Metal Base Patents (Class 427/405)
  • Patent number: 8414960
    Abstract: A production method of an ink composition for organic EL devices comprises preparing a composition containing a polymer organic EL material and an organic solvent; and applying an electric field to the composition. Preferably, a composition containing a polymer organic EL material prepared by a coupling reaction between a halogenated aromatic compound and an aromatic boron compound in the presence of palladium catalyst or nickel catalyst, an organic solvent, and an aromatic carboxylic acid contained in an amount of 0.01-1 wt % based on the total amount of the organic solvent and aromatic carboxylic acid is prepared.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: April 9, 2013
    Assignee: Panasonic Corporation
    Inventors: Takaaki Higashida, Kazuhiro Nishikawa
  • Publication number: 20130084466
    Abstract: Disclosed are methods for treating metal substrates that include contacting the metal with pretreatment compositions comprising: (a) a group IIIB metal, a group IVB metal and/or a group VB metal; and (b) a rheology modifier composition.
    Type: Application
    Filed: September 30, 2011
    Publication date: April 4, 2013
    Applicant: PPG Industries Ohio, Inc.
    Inventors: Nathan J. Silvernail, Thor G. Lingenfelter
  • Publication number: 20130048289
    Abstract: Disclosed herein is an apparatus for use downhole comprising an expandable component; a support member that has a selected corrosion rate; wherein the support member is disposed on the expandable component; where the support member comprises a plurality of particles fused together; the particles comprising a core comprising a first metal; and a first layer disposed upon the core; the first layer comprising a second metal; the first metal having a different corrosion potential from the second metal; the first layer comprising a third metal having a different corrosion potential from the first metal.
    Type: Application
    Filed: August 30, 2011
    Publication date: February 28, 2013
    Applicant: Baker Hughes Incorporated
    Inventors: Oleg Antonovych Mazyar, Michael H. Johnson, Casey L. Walls
  • Patent number: 8383206
    Abstract: A surface treating method for making a housing have a metallic main body includes the follow steps. A primer is coated on the metallic main body to form a bottom layer. A plating layer is formed on the bottom layer. An adhesive is coated on the plating layer to form an adhesive layer. Finally, a lacquer is coated on the adhesive layer to form an outer layer.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: February 26, 2013
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Chwan-Hwa Chiang
  • Patent number: 8372488
    Abstract: Methods and apparatus for thermal barrier coatings are provided. The thermal barrier coating system includes a bond coat, a first thermal barrier coating comprising a thermal conductivity, kA having a first value, and a second thermal barrier coating including a thermal conductivity, kB having a second value wherein the second value is different than the first value.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: February 12, 2013
    Assignee: General Electric Company
    Inventors: Ravindra Annigeri, David Vincent Bucci
  • Patent number: 8367160
    Abstract: A coating method includes depositing a reactive material onto a turbine engine component using an ionic liquid that is a melt of a salt, and heat treating the turbine engine component to react the reactive material with at least one other element to form a protective coating on the turbine engine component.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: February 5, 2013
    Assignee: United Technologies Corporation
    Inventor: Benjamin Joseph Zimmerman
  • Patent number: 8367225
    Abstract: A coating includes a deposited layer. The deposited layer is a nickel-titanium carbonitride layer.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: February 5, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huan-Wu Chiang, Cheng-Shi Chen, Chuang Ma
  • Patent number: 8361552
    Abstract: In a method of applying a firmly adhering metallic coating onto a steel sheet product, a steel sheet product is inserted into a film bag which contains at least a coating material. Subsequently, the film bag is evacuated to cause the film to evenly bear upon the outer surface of the steel sheet product. This state is fixed by sealing the film bag. The film bag and the steel sheet product are then subjected to a heat treatment to thereby form a coating of the coating material on the steel sheet product.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: January 29, 2013
    Assignee: Benteler Automobiltechnik GmbH
    Inventor: Sven-Lars Rotzoll
  • Patent number: 8361639
    Abstract: A coating includes a nano-composite base comprising a number of films, the films stacked together one after another. Each film includes a nickel-titanium carbonitride layer and a titanium carbonitride layer.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: January 29, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huan-Wu Chiang, Cheng-Shi Chen, Chuang Ma
  • Patent number: 8343584
    Abstract: A method of manufacturing a decorative article, including a first coating formation step of forming a first coating of primarily TiN on a substrate; a second coating formation step of forming a second coating on the first coating by means of a dry plating method using a target containing 70.0 wt %?85.0 wt % Au and 15.0 wt %?30.0 wt % Cu; a heat treatment step of promoting formation of a solid solution of the constituents of the second coating by applying a heating process that heats the substrate on which the first coating and the second coating are disposed to 300° C.?395° C. and then applying a cooling process; and an acid treatment step that, of the constituents of the second coating to which the heating process was applied, removes the constituents not forming a solid solution by applying an acid treatment.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: January 1, 2013
    Assignee: Seiko Epson Corporation
    Inventors: Atsushi Kawakami, Yuzuru Tsukamoto
  • Patent number: 8323741
    Abstract: A composition for enhancing the corrosion resistance of an article comprising a silver coating deposited on a solderable copper substrate. The composition comprises: a) a multi-functional molecule comprising at least one organic functional group that interacts with and protects copper surfaces and at least one organic functional group that interacts with and protects silver surfaces; b) an alcohol; and c) a surfactant.
