent weatherability, wear-resistance and abrasion-resistance, and which can be mass-produced by a simple and inexpensive process. The organic glass comprises a transparent resin base plate 12 and a hard coat layer 14 formed on at least one surface of the resin base plate. The hard coat layer includes an organic thin film 16 formed by vacuum deposition polymerization.
    Type: Grant
    Filed: November 29, 2010
    Date of Patent: November 12, 2013
    Assignee: Kojima Press Industry Co., Ltd.
    Inventor: Masumi Noguchi
  • Patent number: 8563085
    Abstract: In a method of forming a layer, a precursor composition including a metal and a ligand chelating to the metal is stabilized by contacting the precursor composition with an electron donating compound to provide a stabilized precursor composition onto a substrate. A reactant is introduced onto the substrate to bind to the metal in the stabilized precursor composition. The stabilized precursor composition is provided onto the substrate by introducing the precursor composition onto the substrate after the electron donating compound is introduced onto the substrate. The electron donating compound is continuously introduced onto the substrate during and after the precursor composition is introduced.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: October 22, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Youn-Joung Cho, Youn-Soo Kim, Kyu-Ho Cho, Jung-Ho Lee, Jae-Hyoung Choi, Seung-Min Ryu
  • Patent number: 8563095
    Abstract: A method of forming a passivation layer comprising silicon nitride on features of a substrate is described. In a first stage of the deposition method, a dielectric deposition gas, comprising a silicon-containing gas and a nitrogen-containing gas, is introduced into the process zone and energized to deposit a silicon nitride layer. In a second stage, a treatment gas, having a different composition than that of the dielectric deposition gas, is introduced into the process zone and energized to treat the silicon nitride layer. The first and second stages can be performed a plurality of times.
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: October 22, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Nagarajan Rajagopalan, Xinhai Han, Ryan Yamase, Ji Ae Park, Shamik Patel, Thomas Nowak, Zhengjiang “David” Cui, Mehul Naik, Heung Lak Park, Ran Ding, Bok Hoen Kim
  • Publication number: 20130273250
    Abstract: The present invention relates to an (amide amino alkane) metal compound represented by the formula (1): wherein M represents a metal atom; R1 represents a linear, branched or cyclic alkyl group having 1 to 6 carbon atoms; R2 and R3 may be the same as, or different from each other, and each independently represents a linear or branched alkyl group having 1 to 3 carbon atoms, or R2 and R3 may form a substituted or unsubstituted 5- or 6-membered ring together with the nitrogen atom to which they are bound; Z represents a linear or branched alkylene group having 1 to 10 carbon atoms (a part of which may optionally form a ring); and n represents a number of the ligands, which is equal to the valence of the metal (M), and represents an integer of from 1 to 3; with the proviso that the metal compounds in which M is Li (Lithium), Be (Beryllium), Ge (Germanium) or Nd (Neodymium) are excluded; the metal compounds in which M is Mg (Magnesium) and R1 is methyl group are excluded; the metal compounds in which M i
    Type: Application
    Filed: November 2, 2011
    Publication date: October 17, 2013
    Applicant: UBE INDUSTRIES, LTD
    Inventors: Osamu Fujimura, Hiroki Kanato, Masashi Shirai, Hiroshi Nihei
  • Patent number: 8545938
    Abstract: A method of fabricating a ceramic component includes using vapor infiltration to deposit a ceramic coating within pores of a porous structure to form a preform body with residual interconnected porosity. Transfer molding is then used to deposit a heated, liquid glass or glass/ceramic material into the residual interconnected porosity. The liquid ceramic or ceramic/glass material is then solidified to form a ceramic component.
