Metal Base Patents (Class 427/405)
  • Patent number: 6715196
    Abstract: A method of coating metallic substrates with weldable primer and at least one powder coating is provided by the present invention. The base powder coating contains flake pigments that align parallel to the surface when the powder coating is heated. Optionally, a clear top coating is applied over the base powder coating. Substrates coated by the method of coating are also provided. The method of coating allows substrates coated with weldable primer to be assembled into assemblies or finished parts by welding, and then to be coated with the powder basecoat and clear coat. The parts prepared have striking visual effects and performance comparable to conventional automotive parts but are prepared more efficiently and economically.
    Type: Grant
    Filed: December 19, 2001
    Date of Patent: April 6, 2004
    Assignee: PPG Industries Ohio, Inc.
    Inventors: John Reising, Richard S. Tansey, Gregory J. McCollum, Ronald J. Isger
  • Patent number: 6712915
    Abstract: Various articles of manufacture, such as electrosurgical scalpels, razor blades, electronic components and mechanical components having a quasicrystalline AlCuFe alloy film less than about 10,000 Å thick. Such articles of manufacture may be formed by depositing (in sequence) on a substrate through radio frequency sputtering a stoichiometric amount of each respective alloy material and then annealing those layers to form the film through solid state diffusion.
    Type: Grant
    Filed: September 21, 2001
    Date of Patent: March 30, 2004
    Assignee: University of Utah Research Foundation
    Inventors: Orest G. Symko, Ehab Abdel-Rahman, Wanjun Park, Thierry Klein, David Kieda
  • Publication number: 20040058082
    Abstract: Disclosed are medical devices having lubricious coatings which are capable of producing magnetic resonance image in the presence of a suitable magnetic field. The medical devices are easy to manipulate in body channels because of reduced friction with tissue surfaces and can be readily visualized in real time, which greatly facilitates the tracking of the medical devices while present within the bodies of humans or animals. The level of magnetic susceptible agent in the coatings of medical devices can be easily controlled by the present invention to give the desired performance. Coating processes to produce these medical devices are also disclosed.
    Type: Application
    Filed: February 21, 2003
    Publication date: March 25, 2004
    Inventors: Deborah Schachter, You-Ling Fan, Venceslav Rutar
  • Patent number: 6709719
    Abstract: A tin layer and a zinc layer are stacked sequentially on a given substrate to form a multilayered film composed of the tin layer and the zinc layer. Then, a laser beam is irradiated onto the multilayered film to produce a tin-zinc alloy film through the inter-diffusion between the tin elements of the tin layer and the zinc elements of the zinc layer.
    Type: Grant
    Filed: May 16, 2002
    Date of Patent: March 23, 2004
    Assignee: Susuka National College of Technology
    Inventors: Hideyuki Kanematsu, Yoshihiko Masuo, Takeo Oki, Hirohiko Ohmura
  • Patent number: 6709711
    Abstract: The invention is directed to a method for producing a corrosion-resistant and oxidization-resistant layer that is applied onto a component part, whereby the method can be simply and cost-beneficially implemented in fabrication-oriented terms and comprises the steps: a) producing a slip by mixing powder containing at least one of the elements Cr, Ni or Ce with a binding agent; b) applying the slip onto the component part; c) drying the slip at temperatures from room temperature through 300° C.; and d) alitizing the slip layer.
    Type: Grant
    Filed: April 19, 2000
    Date of Patent: March 23, 2004
    Assignee: MTU Motoren-und Turbinen-Union München GmbH
    Inventors: Gerhard Wydra, Martin Thoma, Horst Pillhoefer
  • Patent number: 6706329
    Abstract: A method for locally nickel-plating an aluminum alloy fin structure including placing the aluminum alloy fin structure on a sponge that is located at the bottom of a “zinc” tank containing a volume of zinc chemical solution for zinc plating; and thereafter rotating the aluminum alloy fin structure and immersing the rotated aluminum alloy fin structure in a volume of nickel chemical solution of a “nickel” tank to plate nickel onto the aluminum alloy fin structure.
    Type: Grant
    Filed: November 21, 2002
    Date of Patent: March 16, 2004
    Inventor: Ming-Ho Chien
  • Patent number: 6703135
    Abstract: A system and method for providing a coating for protecting a surface from corrosion are provided. The method involves providing a system of layers on a light metal or light metal alloy substrate. The system of layers includes a nonconductive layer adjacent the substrate, followed by a conductive layer, an intermediate layer, and an decorative external layer.