    Type: Grant
    Filed: July 10, 2012
    Date of Patent: December 4, 2012
    Inventors: Joseph A. Abys, Shenliang Sun, Theodore Antonellis
  • Patent number: 8309178
    Abstract: Provided are methods and initial structures for fabricating corrosion resistant steels that incorporate an aluminum rich corrosion resistant surface layer. The initial structures utilize layering and/or patterning for reducing the effective diffusion length Deff to a value well below the total thickness of the aluminum alloy protective layer X1 by providing vertical and/or lateral laminated structures that provide ready sources of Fe atoms during subsequent heat treatment processes.
    Type: Grant
    Filed: July 23, 2009
    Date of Patent: November 13, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Alan Seid, Masayuki Narita
  • Publication number: 20120258266
    Abstract: Provided are methods and components related to preventing hydrocarbon residue buildup in engine components. Prevention is achieved using a coating of a mixed metal oxide. The mixed metal oxide comprises a mixture of at least two of Gd, Al, Ti, Ce, Pr, La, Y, Nd, and Mn. The coating can also contain amounts of precious metals, eg. Pt, Pd, Rh and/or Au.
    Type: Application
    Filed: April 4, 2012
    Publication date: October 11, 2012
    Applicant: BASF Corporation
    Inventors: Wieland Koban, Dirk A. Großschmidt, Michael P. Galligan, Christopher R. Castellano, Alexander Gorel, Kenneth E. Voss
  • Patent number: 8273416
    Abstract: A coating system and process for protecting component surfaces exposed to sulfur-containing environments at elevated temperatures. The coating system includes a sulfidation-resistant overlay coating that is predominantly niobium or molybdenum.
    Type: Grant
    Filed: August 15, 2011
    Date of Patent: September 25, 2012
    Assignee: General Electric Company
    Inventors: David A. Helmick, Yuk-Chiu Lau, David Vincent Bucci
  • Patent number: 8232020
    Abstract: An interconnector is made of ferritic chromium steel, on which a cupriferous layer is disposed. This layer prevents interdiffusion between the chromium steel and additional components with which the interconnector has direct contact. According to the state of the art, such diffusion occurs particularly if these additional components contain nickel. In addition, the interconnector may comprise a chromium-containing oxide layer as a barrier against interdiffusion. For this purpose, the interconnector steel can also be preoxidized before applying the cupriferous layer. The interconnector has a significantly longer service life than interconnectors according to the state of the art, and it has improved electrical conductivity because the electrical contact surface thereof is free of oxides and has high transverse conductivity.
    Type: Grant
    Filed: April 18, 2007
    Date of Patent: July 31, 2012
    Assignee: Forschungszentrum Juelich GmbH
    Inventors: Leszek Niewolak, Willem J. Quadakkers, Lorenz Singheiser
  • Patent number: 8216645
    Abstract: A method for enhancing the corrosion resistance of an article comprising a silver coating deposited on a solderable copper substrate is provided. The method comprises exposing the copper substrate having the immersion-plated silver coating thereon to an anti-corrosion composition comprising: a) a multi-functional molecule comprising at least one organic functional group that interacts with and protects copper surfaces and at least one organic functional group that interacts with and protects silver surfaces; b) an alcohol; and c) a surfactant.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: July 10, 2012
    Assignee: Enthone Inc.