    Type: Grant
    Filed: October 3, 2011
    Date of Patent: October 1, 2013
    Assignee: United Technologies Corporation
    Inventors: Wayde R. Schmidt, David C. Jarmon
  • Patent number: 8541067
    Abstract: The method of laser treating Ti-6Al-4V to form surface compounds is a method of forming barrier layers on surfaces of Ti-6Al-4V workpieces. The Ti-6Al-4V workpiece is first cleaned and then a water-soluble phenolic resin is applied to at least one surface of the Ti-6Al-4V workpiece. The Ti-6Al-4V workpiece and the layer(s) of water soluble phenolic resin are then heated to carbonize the phenolic resin, thus forming a carbon film on the at least one surface. TiC particles are then inserted into the carbon film. Following the insertion of the TiC particles, a laser beam is scanned over the at least one surface of the Ti-6Al-4V workpiece. A stream of nitrogen gas is sprayed on the surface of the Ti-6Al-4V workpiece coaxially and simultaneously with the laser beam at a relatively high pressure, thus forming a barrier layer of TiCxN1-x, TiNx, Ti—C, and Ti2N compounds in the surface region.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: September 24, 2013
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Bekir Sami Yilbas, Syed Sohail Akhtar, Cihan Karatas, Abdul Aleem Bangalore Jabbar
  • Publication number: 20130243956
    Abstract: Provided are methods of selectively depositing an atomic layer deposition film on a substrate having two different surfaces. Also provided are methods of depositing TaN selectively onto a dielectric material versus a metal surface.
    Type: Application
    Filed: March 14, 2012
    Publication date: September 19, 2013
    Applicant: Applied Materials, Inc.
    Inventor: Paul F. Ma
  • Publication number: 20130236657
    Abstract: Provided are metal coordination complexes comprising a pyrrole or imidazole-based ligands and cobalt or manganese. Also provided are methods for the selective deposition of cobalt and/or manganese films on metal surfaces using these metal coordination complexes comprising a pyrrole or imidazole-based ligand.
    Type: Application
    Filed: February 28, 2013
    Publication date: September 12, 2013
    Inventor: Jeffrey W. Anthis
  • Publication number: 20130236704
    Abstract: Wear parts having run-out and methods of producing the same, systems and control structures used to produce wear parts having run-out, and associated methods and software are disclosed. Some methods utilize a plasma-enhanced chemical vapor deposition process to produce a coating with a desired coating profile on a wear part.
    Type: Application
    Filed: March 7, 2012
    Publication date: September 12, 2013
    Applicant: The Boeing Company
    Inventors: Liam S. Cavanaugh Pingree, Michael Howard-Edward Ware
  • Publication number: 20130200572
    Abstract: The present disclosure provides a vehicle piston ring having a multi-layer coating. The vehicle piston ring includes a Cr or Ti buffer layer, a CrN or Ti(C)N intermediate layer, a first TiAlN/CrN nano multi-layer, and a second TiAlCN/CrCN nano multi-layer. The Cr or Ti buffer layer is coated over the base material of the piston ring. The CrN or Ti(C)N intermediate layer is coated over the Cr or Ti buffer layer. The first TiAlN/CrN nano multilayer is coated over the CrN or Ti(C)N intermediate layer. The second TiAlCN/CrCN nano multilayer is coated over the first TiAlN/CrN nano multilayer as an outermost surface layer.
    Type: Application
    Filed: June 20, 2012
    Publication date: August 8, 2013
    Applicants: KIA MOTORS CORPORATION, HYUNDAI MOTOR COMPANY
    Inventors: Sung Chul Cha, Chang Hyun Shin, Ji Hwan Yun
  • Publication number: 20130174982
    Abstract: The present disclosure provides for methods of fabricating a metal hard mask and a metal hard mask fabricated by such methods. A method includes flowing at least one metal reactant gas into a reaction chamber configured to perform chemical vapor deposition (CVD), wherein the at least one metal reactant gas includes a metal-halogen gas or a metal-organic gas. The method further includes depositing a hard mask metal layer by CVD using the at least one metal reactant gas.