    Type: Grant
    Filed: August 28, 2000
    Date of Patent: March 9, 2004
    Assignee: Fraunhofer-Gesellschaft zur Fordering der angewandten Forschung e.V.
    Inventors: Andreas Dietz, Volker Von Der Heide
  • Patent number: 6689283
    Abstract: A dry etching is performed using a mask made of a titanium nitride under a reaction gas of a carbon monoxide with an additive of a nitrogen containing compound gas.
    Type: Grant
    Filed: March 26, 2001
    Date of Patent: February 10, 2004
    Assignee: TDK Corporation
    Inventors: Kazuhiro Hattori, Kenji Uchiyama
  • Patent number: 6685990
    Abstract: Abnormal nodule formation during electroless plating, e.g., of amorphous NiP “seed” layers utilized in the manufacture of magnetic recording media, is eliminated or substantially reduced by performing the electroless plating process in an apparatus employing polymeric or polymer-based materials which are substantially resistant to degradation upon prolonged contact with the electroless plating bath at an elevated temperature, i.e., release of soluble, low molecular weight, carbon-containing species which are incorporated in the electroless plating deposit and act as nucleation centers for abnormal growth leading to nodule formation. Suitable degradation-resistant polymeric materials for use as fittings, piping, racks, tanks, etc. of the electroless plating apparatus include fluorine-containing hydrocarbons and fluorocarbons.
    Type: Grant
    Filed: February 22, 2000
    Date of Patent: February 3, 2004
    Assignee: Seagate Technology LLC
    Inventors: Linda Lijun Zhong, Connie Chunling Liu, Shawn A. Mawla, Jeff Duane St. John, Jeffrey Lee Petrehn
  • Patent number: 6676992
    Abstract: A method for coating an article includes preparing a coating precursor paint including aluminum-containing pigment particles, a temporary organic binder comprising an acrylic, and a solvent for the temporary organic binder. The coating precursor paint is applied to a surface of the article and thereafter heated to a temperature of from about 1200° F. to about 2100° F. in a non-oxidizing environment.
    Type: Grant
    Filed: August 22, 2001
    Date of Patent: January 13, 2004
    Assignee: General Electric Company
    Inventors: Jeffrey Allan Pfaendtner, Michael James Weimer, William Evan McCormack, Joseph David Rigney, Mark Lloyd Miller, John Lewis Lackman
  • Patent number: 6676988
    Abstract: This invention relates to radioactively coated devices, preferably radioctively coated medical devices. These coated devices are characterized as having a low rate of leaching of the radioisotope from the surface of the coated device and a uniform radioactive coating, and are therefore suitable for use within biological systems. Methods for coating a device with a radioisotope comprising are also disclosed. One method comprises immersing the device within a solution containing a &ggr;, &bgr;+, &agr;, &bgr;− or &egr; (electron capture) emitting radioisotope, then exposing the immersed substrate to tuned vibrational cavitation to produce a coated substrate. A second method involves coating a substrate using electroless plating, and yet a third method involves the use of electroplating a radioisotope onto a substate of interest. With these methods, the coating procedures are followed by baking the coated substrate at a temperature below the recrystallization temperature of the substrate.
    Type: Grant
    Filed: December 14, 2001
    Date of Patent: January 13, 2004
    Assignee: MDS (Canada) Inc.
    Inventors: Albert Chan, Stephen M. Oelsner, Thomas J. Simpson, Sonia Corrent
  • Patent number: 6669997
    Abstract: A process for coating an object formed of magnesium or a magnesium alloy comprising the steps of: immersion coating the object in a sonicated bath to form an undercoat and topcoating the object to form a topcoat. When desirable to protect against topcoat failure, the undercoat may be equally noble or more noble than the topcoat. If topcoat failure is not a concern, the nobility of the topcoat relative to the undercoat need not be considered. The process promotes uniform coating of a magnesium and its alloys.
    Type: Grant
    Filed: March 26, 2002
    Date of Patent: December 30, 2003
    Assignee: National Research Council of Canada
    Inventors: Ben Li Luan, Joy Elizabeth Gray
  • Publication number: 20030232146
    Abstract: The present invention provides a method of forming a zinc coating that can form a chromate film, capable of withstanding hydrogen embrittlement-preventive treatment, by optimizing the conditions under which chromating is conducted.