    Inventors: Joseph A. Abys, Shenliang Sun, Theodore Antonellis
  • Publication number: 20120164473
    Abstract: Coated products are described comprising a metallic substrate, an aluminium-rich layer, a chromia-forming layer and a thermally insulating top coat. The chromia-forming layer is located between the substrate and the thermally-insulating top coat. The aluminium-rich layer is located between the substrate and the chromia-forming layer. The coating may be used to provide protection of parts exposed to conditions of relatively high temperatures, heat flux, and/or corrosive environments, such as the conditions in industrial gas turbines using poorer-quality fuels (such as bio-fuels).
    Type: Application
    Filed: February 24, 2010
    Publication date: June 28, 2012
    Inventors: Mary Taylor, Hugh Evans, Simon Gray, John Nicholls
  • Patent number: 8182874
    Abstract: A process for coating a metallic surface by contacting the metallic surface with a first coating composition to form a first coating on the metallic surface, wherein the first coating composition contains water and at least one compound a) selected from a silane, a silanol, a siloxane and a polysiloxane. The first coating is the rinsed with an aqueous surfactant-containing fluid without drying so that the at least one compound a) does not condense before the rinsing step. The silane, silanol, siloxane or polysiloxane is capable of condensation.
    Type: Grant
    Filed: November 9, 2005
    Date of Patent: May 22, 2012
    Assignee: Chemetall GmbH
    Inventors: Thomas Kolberg, Manfred Walter, Peter Schubach
  • Patent number: 8173269
    Abstract: In an alloy coating film having a diffusion barrier layer and an aluminum reservoir layer on a substrate, the diffusion barrier layer is composed of a single phase that is a Re—Cr—Ni—Al system ? phase containing Al by less than 1 atomic %, or composed of a first phase which is the Re—Cr—Ni—Al system ? phase and one or more second phases selected from a ? phase, ?? phase and ? phase.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: May 8, 2012
    Assignee: DBC System Co., Ltd.
    Inventor: Toshio Narita
  • Publication number: 20120094148
    Abstract: Process for depositing a coating for protection against oxidation and against hot corrosion on a superalloy substrate, and coating obtained The present invention relates to a process for depositing a coating for protection against oxidation and against hot corrosion on a metallic superalloy substrate (1), characterized by the fact that it comprises the deposition of the following successive layers on the substrate, a first layer of aluminium and of at least one element capable of being alloyed with sulphur, a second layer of a material that isolates said element capable of being alloyed with sulphur. The element capable of being alloyed with sulphur is chosen from the reactive elements: zirconium, hafnium, yttrium, silicon, and the rare earth elements: cerium, lanthanum, gadolinium. The invention also relates to the coating thus formed.
    Type: Application
    Filed: October 11, 2011
    Publication date: April 19, 2012
    Applicant: SNECMA
    Inventors: Justine MENUEY, Sarah Hamadi, André Hubert Louis Malie
  • Patent number: 8147919
    Abstract: A process for the production of multi-layer coatings in A? color shades, comprising the successive steps: 1) applying a base coat layer in a total process film thickness in the range from 10 to 35 ?m to a substrate provided with an EDC primer, 2) applying a clear coat layer onto the base coat layer, 3) jointly curing the base coat and clear coat layers, wherein the base coat layer is applied in a first layer of a modified water-borne base coat modAB prepared by mixing an unmodified, water-borne base coat A with an unmodified water-borne base coat B and with a pigment-free admixture component and in a second layer of the unmodified water-borne base coat A.
    Type: Grant
    Filed: September 25, 2007
    Date of Patent: April 3, 2012
    Assignee: E I du Pont de Nemours and Company
    Inventors: Marc Chilla, Marcus Brunner
  • Publication number: 20120063103
    Abstract: The thermal interface material including a thermally conductive metal a thermally conductive metal having a first surface and an opposing second surface, a diffusion barrier plate coupled to the first surface of the thermally conductive metal and the second surface of the thermally conductive metal, and a thermal resistance reducing layer coupled to the diffusion barrier plate.
