Metal Coating (e.g., Electroless Deposition, Etc.) Patents (Class 427/304)
  • Patent number: 10351958
    Abstract: A method is disclosed for electroless plating of thin metal film directly onto a substrate. The method includes the steps of: cleaning the substrate to remove organic material; etching a surface of the substrate to remove an oxygen-containing surface layer; soaking and rinsing the substrate in a plurality of baths following etching; and electroless plating the metal onto the substrate.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: July 16, 2019
    Assignee: Council On Postsecondary Education
    Inventors: Jason Rodger Dwyer, Julie C. Whelan, Y. M. Nuwan D. Y. Bandara, Buddini I. Karawdeniya
  • Patent number: 10249572
    Abstract: The present invention concerns a method for forming a metal layer for electromagnetic shielding and thermal management of active components, preferably by wet chemical metal plating, using an adhesion promotion layer on the layer of molding compound and forming at least one metal layer on the adhesion promotion layer or forming at least one metal layer on the adhesion promotion layer by wet chemical metal plating processes.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: April 2, 2019
    Assignee: Atotech Deutschland GmbH
    Inventors: Kenichiroh Mukai, Kwonil Kim, Lee Gaherty, Lutz Brandt, Tafadzwa Magaya
  • Patent number: 10234763
    Abstract: An article is prepared with surface regions having different contact angles. A reactive silane material is attached to a surface having a reactive tail component that is contacted with a first corresponding reactant, followed by imagewise UV exposure to cause imagewise reaction of the reactive tail component and first corresponding reactant, forming reacted regions and latent reaction regions. After rinsing, a second corresponding reactant that is capable of reaction with the reactive moiety is applied. Uniform UV exposure leads to a second reaction product only in the latent reaction regions. After rinsing, first regions comprise exclusively the first reaction product and second regions comprising exclusively the second reaction product. These first and second regions have contact angles that differ by 10-110 degrees. A composition can be applied that is exclusively attracted to either the first regions or the second regions, but not to both the first and second regions.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: March 19, 2019
    Assignee: EASTMAN KODAK COMPANY
    Inventors: Silas Owusu-Nkwantabisah, Roberta Dileo Benedict, David Y. Wang
  • Patent number: 10151718
    Abstract: The present invention makes it possible to analyze trace carbon in a sample without the effects of contamination. In an electron probe microanalyzer, a liquid nitrogen trap and a plasma or oxygen radical generator are jointly used as a means for suppressing contamination, and two or more carbon detection units for detecting characteristic x-rays of carbon in the sample are provided.
    Type: Grant
    Filed: March 23, 2015
    Date of Patent: December 11, 2018
    Assignee: JFE STEEL CORPORATION
    Inventors: Yuji Tanaka, Takako Yamashita, Masayasu Nagoshi
  • Patent number: 9844789
    Abstract: A viscous liquid feed nozzle has a nozzle body having a thin and long hole with a front end serving as a feed port. The nozzle is used with a viscous liquid feed unit to feed a viscous liquid such as a viscous adhesive from the feed port. The nozzle has a lubricative plated layer at least on the inside and outside of the feed port. The lubricative plated layer is formed by electroless plating by immersing the nozzle in a plating tank containing a lubricative plating solution. A base end of the nozzle body may have a wide port. In this case, the lubricative plated layer is formed by immersing the nozzle body in the plating tank containing the lubricative plating solution so that the lubricative plating solution enters the wide port and by applying pressure or gravity to the lubricative plating solution in the wide port to pass the lubricative plating solution through the thin and long hole of the nozzle body and discharge the same from the feed port.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: December 19, 2017
    Assignee: NHK Spring Co., Ltd.