    Type: Application
    Filed: June 13, 2003
    Publication date: December 18, 2003
    Inventors: Takanobu Iwade, Masato Aizawa, Hiroshi Sumiya, Seiji Amakusa, Hiroshi Kawaguchi
  • Patent number: 6656533
    Abstract: A coated article is prepared by furnishing an nickel-base article substrate having a free sulfur content of more than 0 but less than about 1 part per million by weight. A protective layer is formed at a surface of the article substrate. The protective layer includes a platinum aluminide diffusion coating. The protective layer may be substantially yttrium-free, or have a controlled amount of yttrium. A ceramic layer may overlie the protective layer.
    Type: Grant
    Filed: December 10, 2001
    Date of Patent: December 2, 2003
    Inventors: William S. Walston, Jon C. Schaeffer, Wendy H. Murphy
  • Patent number: 6652925
    Abstract: The aim of the invention is to develop a method for producing massive-amorphous layers on massive metallic shaped bodies. According to the method, amorphous layers having a thickness of >20 &mgr;m can be produced in only one procedure step. To this end, alloys which can be used for producing massive metallic glasses under quick solidification conditions or alloy elements which can be used for producing massive metallic glasses together with the elements of the shaped body material and under quick solidification conditions are molten by means of high-energy radiation are directly applied onto the massive metallic shaped body for producing an amorphous layer that is >20 &mgr;m up to several millimeter thick or are alloyed into the surface of the shaped bodies. The melt is quickly solidified by means of natural cooling and/or forced air cooling of the shaped body. The inventive method enables to coat metallic shaped bodies with massive metallic glasses which improve the surface characteristics.
    Type: Grant
    Filed: March 1, 2002
    Date of Patent: November 25, 2003
    Assignee: Institut für Festkörper- und Werkstofforschung Dresden e.V.
    Inventors: Wolfgang Schwarz, Jürgen Eckert, Sabine Schinnerling
  • Patent number: 6652914
    Abstract: A gas turbine blade which has previously been in service is protected by cleaning the gas turbine blade, and then first depositing a platinum first layer on the airfoil and the platform of the gas turbine blade. Thereafter, a platinum second layer is deposited over the platform but not the airfoil. A platinum-aluminide protective coating is formed by depositing an aluminum-containing layer overlying both the platform and the airfoil and interdiffusing the platinum and the aluminum.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: November 25, 2003
    Assignee: General Electric Aviation Service Operation Pte. Ltd.
    Inventors: Nigel Brian Thomas Langley, Keng Nam Chen, Genfa Hu, Kwok Heng Yow
  • Patent number: 6645483
    Abstract: A lubricant coating vehicle for medical devices used to reduce the coefficient of friction of such devices upon exposure thereof to moisture. The lubricant coating vehicle allows the introduction of a pharmacological additive having a release rate that is within acceptable pharmacokinetic criteria. The release rate is adjusted by utilizing different salt forms of the additive and adjusting the concentration of a urethane pre-polymer.
    Type: Grant
    Filed: December 18, 2000
    Date of Patent: November 11, 2003
    Assignee: Sherwood Services AG
    Inventor: Diane McGhee
  • Patent number: 6645560
    Abstract: An environmentally resistant coating (34) for improving the oxidation resistance of a niobium-based refractory metal intermetallic composite (Nb-based RMIC) at high temperatures, the environmentally resistant coating (34) comprising silicon, titanium, chromium, and niobium. The invention includes a turbine system (10) having turbine components (11) comprising at least one Nb-based RMIC, the environmentally resistant coating (34) disposed on a surface (33) of the Nb-based RMIC, and a thermal barrier coating (42) disposed on an outer surface (40) of the environmentally resistant coating (34). Methods of making a turbine component (11) having the environmentally resistant coating (34) and coating a Nb-based RMIC substrate (32) with the environmentally resistant coating (34) are also disclosed.
    Type: Grant
    Filed: December 10, 2002
    Date of Patent: November 11, 2003
    Assignee: General Electric Company
    Inventors: Ji-Cheng Zhao, Melvin Robert Jackson, Bernard Patrick Bewlay
  • Patent number: 6645550
    Abstract: A method of treating a substrate. The method comprises forming a metal-containing layer on at least a selected portion of the substrate during a substrate cleaning process.