    Type: Application
    Filed: September 10, 2010
    Publication date: March 15, 2012
    Inventor: Graham Charles Kirk
  • Patent number: 8133595
    Abstract: Disclosed is a multilayer alloy coating film capable of maintaining heat resistance, high-temperature oxidation resistance and creep resistance for a long time even in an ultra high temperature environment. The multilayer alloy coating film comprises a barrier layer formed on a base surface, and an aluminum reservoir layer formed on the barrier layer and composed of an alloy containing Al. The barrier layer comprises an inner sacrificial barrier layer composed of an alloy containing Re, an inner stabilization layer formed on the inner sacrificial barrier layer, a diffusion barrier layer formed on the inner stabilization layer and composed of an alloy containing Re, an outer stabilization layer formed on the diffusion barrier layer, and an outer sacrificial barrier layer formed on the outer stabilization layer and composed of an alloy containing Re.
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: March 13, 2012
    Assignee: National University Corporation Hokkaido University
    Inventor: Toshio Narita
  • Patent number: 8133544
    Abstract: A high-strength quenched formed body containing a layer on the surface of an after-quenching formed-body steel material in which layer Zn is a major component and which layer contains 30% by mass or less of Fe, and which layer is present in an amount of 30 g/m2 or more. A quenched formed body is produced by quenching a zinc-plated steel material which includes a zinc-plated layer containing each of Al and Si having alloying-retarding function and readily-oxidizing function independently or compositely, in an amount of 0.15% by mass or more, after heating it to 800° C. or more and 950° C. or less in an oxidizing atmosphere containing 0.1% by volume or more of oxygen.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: March 13, 2012
    Assignees: Aisin Takaoka Co., Ltd., Nippon Steel Corporation
    Inventors: Shinichi Suzuki, Toshimasa Tomokiyo, Shuuji Souma, Katsuji Nakashima, Masashi Ozawa, Kiyohito Kondou
  • Patent number: 8128063
    Abstract: A power generation system valve stem comprising a nickel-based substrate and a WC-based coating thereon, wherein the WC based coating comprises WC particles in a matrix of Ni and/or Co wherein the average interfacial spacing between the WC particles is between 5 microns and about 20 microns on average.
    Type: Grant
    Filed: April 3, 2008
    Date of Patent: March 6, 2012
    Assignee: Ameren Corporation
    Inventor: Dennis Sullivan
  • Patent number: 8118989
    Abstract: Methods are provided for bonding pure rhenium to a substrate comprising a material. Non-lubricated components configured to have friction contact with another component are also provided. In an embodiment, by way of example only, a method includes disposing a eutectic alloy over the substrate to form an inter layer, the eutectic alloy comprised essentially of a base alloy and one or more melting point depressants and having a melting temperature that is lower than a melting temperature of the substrate material and a melting temperature of rhenium, placing pure rhenium over the inter layer, and heating the inter layer to a temperature that is substantially equal to or greater than the melting temperature of the eutectic alloy, but that is below the melting temperature of the substrate material and the melting temperature of the pure rhenium to bond the pure rhenium to the substrate.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: February 21, 2012
    Assignee: Honeywell International Inc.
    Inventors: Don Mittendorf, Scott Sperl
  • Patent number: 8101285
    Abstract: A metallic material for a connecting part, having a rectangular wire material of copper or a copper alloy as a base material, and formed at an outermost surface thereof, a copper-tin alloy layer substantially composed of copper and tin, wherein the copper-tin alloy layer of the outermost surface further contains at least one selected from the group consisting of zinc, indium, antimony, gallium, lead, bismuth, cadmium, magnesium, silver, gold, and aluminum, in a total amount of 0.01% or more and 1% or less in terms of mass ratio with respect to the content of the tin.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: January 24, 2012
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Kengo Mitose, Shuichi Kitagawa, Yoshiaki Ogiwara
  • Publication number: 20110305832
    Abstract: A surface treating method for making a housing have a metallic main body includes the follow steps. A primer is coated on the metallic main body to form a bottom layer. A plating layer is formed on the bottom layer. An adhesive is coated on the plating layer to form an adhesive layer. Finally, a lacquer is coated on the adhesive layer to form an outer layer.