    Inventors: Shinpei Kakiuchi, Eijiro Furuta, Takashi Ando
  • Patent number: 9840762
    Abstract: A process for the preparation of an activated polymer particle comprising contacting a polymer particle with at least one polyamine, wherein said polyamine has three or more amino groups, to form a surface treated polymer particle; and applying a catalyst to the surface treated polymer particle to form an activated polymer particle. In some examples, the process can further comprise applying a metal coating to said activated polymer particle to form a metal coated polymer particle.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: December 12, 2017
    Assignee: Conpart AS
    Inventors: Keith Redford, Ionel Halaciuga, Dan V. Goia, Cathrine Braein Nilsen
  • Patent number: 9783890
    Abstract: A process of pretreatment for selective application of electroless metallization to a surface of a non-conductive material and a solution useful for the pretreatment are provided. The process achieves good coverage in areas to be plated on the surface of non-conductive materials without skip plating or over plating.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: October 10, 2017
    Assignee: ROHM AND HAAS ELECTRONIC MATERIALS LLC
    Inventors: Dennis Kwok-Wai Yee, Michael Chi-Yung Tang, Martin W. Bayes, Ka-Ming Yip, Chun-Man Chan, Hung-Tat Chan, Tsui-Kiu Li, Lok-Lok Liu
  • Patent number: 9757387
    Abstract: The present disclosure comprises antimicrobial compositions and devices comprising silver compounds that resist heat and light discoloration. In one aspect, the said compounds comprise silver and at least one s-triazine ring or moiety. In another aspect, the antimicrobial compositions are hydrogels that are effective against broad spectrum of common pathogens including MRSA and VRE and are suitable for treating human or animal wounds and burns. The methods of the present disclosure comprise treating medical and non-medical devices and articles with compositions comprising the silver compounds to impart antimicrobial property.
    Type: Grant
    Filed: April 29, 2014
    Date of Patent: September 12, 2017
    Assignee: Medical Technology Research Inc
    Inventor: Bhalchandra M. Karandikar
  • Patent number: 9635463
    Abstract: Provided are a vibrating body for speaker device which prevents interlayer from peeling in advance and includes a large effective vibration area, and a speaker device including this vibrating body for speaker device. The vibrating body for speaker device includes a first interlaced fiber member, and a second interlaced fiber member which overlaps with the first interlaced fiber member, and one of the first interlaced fiber member and the second interlaced fiber member includes polyvinyl alcohol fibers containing boron, and an outer circumferential portion of the first interlaced fiber member is larger than an outer circumferential portion of the second interlaced fiber member.
    Type: Grant
    Filed: April 1, 2013
    Date of Patent: April 25, 2017
    Assignees: PIONEER CORPORATION, TOHOKU PIONEER CORPORATION, MOGAMI DENKI CORPORATION
    Inventors: Kazuharu Kawata, Haruki Hoshikawa, Yoshihiro Sato, Takanobu Saito
  • Patent number: 9581590
    Abstract: The disclosure relates to metal nanoparticle compositions and their methods of formation and use, in particular gold nanoparticles (AuNP) and gold-coated magnetic nanoparticles. Compositions according to the disclosure include aqueous suspensions of metal nanoparticles that are stabilized with one or more carbohydrate capping agents and/or that are functionalized with one or more binding pair members for capture/detection of a target analyte. The nanoparticle suspensions are stable for extended periods and can be functionalized as desired at a later point in time, typically prior to use in an assay for the detection of a target biological analyte. The stable nanoparticle suspension can be formed by the aqueous reduction of oxidized metal precursors at non-acidic pH values in the presence of a carbohydrate-based capping agent such as dextrin or other oligosaccharides.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: February 28, 2017
    Assignee: BOARD OF TRUSTEES OF MICHIGAN STATE UNIVERSITY
    Inventors: Evangelyn C. Alocilja, Michael J. Anderson, Edith Torres-Chavolla
  • Patent number: 9557648
    Abstract: Articles are prepared to have a substrate and a silver-containing composition on either or both supporting sides of the substrate. The silver-containing composition can comprise either reducible silver ions or silver nanoparticles, complexed with a reactive polymer. The reactive polymer comprises: (a) greater than 1 mol % of recurring units comprising sulfonic acid or sulfonate groups, (b) at least 5 mol % of recurring units comprising a pendant group capable of crosslinking via [2+2] photocycloaddition, and optionally (c) at least 1 mol % of recurring units comprising a pendant amide, hydroxyl, lactam, phosphonic acid, or carboxylic acid group. Some other articles have a water-insoluble complex of reacted (crosslinked) polymer with reducible silver ions or silver nanoparticles on either or both supportive sides of the substrate. Such reacted polymer is derived from the noted reactive polymer.
    Type: Grant
    Filed: March 18, 2015
    Date of Patent: January 31, 2017
    Assignee: EASTMAN KODAK COMPANY
    Inventors: Thomas B. Brust, Anne Troxell Wyand
  • Patent number: 9546958
    Abstract: The present disclosure relates the use of a stamping surface enhanced Raman scattering (S-SERS) technique with nanoporous gold disk (NPGD) plasmonic substrates to produce a label-free, multiplexed molecular sensing and imaging technique. A NPGD SERS substrate is stamped onto a surface containing one or more target molecules, followed by SERS measurement of the target molecules located between the surface and SERS substrate. The target molecules may be deposited on the surface, which may be a carrier substrate such as polydimethylsiloxane (PDMS).