    Type: Application
    Filed: January 5, 2012
    Publication date: July 11, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Su-Horng Lin, Lin-Jung Wu, Chi-Ming Yang, Chin-Hsiang Lin
  • Patent number: 8470402
    Abstract: Methods of depositing a metal containing dielectric film on a substrate are disclosed. The metal containing dielectric film has the formula (M11-a M2a) Ob Nc, wherein 0?a<1, 0<b?3, 0?c?1, M1 represents a metal selected from (Hf) or (Zr); and M2 represents a metal atom. The method generally uses an M1 metal containing precursor selected from: Zr(MeCp)(NMe2)3, Zr(EtCp)(NMe2)3, ZrCp(NMe2)3, Zr(MeCp)(NEtMe)3, Zr(EtCp)(NEtMe)3, ZrCp(NEtMe)3, Zr(MeCp)(NEt2)3, Zr(EtCp)(NEt2)3, ZrCp(NEt2)3, Zr(iPr2Cp)(NMe2)3, Zr(tBu2Cp)(NMe2)3, Hf(MeCp)(NMe2)3, Hf(EtCp)(NMe2)3, HfCp(NMe2)3, Hf(MeCp)(NEtMe)3, Hf(EtCp)(NEtMe)3, HfCp(NEtMe)3, Hf(MeCp)(NEt2)3, Hf(EtCp)(NEt2)3, HfCp(NEt2)3, Hf(iPr2Cp)(NMe2)3, or Hf(tBu2Cp)(NMe2)3.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: June 25, 2013
    Assignee: L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude
    Inventors: Christian Dussarrat, Nicolas Blasco, Audrey Pinchart, Christophe Lachaud
  • Patent number: 8470401
    Abstract: The disclosure is directed to a process for depositing a group V metal containing film on a substrate by introducing a substrate into a reactor; preferably heating the substrate at a temperature above 150° C.; feeding a compound of the formula (Ia) or of the formula (Ib), or a mixture of said compounds thereof in the vapor phase into the reactor; optionally feeding a second compound of the formula (Ia) or of the formula (Ib), or a second mixture of said compounds thereof in vapor phase into the reactor; and thereby depositing the group V metal containing film onto said substrate.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: June 25, 2013
    Assignee: L'Air Liquide, Socété Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude
    Inventors: Nicolas Merle, Stéphane Danielle, Christian Dussarrat, Nicolas Blasco
  • Publication number: 20130157062
    Abstract: Provision of a laminate excellent in weather resistance and gas barrier property and also excellent in adhesion between layers and its durability; and a process for producing such a laminate. A laminate which comprises a substrate sheet containing a fluororesin, and a gas barrier layer containing, as the main component, an inorganic compound composed of a metal and at least one member selected from the group consisting of oxygen, nitrogen and carbon, the gas barrier layer being directly laminated on at least one surface of the substrate sheet; wherein in a C1s spectrum of a surface of the substrate sheet on which the gas barrier layer is laminated, that is measured by X-ray photoelectron spectroscopy, the position of the highest peak present within a binding energy range of from 289 to 291 eV is present within a range of from 290.1 to 290.6 eV.
    Type: Application
    Filed: February 12, 2013
    Publication date: June 20, 2013
    Applicant: Asahi Glass Company, Limited
    Inventor: Asahi Glass Company, Limited
  • Publication number: 20130153204
    Abstract: A shear ram assembly apparatus for providing the capability to shear larger diameter well casings and internal components during ram-type blowout preventer operation while requiring less force to perform the cutting. Components of the shear ram assembly apparatus, include but not limited to a plurality of hardened cutting blades that are coated with a compound that increases the hardness and reduces the coefficient of friction of the cutting blades. In this regard, a smaller force is required to perform the cutting and the cutting blades receive less wear per cut and provide greater assurance that each cut of this failsafe apparatus is successful.
    Type: Application
    Filed: December 20, 2011
    Publication date: June 20, 2013
    Applicant: HYDRIL USA MANUFACTURING LLC
    Inventors: William L. CARBAUGH, Leonard CHILDERS, Viral SHAH
  • Patent number: 8449942
    Abstract: A method of forming a silicon oxide layer is described. The method may include the steps of mixing a carbon-free silicon-containing precursor with a radical-nitrogen-and/or-hydrogen precursor, and depositing a silicon-nitrogen-and-hydrogen-containing layer on a substrate. The conversion of the silicon-nitrogen-and-hydrogen-containing layer to a silicon-and-oxygen-containing layer is then initiated by a low temperature anneal (a “cure”) in an ozone-containing atmosphere. The conversion of the silicon-and-nitrogen film to silicon oxide in the ozone-containing atmosphere may be incomplete and augmented by a higher temperature anneal in an oxygen-containing environment.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: May 28, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Jingmei Liang, Sukwon Hong
  • Publication number: 20130119615
    Abstract: A sealing device for sealing a first side against a second side of a machine part, wherein the sealing device has a sealing element which contacts a counter element. At least a part of the sealing element and/or at least a part of the counter element is coated with a layer consisting of or containing fullerene-like carbon nitride (FL—CNx), wherein an inter-layer of chromium (Cr) or aluminium (Al) or molybdenum (Mo) or titanium (Ti) or tungsten (W) or a diamond-like coating (DLC) or a metal-mix diamond-like coating (Me-DLC) is arranged between the surface of the sealing element and the layer consisting of or containing fullerene-like carbon nitride and/or between the surface of the counter element and the layer consisting of or containing fullerene-like carbon nitride.