    Type: Grant
    Filed: June 22, 2000
    Date of Patent: November 11, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Robin Cheung, Yezdi Dordi, Jennifer Tseng
  • Patent number: 6645351
    Abstract: A protective coating forming a thermal barrier is made on a superalloy metal substrate by forming a bonding underlayer on the substrate, the bonding underlayer being constituted by an intermetallic compound comprising at least aluminum and a metal from the platinum group, and by forming a ceramic outer layer which is anchored on a film of alumina present on the surface of the bonding underlayer. The bonding underlayer preferably has a thickness of less than 50 &mgr;m and is made by using physical vapor deposition, e.g. by cathode sputtering, to deposit a plurality of individual layers alternately of aluminum and of a metal from the platinum group, and by causing the metals in the resulting layers to react together exothermally.
    Type: Grant
    Filed: September 24, 2001
    Date of Patent: November 11, 2003
    Assignee: SNECMA Moteurs
    Inventors: Bertrand Saint Ramond, John Nicholls
  • Patent number: 6645352
    Abstract: A sputtering target made of AgxMayMbz or CuxMayMbz, where x>50 at % and Ag or Cu are a first metal, Ma is a second metal and Mb is a third metal is used in a method for manufacturing data storage disks. The method of manufacture includes providing a substrate, providing a spacer layer of a material transmitting light of a selected wavelength onto a surface of the substrate, applying a first layer of a first metal alloy between the substrate and spacer layer, providing a second layer of a second metal alloy on the spacer layer, and depositing the first and second metal alloys so that one of the first and second layers is semi-transparent with respect to the light. The first and second alloys have at least one common metal provided in particular fractions of the alloys.
    Type: Grant
    Filed: November 26, 2001
    Date of Patent: November 11, 2003
    Assignee: Unaxis Balzers Aktiengesellschaft
    Inventors: Helfried Weinzerl, Dubs Martin
  • Publication number: 20030207037
    Abstract: A single-step heat treating and surface coating process is provided for steel self-piercing rivets for joining 5xxx and 6xxx aluminum panels. In this process, two coats of zinc and aluminum flakes in an inorganic binder are applied to the steel rivets. After each coating, the rivets are heated to set and cure the coats and to achieve the desired microstructure and hardness level for joining 5xxx and 6xxx aluminum panels. The coating curing step combines the heat treatment with surface coating into a single-step procedure.
    Type: Application
    Filed: May 6, 2002
    Publication date: November 6, 2003
    Applicant: Ford Global Technologies, Inc.
    Inventor: Huimin Liu
  • Publication number: 20030194576
    Abstract: A compressor having a corrosive resistant coating is disclosed. The coating has a first spray coated metallic layer. A sealant layer is disposed over the sprayed metallic coating which has an organic component, a solvent component, and an inorganic phase.
    Type: Application
    Filed: December 28, 2000
    Publication date: October 16, 2003
    Inventors: Kirk E. Cooper, Marc J. Scancarello, Todd A. DeVore, Don G. Reu
  • Publication number: 20030194494
    Abstract: ABSTRACT OF THE DISCLOSURE A method for forming the soldering layer of fiber array substrate surface has been disclosed herein. A plurality of fiber array bases having V-shape grooves are formed on a substrate, and a solder layer is formed on the whole substrate via chemical plating method of following steps: forming a layer of nickel/chromium (Ni/Cr) alloy or aluminum (Al) metal on said substrate through evaporation or sputtering; treating said surface of said substrate having V-shape grooves with a sensitizing solution for plating said surface with Sn2+, wherein said sensitizing solution comprises deionized water and SnCl2; treating said sensitized surface of said substrate with an activating solution for precipitating catalytic element Pd0 on said surface, wherein said sensitizing solution comprises 2 to 10 g/l of PdCl2 and 0.01 to 0.1 M HCl; and (E) immersing said treated surface into an electroless nickel plating solution to form a nickel metal layer on said treated surface.
    Type: Application
    Filed: April 11, 2003
    Publication date: October 16, 2003
    Applicant: RiTek Corporation
    Inventors: Chung-I Chiang, Ming-Jen Wang, Kun-Hsien Cheng, Hong-Jueng King, Huei-Pin Huang, Chwei-Jing Yeh
  • Patent number: 6617047
    Abstract: The present invention relates to a process for coating apparatuses and apparatus parts for chemical plant construction—which are taken to mean, for example, apparatus, tank and reactor walls, discharge devices, valves, pumps, filters, compressors, centrifuges, columns, dryers, comminution machines, internals, packing elements and mixing elements—wherein a metal layer or a metal/polymer dispersion layer is deposited in an electroless manner on the apparatus(es) or apparatus part(s) to be coated by bringing the parts into contact with a metal electrolyte solution which, in addition to the metal electrolyte, comprises a reducing agent and optionally the polymer or polymer mixture to be deposited in dispersed form, where at least one polymer is halogenated.