    Type: Grant
    Filed: April 29, 2015
    Date of Patent: January 17, 2017
    Assignee: UNIVERSITY OF HOUSTON SYSTEM
    Inventor: Wei-Chuan Shih
  • Patent number: 9538665
    Abstract: The invention disclosed relates to an aqueous activator solution and a method for the electroless deposition of copper on a laser direct structured substrate surface. By the invention, an aqueous activator solution comprising a strong reducing agent is proposed to enhance the catalytic activity of the irradiated surface area of a LDS substrate.
    Type: Grant
    Filed: October 10, 2012
    Date of Patent: January 3, 2017
    Inventors: Edwin W. Bastenbeck, Harald Orschel, Ulrich Prinz
  • Patent number: 9506148
    Abstract: A method for forming a flexible transparent conductive film includes steps of: (a) electrospinning a first solution, which contains a polymer, a solvent and a metal ion-containing precursor, to form an polymeric fiber onto a soluble substrate; (b) providing energy to reduce the metal ion-containing precursor of the polymeric fiber, so as to form metal seeds on the polymeric fiber; and (c) placing the polymeric fiber together with the soluble substrate into a second solution, such that the soluble substrate dissolves in the second solution to form an electroless-plating bath and such that the polymeric fiber is subjected to electroless plating to form a metal coating from the metal seeds.
    Type: Grant
    Filed: August 5, 2014
    Date of Patent: November 29, 2016
    Assignee: NATIONAL CHENG KUNG UNIVERSITY
    Inventors: In-Gann Chen, Chang-Shu Kuo, Hung-Tao Chen, Pei-Ying Hsieh
  • Patent number: 9434875
    Abstract: Electrically-conductive sintered, substantially round and spherical particles and methods for producing such electrically-conductive sintered, substantially round and spherical particles from an alumina-containing raw material. Methods for using such electrically-conductive sintered, substantially round and spherical particles in hydraulic fracturing operations.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: September 6, 2016
    Assignee: CARBO CERAMICS INC.
    Inventors: Chad Cannan, Todd Roper, Steve Savoy, Daniel R. Mitchell
  • Patent number: 9404942
    Abstract: Coaxial probe structures include a plurality of discrete insulated elongated electrical conductors projecting from a support surface which are useful as probes for testing of electrical interconnections to electronic devices, such as integrated circuit devices and other electronic components and particularly for testing of integrated circuit devices with rigid interconnection pads and multi-chip module packages with high density interconnection pads. Coaxial probe structures are fabricated by the methods described providing a high density coaxial probe.
    Type: Grant
    Filed: February 7, 2014
    Date of Patent: August 2, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Brian Samuel Beaman, Keith Edward Fogel, Paul Alfred Lauro, Yun-Hsin Liao, Daniel Peter Morris, Da-Yuan Shih
  • Patent number: 9329483
    Abstract: To appropriately form a metal-containing film containing metal on a substrate, a method first forms an organic film on the substrate, and causes a treatment agent to enter the organic film and causes metal to infiltrate the organic film via the treatment agent, thereby forming the metal-containing film. The metal-containing film contains metal and thus has a high etching selection ratio that is originally required performance. This makes it possible to appropriately form the metal-containing film having a high etching selection ratio on the substrate.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: May 3, 2016
    Assignee: Tokyo Electron Limited
    Inventors: Fumiko Iwao, Satoru Shimura
  • Patent number: 9217106
    Abstract: The present invention relates to an etchant and an etching process, which are preferred for use in etching of oxides containing at least indium and gallium, such as an oxide consisting of indium, gallium and oxygen or an oxide consisting of indium, gallium, zinc and oxygen. According to preferred embodiments of the present invention, an etchant comprising sulfuric acid or a salt thereof and a carboxylic acid (except for oxalic acid) or a salt thereof ensures a preferred etching rate, a good residue removal property and low corrosiveness to wiring materials when used in etching of oxides containing at least indium and gallium. Moreover, this etchant not only causes no precipitate but also retains a preferred etching rate even when the concentration of oxides dissolved in the etchant is elevated.
    Type: Grant
    Filed: November 19, 2013
    Date of Patent: December 22, 2015
    Assignee: MITSUBISHI GAS CHEMICAL COMPANY, INC.