    Type: Application
    Filed: August 23, 2011
    Publication date: December 15, 2011
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: CHWAN-HWA CHIANG
  • Patent number: 8075957
    Abstract: Disclosed herein is a method of preventing corrosion degradation in a defective region including an expansion transition region and/or an expansion region of a heat transfer tube of a steam generator in a nuclear power plant by using nickel (Ni) plating or nickel (Ni) alloy plating. The method can prevent various types of corrosion damage, such as pitting corrosion, abrasion, stress corrosion cracking, lead-induced stress corrosion cracking and the like, occurring during the operation of the steam generator, and particularly, pitting corrosion or primary and secondary stress corrosion cracking, so that the life span of the steam generator is increased, maintenance costs are reduced, and the operation rate of a nuclear power plant is increased, with the result that the unit cost of the production of electric power can be decreased, thereby improving economic efficiency.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: December 13, 2011
    Assignees: Korea Atomic Energy Research Institute, Korea Hydro and Nuclear Power Co., Ltd.
    Inventors: Joung Soo Kim, Dong Jin Kim, Myong Jin Kim, Hong Pyo Kim
  • Publication number: 20110300406
    Abstract: A method including forming a first layer comprising a non-hexavalent chromium chemical conversion coating on a metal surface; and forming a second layer on the first layer through a sol gel process. An apparatus including a metal component having at least one surface; a first layer comprising a chemical conversion coating on the at least one surface; and a second layer derived from a sol gel composition on the first layer.
    Type: Application
    Filed: June 3, 2011
    Publication date: December 8, 2011
    Applicant: ALLFAST FASTENING SYSTEMS, INC.
    Inventor: ROBERT J. DEES
  • Patent number: 8062568
    Abstract: A method for manufacturing a nano pattern writer includes forming one or more grooves on a first layer, depositing a substance on the first layer to form a film on the first layer, polishing the film on the first layer to thereby form a patterned film that fills the one or more grooves on the first layer, placing a second layer over the patterned film to thereby form a layered structure interposing the patterned film between the first layer and the second layer, and removing a part of the first layer and the second layer to thereby expose portions of the patterned film.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: November 22, 2011
    Assignee: Korea University Research and Business Foundation
    Inventor: Kwangyeol Lee
  • Publication number: 20110279000
    Abstract: The present invention relates to an appliance having a micro-pattern (190b) for displaying a pattern or a character, and a method for fabricating a structure having a micro-pattern (190b), and more particularly, to a method for displaying a pattern or a character more effectively. To achieve above object, the appliance of the present invention includes a body, a structure provided to an outside or an inside of the body, and a micro-pattern (190b) for changing a light incident thereon from an outside of the micro-pattern to a light of a predetermined color to display a predetermined character or a predetermined pattern on the structure.
    Type: Application
    Filed: January 6, 2010
    Publication date: November 17, 2011
    Inventors: Young Bae Kim, Young Kyu Kim
  • Patent number: 8048534
    Abstract: A superalloy article which comprises a substrate comprised of a superalloy, a bond coat comprised of MCrAlY wherein M is a metal selected from the group consisting of cobalt, nickel and mixtures thereof applied onto at least a portion of the substrate and a ceramic top coat applied over at least a portion of the bond coat. The bond coat is exposed to a temperature of within the range of between about 1600-1800° F. subsequent to its application onto the substrate.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: November 1, 2011
    Assignee: Board of Governors for Higher Education, State of Rhode Island and Providence Plantations
    Inventors: Otto J. Gregory, Markus A. Downey
  • Publication number: 20110250466
    Abstract: A metallic component, in particular a rolling bearing, engine or transmission component, having a component body and at least one functional surface thereof that interacts with another element. Only the functional surface (7) is formed from an amorphous metal (6).
    Type: Application
    Filed: March 19, 2010
    Publication date: October 13, 2011
    Applicant: SCHAEFFLER TECHNOLOGIES GMBH & CO. KG
    Inventors: Claus Muller, Peter Schuster
  • Publication number: 20110244256
    Abstract: Incorporating antimicrobial metals, such as silver salts, into an anticorrosion coating provides both excellent antimicrobial protection and surprisingly improves the anti corrosion activity as well, proving anti corrosion coatings effective as thin films and well suited for coating medical devices. Suitable binder polymers for the coating include but not limited to polyelectrolytes containing charged and/or potentially chargeable groups and polymers containing hydrophilic entities.