    Type: Grant
    Filed: June 26, 2001
    Date of Patent: September 9, 2003
    Assignee: BASF Aktiengesellschaft
    Inventors: Stephan Hüffer, Thilo Krebs, Wolfgang Loth, Bernd Rumpf, Jürgen Sturm, Bernd Diebold, Juergen Korkhaus, Joachim Nilges, Axel Franke
  • Patent number: 6616967
    Abstract: An improved wire bonding process for copper-metallized integrated circuits is provided by a nickel layer that acts as a barrier against up-diffusing copper. In accordance with the present invention the nickel bath is placed and remains in hydrogen saturation by providing a piece of metal that remains in the nickel plating tank before and during the plating process.
    Type: Grant
    Filed: April 15, 2002
    Date of Patent: September 9, 2003
    Assignee: Texas Instruments Incorporated
    Inventor: Howard R. Test
  • Patent number: 6613452
    Abstract: A system and method for producing a corrosion-resistant article includes a metal substrate and a multi-layer resistant coating disposed over the metal substrate. The coating is operable to resist corrosion and hydrogen embrittlement of the metal substrate. The coating includes a first layer comprising a material galvanically similar to the metal substrate. The coating also includes a second layer disposed over the first layer. The second layer comprises a metal anodic to the metal substrate. The corrosion resistant article may also include a corrosion resistant interface layer at the boundary of the first and second layers. The interface layer may be formed by diffusing a portion of the second layer into the first layer.
    Type: Grant
    Filed: January 16, 2001
    Date of Patent: September 2, 2003
    Assignee: Northrop Grumman Corporation
    Inventor: John Douglas Weir
  • Patent number: 6613397
    Abstract: In a method for manufacturing an Al clad product, first, cladding material is fused and coated on base material having Al. Then, slurry material is coated on the cladding material coated on the base material, the slurry material including mixture of a flux powder, a resin binder powder and a diluent. Thereafter, the slurry material is hardened to thereby provide a hardened product including the base material, the cladding material and hardened slurry material. In a subsequent step, the hardened product is brazed to thereby provide an Al clad product, wherein the diluent included in the slurry material is gasified in the hardening process of the slurry material and the cladding material is fused by employing an arc discharge technique.
    Type: Grant
    Filed: December 4, 2001
    Date of Patent: September 2, 2003
    Assignee: Mando Climate Control Corporation
    Inventor: Seung Taek Oh
  • Patent number: 6610422
    Abstract: The method for manufacturing coated steel sheet has the steps of: immersing a steel sheet in a hot-dip coating bath to form an Al—Zn base coating layer containing 20 to 95 mass % Al on the steel sheet, forming a passivated layer on the coating layer; and applying thermal history to the coating layer. The thermal history is applied immediately after the steel sheet left the hot-dip coating bath or in a temperature range of from T(° C.) between 130° C. and 300° C. to 100° C.
    Type: Grant
    Filed: September 26, 2002
    Date of Patent: August 26, 2003
    Assignee: NKK Corporation
    Inventors: Toshihiko Ooi, Takafumi Yamaji, Keiji Yoshida, Yuichiro Tanaka, Junichi Inagaki, Masaaki Yamashita, Yasuhiro Majima, Nobuyuki Ishida, Yuichi Fukushima, Norio Inoue, Shinji Hori
  • Patent number: 6607789
    Abstract: A method for forming a thermal barrier coating system on an article subjected to a hostile thermal environment, such as the hot gas path components of a gas turbine engine. The coating system is generally comprised of a ceramic layer and an environmentally resistant beta phase nickel aluminum intermetallic (&bgr;-NiAl) bond coat that adheres the ceramic layer to the component surface. A thin aluminum oxide scale forms on the surface of the &bgr;-NiAl during heat treatment. The &bgr;-NiAl may contain alloying elements in addition to nickel and aluminum in order to increase the environmental resistance of the &bgr;-NiAl. The &bgr;-NiAl powder having a size in the range of 20-50 microns is applied using air plasma spray techniques to produce a surface having a roughness of 400 microinches or rougher. The ceramic top coat can be applied using inexpensive thermal spray techniques to greater thicknesses than achievable otherwise because of the rough surface finish of the underlying &bgr;-NiAl bond coat.