    Inventors: Hidenori Takeuchi, Kunio Yube, Satoshi Okabe, Mari Usui
  • Patent number: 9127170
    Abstract: An object of the invention is to provide a plating pretreatment solution that can convert the surface of an aluminum substrate for hard disk devices into a surface suitable for electroless nickel plating, and a method for producing an aluminum substrate for hard disk devices using the same. The plating pretreatment solution of the present invention used for a plating pretreatment in production of an aluminum substrate for hard disk devices has an iron ion concentration of 0.1 g/l to 1.0 g/l and a nitric acid concentration of 2.0 wt % to 12.0 wt %. This plating pretreatment solution is used for a pretreatment of a plating step in which electroless nickel plating is applied to an aluminum substrate for hard disk devices.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: September 8, 2015
    Assignee: Toyo Kohan Co., Ltd.
    Inventors: Nobuaki Mukai, Takahiro Yoshida
  • Patent number: 9081282
    Abstract: A conductive pattern can be formed using a polymeric layer that contains a reactive composition that comprises a reactive polymer that is metal ion-complexing, water-soluble, and crosslinkable. This reactive polymer comprises pendant groups comprising crosslinkable —C(?O)—CR?CR1—Y— groups wherein R and R1 are defined in the disclosure, as well as metal ion-complexing and water solubilizing groups. The reactive composition can be patternwise exposed to suitable radiation to induce crosslinking within the reactive polymer. The reactive composition and reactive polymer in the non-exposed regions can be removed due to their aqueous solubility, but the exposed regions of the polymeric layer are contacted with electroless seed metal ions, which are then reduced. The resulting electroless seed metal nuclei are electrolessly plated with a suitable metal to form the desired conductive pattern.
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: July 14, 2015
    Assignee: EASTMAN KODAK COMPANY
    Inventors: Thomas B. Brust, Catherine A. Falkner, Mark Edward Irving
  • Patent number: 9081281
    Abstract: A conductive metal pattern is formed in a polymeric layer that has a polymer that comprises (1) pendant groups that are capable of providing pendant sulfonic acid groups upon exposure of the reactive polymer to radiation, and (2) pendant groups that are capable of reacting in the presence of the sulfonic acid groups to provide crosslinking. The polymeric layer is patternwise exposed to form non-exposed regions and exposed regions, which are contacted with a reducing agent to incorporate reducing agent therein. These exposed regions are then contacted with electroless seed metal ions to oxidize the reducing agent to form corresponding electroless seed metal nuclei that can be then electrolessly plated with a conductive metal.
    Type: Grant
    Filed: November 20, 2013
    Date of Patent: July 14, 2015
    Assignee: EASTMAN KODAK COMPANY
    Inventor: Mark Edward Irving
  • Patent number: 9069248
    Abstract: A conductive pattern can be formed using a polymeric layer that contains a reactive composition that comprises a reactive polymer that is metal ion-complexing, water-soluble, and crosslinkable. This reactive polymer comprises photosensitive non-aromatic unsaturated carbocyclic groups as well as metal ion-complexing and water solubilizing groups. The reactive composition can be patternwise exposed to suitable radiation to induce crosslinking within the reactive polymer. The reactive composition and reactive polymer in the non-exposed regions can be removed due to their aqueous solubility, but the exposed regions of the polymeric layer are contacted with electroless seed metal ions, which are then reduced. The resulting electroless seed metal nuclei are electrolessly plated with a suitable metal to form the desired conductive pattern. Various articles can be prepared during this process, and the product article can be incorporated into various electronic devices.
    Type: Grant
    Filed: May 14, 2014
    Date of Patent: June 30, 2015
    Assignee: EASTMAN KODAK COMPANY
    Inventors: Thomas B. Brust, Grace Ann Bennett, Mark Edward Irving
  • Publication number: 20150147476
    Abstract: A plating method can improve uniformity in a thickness of a plating layer formed on an inner surface of a recess. The plating method includes a loading process of loading the substrate in which the recess is formed into a casing; and a plating process of supplying a plating liquid to the substrate and forming a plating layer having a specific function on an inner surface of the recess. The plating process includes a first plating process of supplying a first plating liquid to the substrate and forming a first plating layer; and a second plating process of supplying a second plating liquid to the substrate and forming a second plating layer on the first plating layer after the first plating process. Further, a concentration of an additive contained in the first plating liquid is different from a concentration of an additive contained in the second plating liquid.
    Type: Application
    Filed: May 27, 2013
    Publication date: May 28, 2015
    Inventors: Nobutaka Mizutani, Takashi Tanaka, Mitsuaki Iwashita
  • Patent number: 9032550
    Abstract: The invention relates to an item of clothing, in particular to be worn during sports such as jogging, skating, cycling or similar. Said item of clothing is made of at least one yarn (3) that comprises a heat-reflecting covering (5).