    Type: Application
    Filed: March 15, 2011
    Publication date: October 6, 2011
    Inventors: Zhiqiang Song, Ted Deisenroth, Richard Thomas, Jacqueline Lau
  • Patent number: 8029914
    Abstract: High performance coated metal compositions resistant to metal dusting corrosion and methods of providing such compositions are provided by the present invention. The coated metal compositions are represented by the structure (PQR), wherein P is an oxide layer at the surface of (PQR), Q is a coating metal layer interposed between P and R, and R is a base metal. P includes alumina, chromia, silica, mullite or mixtures thereof. Q includes Ni and Al, and at least one element selected from the group consisting of Cr, Si, Mn, Fe, Co, B, C, N, P, Ga, Ge, As, In, Sn, Sb, Pb, Sc, La, Y, Ce, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Ru, Rh, Ir, Pd, Pt, Cu, Ag, Au and mixtures thereof. R is selected from the group consisting of carbon steels, low chromium steels, ferritic stainless steels, austenetic stainless steels, duplex stainless steels, Inconel alloys, Incoloy alloys, Fe—Ni based alloys, Ni-based alloys and Co-based alloys.
    Type: Grant
    Filed: July 10, 2007
    Date of Patent: October 4, 2011
    Assignee: ExxonMobile Research and Engineering Company
    Inventors: Kenneth E. Bagnoli, G. Phillip Anderson, Trikur A. Ramanarayanan, ChangMin Chun
  • Patent number: 8029906
    Abstract: Compositions and methods for treating metal substrates and/or bonding metal substrates to polymeric materials, such as rubber, are provided. The compositions include at least one substantially hydrolyzed amino silane and at least one substantially hydrolyzed sulfur-containing silane Optionally, the compositions include a nano-size particulate material. The compositions provide coatings on metal substrates for protecting the metal from corrosion and for adhering rubber-like polymeric compositions to the metal with polymer-to-metal vulcanization conditions less dependent on the coating thickness, and with use of less coating materials.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: October 4, 2011
    Assignees: University of Cincinnati, Ecosil Technologies LLC
    Inventors: William J. van Ooij, Max Sorenson, Matthew B. Stacy
  • Patent number: 8017692
    Abstract: A resin composition for metal plating provides a molded article exhibiting excellent metal plating adhesion strength and chemical resistance, while having excellent productivity. A metal-plated molded article can also be made from such a resin composition. The resin composition for metal plating includes 50-90% by mass of Component (A) and 10-50% by mass of Component (B), the total of Component (A) and Component (B) being 100% by mass, wherein Component (A) is a polypropylene resin, and Component (B) is a rubber-reinforced vinyl resin obtained by polymerizing a vinyl monomer in the presence of a rubber-like polymer, or a mixture of the rubber-reinforced vinyl resin and a (co)polymer of the vinyl monomer. The composition may further include 0.5-30 parts by mass of a compatibilizer (C) per 100 parts by mass of the total of Component (A) and Component (B). Component (B) is preferably a non-diene rubber-reinforced resin.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: September 13, 2011
    Assignee: Techno Polymer Co., Ltd.
    Inventors: Hiroyoshi Kaito, Takashi Kurata, Toshiyuki Higashijima
  • Patent number: 8017195
    Abstract: A coating system and coating method for damping vibration in an airfoil of a rotating component of a turbomachine. The coating system includes a metallic coating on a surface of the airfoil, and a ceramic coating overlying the metallic coating. The metallic coating contains metallic particles dispersed in a matrix having a metallic and/or intermetallic composition. The metallic particles are more ductile than the matrix, and have a composition containing silver and optionally tin. The method involves ion plasma cleaning the surface of the airfoil before depositing the metallic coating and then the ceramic coating.