    Type: Grant
    Filed: April 26, 2001
    Date of Patent: August 19, 2003
    Assignee: General Electric Company
    Inventors: Joseph David Rigney, Michael James Weimer, Bangalore Aswatha Nagaraj, Yuk-Chiu Lau
  • Patent number: 6605161
    Abstract: A deposition process including applying an inoculant to at least a portion of the surface of a metal component, and then forming an intermetallic layer at the inoculant surface, such as by exposing at least the coated surface portion to a deposition environment.
    Type: Grant
    Filed: June 5, 2001
    Date of Patent: August 12, 2003
    Assignee: Aeromet Technologies, Inc.
    Inventor: David C. Fairbourn
  • Patent number: 6602548
    Abstract: A nickel base single crystal compliant layer on a ceramic blade has the capability to sustain high stresses and high operating temperature. Layers of nickel and platinum bonded on a single crystal superalloy over a sputtered gold-chromium layer support the high stress levels at elevated temperature without extrusion of the soft platinum or nickel layer and without destruction of an NiO compliant surface. The compliant layers have survived stress and temperature conditions without failure to the ceramic blade and the system can be stressed/heated and unloaded/cooled repeatedly without damage to the ceramic blades. A single crystal nickel base superalloy (i.e., SC180) has high strength properties at elevated temperature. Thin layers of chromium followed by gold are e-beam evaporated on one side of a polished surface of the alloy. Pure nickel is electroplated over this e-beam gold-chromium layer. Platinum is either electroplated or plated electrolessly over the nickel layer.
    Type: Grant
    Filed: June 20, 2001
    Date of Patent: August 5, 2003
    Assignee: Honeywell International Inc.
    Inventors: Dave Narasimhan, Alexander S. Kozlov, Margaret Eagan, Milton Ortiz
  • Patent number: 6602354
    Abstract: A tin layer and a nickel layer are stacked sequentially on a given substrate to form a multilayered film composed of the tin layer and the nickel layer. Then, the multilayered film is heated to a given temperature to form a tin-nickel alloy film through the diffusion of the tin elements of the tin layer into the nickel layer.
    Type: Grant
    Filed: May 23, 2001
    Date of Patent: August 5, 2003
    Assignee: Suzuka National College of Technology
    Inventors: Hideyuki Kanematsu, Tatsumasa Kobayashi, Takeo Oki
  • Patent number: 6596062
    Abstract: Disclosed is a coating composition for DACROTIZED™ film comprising Cr-containing inorganic acid, Ni carbonate, reductant, surfactant and water which has excellent corrosion resistance, weather resistance and chemical resistance thus being widely applicable to anticorrosion treatments of metals such as various alloys, sintering metals, and the like.
    Type: Grant
    Filed: February 6, 2002
    Date of Patent: July 22, 2003
    Assignee: Hyundai Motor Company
    Inventors: Bum-Goo Chung, Kwang-Wha Hong
  • Patent number: 6595263
    Abstract: Method and arrangement for spray forming an article. The method includes spraying a plurality of metal streams upon a low-heat resistant model and thereby forming a spray formed article. Each of the plurality of metal streams is composed of moltenized droplets, and as between the plurality of metal streams, each is composed of different constituent elements. In the spray form process, conditions of the metal streams are controlled, particularly around the time that the droplets land, to prevent adverse affects such as melting or burning the master model. The spray conditions are controlled in such a manner that the individual metal droplets forming the metal streams remain substantially segregate. The segregated state is maintained through out solidification so that the resulting spray formed article is composed at least partially of psuedo-alloy.
    Type: Grant
    Filed: August 20, 2001
    Date of Patent: July 22, 2003
    Assignee: Ford Global Technologies, Inc.
    Inventors: Grigoriy Grinberg, Matthew M. Shade, David Robert Collins, Richard L. Allor
  • Patent number: 6592947
    Abstract: The present invention relates to methods for selectively enhancing corrosion protection of fabricated metal parts. One method of the present invention includes providing a non-galvanized metal sheet to be processed to form the fabricated metal part; selecting a localized region on the non-galvanized metal sheet; roughening the localized region for acceptance of a protective coating; applying a protective coating to localized region; and fabricating the non-galvanized metal sheet into a fabricated metal part. Another method includes providing a galvanized metal sheet; selecting a localized region on the galvanized metal sheet; applying a protective coating to the localized region; and fabricating the galvanized metal sheet into a fabricated metal part. Yet another method includes selecting a localized region on a fabricated metal part; roughening the localized region for acceptance of a protective coating; and applying the protective coating to the localized region.