    Type: Grant
    Filed: September 6, 2007
    Date of Patent: May 19, 2015
    Assignee: X-Technologies Swiss GmbH
    Inventor: Bodo W. Lambertz
  • Publication number: 20150111050
    Abstract: The present invention relates to a process for coating a surface of a substrate made of nonmetallic material with a metal layer consisting of providing a substrate made of nonmetallic material; subjecting a surface of said substrate to a treatment for increasing the specific surface area thereof; subjecting the resulting surface to an oxidizing treatment; contacting the resulting substrate with a solution containing an ion of a metal from groups IB and VIII of the Periodic Table; obtaining a substrate comprising ions of a metal that are chemically attached to the nonmetallic material constituting the substrate on at least one of its surfaces; subjecting the ions to a reducing treatment to obtain a substrate comprising atoms of a metal that are chemically attached to the nonmetallic material constituting the substrate on a part of at least one of its surfaces; and contacting the resulting surface with a solution containing ions of a metal.
    Type: Application
    Filed: December 24, 2014
    Publication date: April 23, 2015
    Inventors: SEBASTIEN ROUSSEL, FRIDA GILBERT
  • Patent number: 9005854
    Abstract: A conductive pattern is formed using a reactive polymer comprising pendant tertiary alkyl ester groups, a compound that provides an acid upon exposure to radiation, and a crosslinking agent. A polymeric layer is patternwise exposed to form first exposed regions with a polymer comprising carboxylic acid groups that are contacted with electroless seed metal ions, and then contacted with a halide to form corresponding electroless seed metal halide. Another exposure converts electroless seed metal halide to electroless seed metal nuclei and forms second exposed regions. A reducing agent is used to develop the electroless seed metal nuclei in the second exposed regions, or to develop the electroless seed metal halide in the first exposed regions. Fixing is used to remove any remaining electroless seed metal halide. The electroless seed metal nuclei are then electrolessly plated in various exposed regions.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: April 14, 2015
    Assignee: Eastman Kodak Company
    Inventors: Mark Edward Irving, Thomas B. Brust
  • Patent number: 8986789
    Abstract: The invention relates to a substrate having a bondable metal coating comprising, in this order, on an Al or Cu surface: (a) a Ni—P layer, (b) a Pd layer and, optionally, (c) an Au layer, wherein the thickness of the Ni—P layer (a) is 0.2 to 10 m, the thickness of the Pd layer (b) is 0.05 to 1.0 m and the thickness of the optional Au layer (c) is 0.01 to 0.5 m, and wherein the Ni—P layer (a) has a P content of 10.5 to 14 wt.-%. The deposit internal stress of the resulting Ni—P/Pd stack is not higher than 34.48M?Pa (5,000 psi). Further, a process for the preparation of such a substrate is described.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: March 24, 2015
    Assignee: Atotech Deutschland GmbH
    Inventors: Albrecht Uhlig, Josef Gaida, Christof Suchentrunk, Michael Boyle, Brian Washo
  • Patent number: 8962070
    Abstract: The present invention relates to an electrolyte for the electroless deposition of a metal layer on a substrate, wherein the electrolyte is free of heavy metal stabilizers, cyanides, selenium compounds and sulfur compounds comprising sulfur in an oxidation state between ?2 and +5, and in which instead a ?-amino acid is used as stabilizer. In particular, the inventive electrolyte can comprise 3-aminopropionic acid, 3-aminobutyric acid, 3-amino-4-methylvaleric acid, and 2-aminoethane-sulfonic acid. Furthermore, the invention is directed to a method for the electroless deposition of metal layers utilizing an inventive electrolyte as well as the use of ?-amino acids as stabilizer in electrolytes for the electroless deposition of metal layers in general.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: February 24, 2015
    Assignee: Enthone Inc.
    Inventors: Franz-Josef Stark, Christoph Werner
  • Publication number: 20150050422
    Abstract: The present invention relates to novel processes for metallization of dielectric substrate surfaces applying organosilane compositions followed by oxidative treatment. The method results in metal plated surfaces exhibiting high adhesion between the substrate and the plated metal while at the same time leaves the smooth substrate surface intact.