    Type: Application
    Filed: January 2, 2013
    Publication date: May 16, 2013
    Applicant: Aktiebolaget SKF
    Inventor: Aktiebolaget SKF
  • Patent number: 8435905
    Abstract: The present invention provides a manufacturing method of a semiconductor device that has a rapid film formation rate and high productivity, and to provide a substrate processing apparatus.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: May 7, 2013
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Sadayoshi Horii, Hideharu Itatani, Kazuhiro Harada
  • Patent number: 8414986
    Abstract: A method of forming a cutting element that includes placing at least one cutting element in an inner surface of at least one hollow tubular member such that at least a portion of the at least one cutting element is exposed; generating plasma within the hollow portion of the tubular; and depositing at least one refractory metal or sp3 carbon-containing coating on an exposed surface of the at least one cutting element is disclosed.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: April 9, 2013
    Assignee: Smith International, Inc.
    Inventor: Madapusi K. Keshavan
  • Publication number: 20130078392
    Abstract: Described herein are precursors and methods of forming films. In one aspect, there is provided a precursor having Formula I: XmR1nHpSi(NR2R3)4-m-n-p??I wherein X is selected from Cl, Br, I; R1 is selected from linear or branched C1-C10 alkyl group, a C2-C12 alkenyl group, a C2-C12 alkynyl group, a C4-C10 cyclic alkyl, and a C6-C10 aryl group; R2 is selected from a linear or branched C1-C10 alkyl, a C3-C12 alkenyl group, a C3-C12 alkynyl group, a C4-C10 cyclic alkyl group, and a C6-C10 aryl group; R3 is selected from a branched C3-C10 alkyl group, a C3-C12 alkenyl group, a C3-C12 alkynyl group, a C4-C10 cyclic alkyl group, and a C6-C10 aryl group; m is 1 or 2; n is 0, 1, or 2; p is 0, 1 or 2; and m+n+p is less than 4, wherein R2 and R3 are linked or not linked to form a ring.
    Type: Application
    Filed: September 18, 2012
    Publication date: March 28, 2013
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Manchao Xiao, Xinjian Lei, Mark Leonard O'Neill, Bing Han, Ronald Martin Pearlstein, Haripin Chandra, Heather Regina Bowen, Agnes Derecskei-Kovacs
  • Patent number: 8399056
    Abstract: A method of forming on at least one support at least one metal containing dielectric films having the formula (M11-a M2a) Ob Nc, wherein: 0?a<1, 01 and M2 being metals Hf, Zr or Ti using precursors with pentadienyl ligands and/or cyclopentadienyl ligands.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: March 19, 2013
    Assignee: L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude
    Inventors: Nicolas Blasco, Christian Dussarrat
  • Publication number: 20130065706
    Abstract: An approach is provided for coating a golf club head with a material. The approach involves securing a first golf club head component to a second golf club head component using an adhesive, resulting in a golf club head main body having an exterior surface. The approach further includes physical vapor depositing at least one layer on at least a portion of the exterior surface of the golf club head main body at a temperature less than a melting point of the adhesive.
    Type: Application
    Filed: September 14, 2011
    Publication date: March 14, 2013
    Applicant: SRI SPORTS LIMITED
    Inventors: Sharon J. PARK, Joseph C. CHEN
  • Patent number: 8377511
    Abstract: Disclosed are CVD deposition of SiN and SiON films using pentakis(dimethylamino)disilane compounds along with a nitrogen containing gas and optionally an oxygen containing gas.
    Type: Grant
    Filed: April 3, 2006
    Date of Patent: February 19, 2013
    Assignee: L'Air Liquide Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventor: Christian Dussarrat