    Type: Grant
    Filed: May 15, 2007
    Date of Patent: September 13, 2011
    Assignee: General Electric Company
    Inventors: Ramgopal Darolia, Matthew Mark Weaver, Dennis Martin Corbly, Boris Alexeevich Movchan, Anatolii Ivanovich Ustinov
  • Patent number: 8003173
    Abstract: The present invention relates to a method for forming a photoresist-laminated substrate including: preparing a laminated substrate having an insulating substrate and a metal layer; coating with an aerosol of metal nanoparticles on the metal layer; laminating a photoresist film on the metal layer coated with the aerosol of metal nanoparticles. The method of the present invention is a environmentally friendly method since an aerosol of metal nanoparticles is used, differentiated from the conventional wet process.
    Type: Grant
    Filed: January 4, 2008
    Date of Patent: August 23, 2011
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Hee-Sung Choi, Bae-Kyun Kim, Mi-Yang Kim, Seoung-Jae Lee
  • Patent number: 8003225
    Abstract: A personal ornament having an ornament base article made of a metal or the like; an underlayer, preferably nickel-free, formed on the base article; and a coloring layer constituted of an abrasion-resistant layer of 0.2-1.5 ?m thick formed by dry-plating on the surface of the underlayer and an outermost layer of 0.002-0.1 ?m thick formed by dry-plating on the surface of the abrasion-resistant layer. The coloring layer is a white hard coating film of a stainless-steel color which provides superior quality, high resistance to deterioration of appearance by scratching, and a high-quality image like a stainless steel film.
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: August 23, 2011
    Assignee: Citizen Holdings Co., Ltd.
    Inventors: Yukio Miya, Koichi Naoi, Fumio Tase, Yukio Tanokura
  • Publication number: 20110200842
    Abstract: The invention relates to a substrate having a bondable metal coating comprising, in this order, on an Al or Cu surface: (a) a Ni—P layer, (b) a Pd layer and, optionally, (c) an Au layer, wherein the thickness of the Ni—P layer (a) is 0.2 to 10 m, the thickness of the Pd layer (b) is 0.05 to 1.0 m and the thickness of the optional Au layer (c) is 0.01 to 0.5 m, and wherein the Ni—P layer (a) has a P content of 10.5 to 14 wt.-%. The deposit internal stress of the resulting Ni—P/Pd stack is not higher than 34.48 M?Pa (5,000 psi). Further, a process for the preparation of such a substrate is described.
    Type: Application
    Filed: October 1, 2009
    Publication date: August 18, 2011
    Applicant: ATOTECH DEUTSCHLAND GMBH
    Inventors: Albrecht Uhlig, Josef Gaida, Christof Suchentrunk, Michael Boyle, Brian Washo
  • Patent number: 7998523
    Abstract: The invention relates to open-pore biocompatible surface layers for implants, which layers are arranged over virgin surfaces of the implants, wherein pores of the open-pore surface layers are connected to form coherent pore networks and the surface layers have a specific internal surface area of ?0.06 ?m/?m2, preferably ?0.035 ?m/?m2 and especially ?0.025 ?m/?m2, measured by image analysis as a 2D-boundary line per unit of surface area in a metallographic microsection at 100× magnification. The invention further relates to methods of producing such surface layers, to implants coated therewith and to possible uses of the surface layers.
    Type: Grant
    Filed: October 12, 2006
    Date of Patent: August 16, 2011
    Assignee: Smith and Nephew Orthopaedics AG
    Inventors: Reto Lerf, Hans Schmotzer, Stephan Siegmann
  • Patent number: 7998593
    Abstract: A process for the manufacture of a metallic seal comprising applying a first intermediate layer to a base metal, applying a second intermediate layer overlying the first intermediate layer, applying a first coating layer comprising silver overlying the second intermediate layer, applying a second coating layer comprising indium overlying the first coating layer, baking the base metal with applied intermediate and coating layers at a temperature to diffuse the coating layers to form a silver indium alloy coating layer. A seal comprising a substrate having a metal surface, a first intermediate layer overlying the base metal, a second intermediate layer overlying the first intermediate layer, an alloy coating layer overlying the second intermediate layer, wherein the alloy coating layer comprises a silver indium alloy.