    Type: Application
    Filed: March 21, 2013
    Publication date: February 19, 2015
    Inventors: Dirk Tews, Fabian Michalik, Belén Gil Ibánez, Lutz Brandt, Meng Che Hsieh, Zhiming Liu
  • Patent number: 8936890
    Abstract: A pattern is formed in a polymeric layer comprising (a) a reactive polymer comprising -A- recurring units comprising pendant tertiary alkyl ester groups, (b) a compound that provides an acid upon exposure to radiation having a ?max of 150 nm to 450 nm, and (c) a crosslinking agent that is capable of reacting in the presence of the acid to provide crosslinking in the (a) reactive polymer. The polymeric layer is patternwise exposed to the radiation to provide a polymeric layer comprising exposed regions comprising a polymer comprising carboxylic acid groups. The exposed regions are contacted with a reducing agent to incorporate reducing agent, and then contacted with electroless seed metal ions to oxidize the reducing agent and to form corresponding electroless seed metal nuclei. The electroless seed metal nuclei are then electrolessly plated with a metal to form a conductive metal pattern.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: January 20, 2015
    Assignee: Eastman Kodak Company
    Inventors: Mark Edward Irving, Thomas B. Brust
  • Publication number: 20150017331
    Abstract: The present invention relates to a process for metallizing nonconductive plastics using etching solutions free of hexavalent chromium. The etching solutions are based on permanganate solutions. After the treatment of the plastics with the etching solutions, the plastics are metallized by means of known processes.
    Type: Application
    Filed: March 15, 2013
    Publication date: January 15, 2015
    Applicant: Atotech Deutschland GmbH
    Inventors: Hermann Middeke, Enrico Kuhmeiser, Steve Schneider
  • Patent number: 8911608
    Abstract: The present invention provides a circuit creation technology that improves conductive line manufacture by adding active and elemental palladium onto the surface of a substrate. The palladium is disposed in minute amounts on the surface and does not form a conductive layer by itself, but facilitates subsequent deposition of a metal onto the surface, according to the pattern of the palladium, to form the conductive lines.
    Type: Grant
    Filed: May 13, 2010
    Date of Patent: December 16, 2014
    Assignee: SRI International
    Inventors: Sunity Sharma, Jaspreet Singh Dhau
  • Publication number: 20140356856
    Abstract: A method for manufacturing a test paper is disclosed in the present invention, and at least comprises the following steps. First, a chemical precursor comprising at least a reducing agent is coated onto a substrate. The substrate is then dipped into a metal salt solution comprising a plurality of metal ions for a predetermined time to reduce the metal ions to form metal particles on the substrate. Finally, the substrate is taken out and dried to complete a manufacture of at least a test paper. In the meantime a method for using the test paper, and a chemical composition used in the abovementioned for manufacturing the test paper are also disclosed in the present invention.
    Type: Application
    Filed: July 16, 2013
    Publication date: December 4, 2014
    Inventors: Surojit CHATTOPADHYAY, Wei-Ju LIAO
  • Patent number: 8900666
    Abstract: Stable tin-free palladium catalysts are used to metalize through-holes of printed circuit boards. A stabilizer is included in the catalyst formulation which prevents precipitation and agglomeration of the palladium.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: December 2, 2014
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Feng Liu, Maria Anna Rzeznik
  • Patent number: 8871297
    Abstract: A method of applying a nanocrystalline coating to a gas turbine engine component is described. The method comprises the steps of applying an intermediate bond coat to at least a portion of the component, and then applying the nanocrystalline coating to at least the portion of the component overtop of the intermediate bond coat. The component may include, for example, a blade of which a dovetail portion of the blade root is protected by applying the intermediate bond coat and the nanocrystalline coating thereto.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: October 28, 2014
    Inventors: Barry Barnett, Kin-Leung Cheung, Thomas McDonough, Andreas Eleftheriou, Enzo Macchia
  • Publication number: 20140272144
    Abstract: Aqueous catalysts of nanoparticles of precious metals and stabilizers of flavonoid derivatives are used to electrolessly plate metal on non-conductive substrates. Such substrates include printed circuit boards.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Inventors: Feng LIU, Maria Anna RZEZNIK
  • Patent number: 8828555
    Abstract: The present invention is directed to a method for forming a patterned conductive film, which comprises the step of bringing a substrate having a layer made of platinum microcrystal particles formed thereon in a pattern and a complex of an amine compound and an aluminum hydride into contact with each other at a temperature of 50 to 120° C. According to the present invention, there is provided a method for forming a patterned conductive layer, which can ensure electrical bonding with a substrate and also can be suitably applied to various electronic devices, simply without requiring a massive and heavy apparatus.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: September 9, 2014
    Assignees: Japan Science and Technology Agency, JSR Corporation
    Inventors: Tatsuya Shimoda, Yasuo Matsuki, Zhongrong Shen
  • Patent number: 8828131
    Abstract: Disclosed is a catalyst application solution for plating an insulating portion of an object to be plated that comprises the insulating portion. The catalyst application solution is characterized by containing a water-soluble palladium compound, a reducer, a dispersant, catechol, a copper antioxidant and a buffering agent, and by having a pH of not less than 4.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: September 9, 2014
    Assignee: C. Uyemura & Co., Ltd.