    Type: Grant
    Filed: May 25, 2006
    Date of Patent: August 16, 2011
    Assignee: Parker-Hannifin Corporation
    Inventors: Christopher D. Mahoney, James E. Beach
  • Publication number: 20110177358
    Abstract: A coating for a metal surface that provides excellent resistance to both electrochemical corrosion and mechanical insult is provided. The coating involves at least an inner coating that is a sacrificial anodic layer and an outer coating that is a protective dielectric material made of inorganic metal oxide. Some versions of the coating include an intermediate layer as well that serves to improve adhesion between the coatings and may provide additional galvanic protection. Although the coating can be made by a variety of methods, advanced methods of spray application are provided for making high-quality lightweight versions the coating.
    Type: Application
    Filed: January 20, 2010
    Publication date: July 21, 2011
    Applicant: UNITED STATES PIPE AND FOUNDRY COMPANY, LLC
    Inventors: A Michael Horton, William H Owen
  • Publication number: 20110165433
    Abstract: Process for providing a protective coating to a metal surface by applying a nickel or tantalum plate layer to the surface and dispersing particles of a hard material such as diamond, alumina, vanadium nitride, tantalum carbide and/or tungsten carbide within the nickel or tantalum plate layer as the plating is occurring.
    Type: Application
    Filed: January 6, 2010
    Publication date: July 7, 2011
    Applicant: General Electric Company
    Inventors: Surinder S. Pabla, Krishnamurthy Anand, Paul S. Dimascio, Stuart S. Collins, James A. Ruud, Suchismita Sanyal
  • Patent number: 7972655
    Abstract: A method is disclosed for enhancing the corrosion resistance of a surface of a copper or copper alloy substrate. The method comprises depositing a metallic surface layer comprising a precious metal on a surface of the copper or copper alloy substrate by immersion displacement plating and exposing the electronic device to an aqueous composition comprising a first organic molecule comprising at least one functional group that interacts with and protects precious metal surfaces and a second organic molecule comprising at least one functional group that interacts with and protects copper surfaces.
    Type: Grant
    Filed: November 21, 2007
    Date of Patent: July 5, 2011
    Assignee: Enthone Inc.
    Inventors: Joseph A. Abys, Shenliang Sun, Theodore Antonellis
  • Publication number: 20110159175
    Abstract: Disclosed herein is a method for inhibiting corrosion of a high strength steel turbine component subject to rotary stress. The method comprises applying a sacrificial overlay coating material to at least a portion of a surface of the component to form a protected component, and applying a seal material to at least a portion of the protected component to form a seal coat having a temperature resistance of greater than about 500° F. Also disclosed herein is a turbine component and corresponding engine protected by the method. Further provided is a method for repairing a high strength steel component of a turbofan engine. These methods are capable of inhibiting at least one of stress corrosion cracking or surface pitting of the turbine component after exposure to corrosive water.
    Type: Application
    Filed: December 30, 2009
    Publication date: June 30, 2011
    Inventors: Jon Raymond GROH, Thomas Allen Kauffung, Mark Alan Rhoads
  • Patent number: 7968488
    Abstract: The present invention is directed to a composite particle that is microscopically two-dimensional with a third nanoscopic dimension, and to methods of making same. The particle may include a support and a metal layer. The metal layer may be catalytically active such that the particle is adapted to act as a catalyst.
    Type: Grant
    Filed: April 18, 2007
    Date of Patent: June 28, 2011
    Assignee: Southwest Research Institute
    Inventors: James H. Arps, Kent Edward Coulter
  • Patent number: 7892605
    Abstract: A high-strength quenched formed body containing a layer on the surface of an after-quenching formed-body steel material in which layer Zn is a major component and which layer contains 30% by mass or less of Fe, and which layer is present in an amount of 30 g/m2 or more. A quenched formed body is produced by quenching a zinc-plated steel material which includes a zinc-plated layer containing each of Al and Si having alloying-retarding function and readily-oxidizing function independently or compositely, in an amount of 0.15% by mass or more, after heating it to 800° C. or more and 950° C. or less in an oxidizing atmosphere containing 0.1% by volume or more of oxygen.
    Type: Grant
    Filed: July 8, 2005
    Date of Patent: February 22, 2011
    Assignees: Aisin Takaoka Co., Ltd., Nippon Steel Corporation
    Inventors: Shinichi Suzuki, Toshimasa Tomokiyo, Shuuji Souma, Katsuji Nakashima, Masashi Ozawa, Kiyohito Kondou