    Inventors: Hisamitsu Yamamoto, Tetsuji Ishida
  • Patent number: 8814997
    Abstract: An electroless plating pretreatment agent that can retain stably Pd(II) over a long period of time in an organic solvent, an electroless plating method using the same that is capable of forming an electroless plated film having excellent adhesion, and an electroless plated object. The electroless plating pretreatment agent contains an organic palladium compound and a coordination compound having a functional group with a metal-capturing capability dissolved in an organic solvent, the coordination compound being selected from the group consisting of the imidazole analogs, polyethyleneamines, ethyleneimines and polyethyleneimines.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: August 26, 2014
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Toru Imori, Jun Suzuki, Ryu Murakami, Akihiro Aiba, Junichi Ito
  • Patent number: 8808791
    Abstract: A method is provided which includes forming a metal layer and converting at least a portion of the metal layer to a hydrated metal oxide layer. Another method is provided which includes selectively depositing a dielectric layer upon another dielectric layer and selectively depositing a metal layer adjacent to the dielectric layer. Consequently, a microelectronic topography is formed which includes a metal feature and an adjacent dielectric portion comprising lower and upper layers of hydrophilic and hydrophobic material, respectively. A topography including a metal feature having a single layer with at least four elements lining a lower surface and sidewalls of the metal feature is also provided herein. The fluid/s used to form such a single layer may be analyzed by test equipment configured to measure the concentration of all four elements. In some cases, the composition of the fluid/s may be adjusted based upon the analysis.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: August 19, 2014
    Assignee: Lam Research Corporation
    Inventors: Igor C. Ivanov, Weiguo Zhang, Artur Kolics
  • Patent number: 8801914
    Abstract: A method for making a printed wiring member including wire-bondable contact pads and wear-resistant connector pads, the method includes a) providing a blank printed wiring member comprising a copper foil laminated to a dielectric substrate; b) masking the blank printed wiring member to protect regions of the copper foil; c) removing copper in unprotected regions of the blank printed wiring member to form a patterned printed wiring member including contact pads and connector pads; d) depositing a nickel coating on the patterned printed wiring member; e) electrolytically depositing a hard gold layer on the nickel coating; and f) depositing palladium on a surface of the hard gold layer to improve bondability of the contact pads while preserving wear resistance of the connector pads.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: August 12, 2014
    Assignee: Eastman Kodak Company
    Inventors: Samuel Chen, Allan F. Camp, Charles I. Levey, Vincent J. Andrews
  • Patent number: 8795778
    Abstract: A method includes forming a master embossing roller to have a predetermined pattern, coating a flexible unpatterned substrate with a catalyst coating layer and forming a corresponding pattern in the coated substrate using the master embossing roller to thereby form a patterned substrate. The method may also include electrolessly plating the patterned substrate.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: August 5, 2014
    Assignee: Unipixel Displays, Inc.
    Inventors: Robert J. Petcavich, Ed S. Ramakrishnan, Daniel K. Van Ostrand
  • Patent number: 8784931
    Abstract: A method of manufacturing ULSI wiring in which wiring layers are separately formed via a diffusion prevention layer and an insulating interlayer portion made of SiO2. The method comprises the steps of treating, with a silane compound, a SiO2 surface of the insulating interlayer portion on which the diffusion layer is to be formed, performing catalyzation with an aqueous solution containing a palladium compound, forming the diffusion prevention layer by electroless plating, and then forming the wiring layer on this diffusion prevention layer. A capping layer may be formed on the wiring layer by electroless plating. Consequently, a diffusion prevention layer having good adhesive properties can be formed through a simple wet process, and, the wiring layer can directly be formed on this diffusion prevention layer by a wet process. The capping layer can also be directly formed on the wiring layer by electroless plating.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: July 22, 2014
    Assignees: Waseda University, Renesas Electronics Corporation
    Inventors: Kazuyoshi Ueno, Tetsuya Osaka, Nao Takano
  • Publication number: 20140120263
    Abstract: A process of pretreatment for selective application of electroless metallization to a surface of a non-conductive material and a solution useful for the pretreatment are provided. The process achieves good coverage in areas to be plated on the surface of non-conductive materials without skip plating or over plating.
    Type: Application
    Filed: October 26, 2012
    Publication date: May 1, 2014
    Applicant: ROHM AND HAAS ELECTRONIC MATERIALS LLC
    Inventors: Dennis Kwok-Wai YEE, Michael Chi-Yung TANG, Martin W. BAYES, Ka-Ming YIP, Chun-Man CHAN, Hung-Tat CHAN, Tsui-Kiu LI, Lok-Lok LIU
  • Publication number: 20140113158
    Abstract: The present invention discloses a method for electroless plating of a metal or metal alloy onto a metal or a metal alloy structure comprising a metal such as molybdenum or titanium and alloys containing such metals. The method comprises the steps of activation, treatment in an aqueous solution comprising at least one nitrogen-containing compound or a hydroxy carboxylic acid and electroless plating of a metal or metal alloy.
    Type: Application
    Filed: April 17, 2012
    Publication date: April 24, 2014
    Applicant: Atotech Deutschland GmbH
    Inventors: Frank Brüning, Birgit Beck, Bexy Dosse, Johannes Etzkorn
  • Patent number: 8703232
    Abstract: The present disclosure describes an article and a method of forming a microstructure. The method includes providing a substrate having a structured surface region comprising one or more recessed features with recessed surfaces. The structured surface region is substantially free of plateaus. The method includes disposing a fluid composition comprising a functional material and a liquid onto the structured surface region. The method includes evaporating liquid from the fluid composition. The functional material collects on the recessed surfaces such that a remainder of the structured surface region is substantially free of the functional material.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: April 22, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Matthew S. Stay, Mikhail L. Pekurovsky, Cristin E. Moran, Matthew H. Frey
  • Patent number: 8697233
    Abstract: A metal-coated material comprising a metal-coated lipid bilayer vesicle and a preparation method thereof are provided. A metal-coated material comprising a metal-coated lipid bilayer vesicle having a network of siloxane bonding (Si—O—Si) on its surface. a method for preparing the metal-coated lipid bilayer vesicle comprising the following steps: (1) rendering the functional group(s) having the ability of carrying the metal catalyst to the surface of lipid bilayer vesicle having a network of siloxane bonding (Si—O—Si bonding) on its surface, at or after the formation, by self-organization, of the lipid bilayer vesicle; (2) immobilizing the metal catalyst on the surface of the lipid bilayer vesicle; (3) optionally, reducing the metal catalyst; and (4) performing electroless plating.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: April 15, 2014
    Assignees: Nara Institute of Science and Technology, JX Nippon Mining & Metals Corporation
    Inventors: Jun-ichi Kikuchi, Yoshihiro Sasaki, Mineo Hashizume, Toru Imori
  • Patent number: 8679591
    Abstract: An embodiment is a method for forming a semiconductor assembly including cleaning a connector including copper formed on a substrate, applying cold tin to the connector, applying hot tin to the connector, and spin rinsing and drying the connector.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: March 25, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien Ling Hwang, Yi-Li Hsiao, Chung-Shi Liu
  • Patent number: 8648601
    Abstract: The present invention describes a method for the measurement of the stabilizer additive concentration in electroless metal and metal alloy plating electrolytes comprising a voltammetric measurement. Said method comprises the steps a. conditioning of the working electrode, b. interaction of intermediates on the working electrode, c. measurement of the Faradaic current and d. determining the Faradaic current.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: February 11, 2014
    Assignee: Atotech Deutschland GmbH
    Inventors: Constanze Donner, Guenther Bauer, Therese Stern, Kay Wurdinger, Lutz Brandt, Frank Bruening
  • Publication number: 20140030532
    Abstract: Provided is a technique for electroless deposition (ELD) for forming metal conductive layer on an insulating substrate made of glass, polymer, etc. According to an aspect, an adhesive layer and a catalyst layer are formed on a substrate using a dry deposition method, such as are plasma deposition (APD) or sputtering, etc., and electroless deposition is performed thereon, thereby forming a metal thin, film. Therefore, it is possible to significantly simplify a complicated pretreatment process required for electroless depositions and increase adhesive strength of a deposited metal thin film.
    Type: Application
    Filed: October 30, 2012
    Publication date: January 30, 2014
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Ji Young BYUN, Sang Hoon KIM, Ju Yeon HWANG, Heon Phil HA