    Type: Grant
    Filed: April 12, 2002
    Date of Patent: July 15, 2003
    Assignee: Ford Global Technologies, LLC
    Inventors: Robert Corbly McCane, John Lawrence Bomback, Guilian Gao
  • Patent number: 6586043
    Abstract: The invention includes a method of electroless deposition of nickel over an aluminum-containing material. A mass is formed over the aluminum-containing material, with the mass predominantly comprising a metal other than aluminum. The mass is exposed to palladium, and subsequently nickel is electroless deposited over the mass. The invention also includes a method of electroless deposition of nickel over aluminum-containing materials and copper-containing materials. The aluminum-containing materials and copper-containing materials are both exposed to palladium-containing solutions prior to electroless deposition of nickel over the aluminum-containing materials and copper-containing materials. Additionally, the invention includes a method of forming a solder bump over an aluminum-containing material.
    Type: Grant
    Filed: January 9, 2002
    Date of Patent: July 1, 2003
    Assignee: Micron Technology, Inc.
    Inventor: Nishant Sinha
  • Patent number: 6586044
    Abstract: A magnetic hard disk having magnetic tracks for storing data which is read or written by a magnetic head floating immediately above the magnetic track while the magnetic hard disk is rotating, and the magnetic head rests on the magnetic hard disk while the magnetic hard disk is not rotating. One aspect of the present invention is that the magnetic hard disk comprises a non-magnetic substrate having a plurality of banks and grooves alternately and concentrically arranged thereon, a magnetic film formed on each of the banks, and non-magnetic material formed on an entire surface of the substrate all over the banks and grooves such that roughness of the upper surface of the non-magnetic material is in a range between 0.5 nm and 3 nm.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: July 1, 2003
    Assignee: Fujitsu Limited
    Inventors: Hiroto Takeshita, Ryoichi Mukai, Wataru Yamagishi
  • Patent number: 6585864
    Abstract: A method for protecting high temperature stainless steel from coking and corrosion at elevated temperatures in corrosive environments, such as during ethylene production, by coating the stainless steel with an overlay coating of MCrAlX in which M is nickel, cobalt, iron or a mixture thereof and X is yttrium, hafnium, zirconium, lanthanum or combination thereof. The overlay coating and stainless steel substrate are heat-treated to metallurgically bond the overlay coating to the substrate and to form a multiphased microstructure. The overlay coating preferably is aluminized by depositing a layer of aluminum thereon and subjecting the resulting coating to oxidation to form an alumina surface layer. An intermediary aluminum-containing diffusion coating may be deposited directly onto the stainless steel substrate prior to deposition of the overlay coating to form a protective interlayer between the stainless steel substrate and overlay coating.
    Type: Grant
    Filed: June 8, 2000
    Date of Patent: July 1, 2003
    Assignee: Surface Engineered Products Corporation
    Inventors: Gary Anthony Fisher, Robert Prescott, Yan Chen, Hang Zheng, Chinnia Subramanian, Andrew George Wysiekierski
  • Patent number: 6585878
    Abstract: A thermal barrier coating for nickel based superalloy articles such as turbine engine vanes and blades that are exposed to high temperature gas is disclosed. The coating includes a columnar grained ceramic layer applied to a platinum modified Ni3Al gamma prime phase bond coat having a high purity alumina scale. The preferred composition of the bond coat is 5 to 16% by weight of aluminum, 5 to 25% by weight of platinum with the balance, at least 50% by weight, nickel. A method for making the bond coat is also disclosed.
    Type: Grant
    Filed: August 7, 2002
    Date of Patent: July 1, 2003
    Assignee: Honeywell International, Inc.
    Inventors: Thomas E. Strangman, Derek Raybould
  • Patent number: 6582772
    Abstract: An article such as a gas turbine blade or vane has a superalloy substrate, and a coating system deposited on the substrate. The coating system includes a protective layer overlying the substrate, and, optionally, a ceramic thermal barrier coating layer overlying the bond coat. The protective layer has an uppermost layer with a composition including platinum, aluminum, and, in atom percent, from about 0.14 to about 2.8 percent hafnium and from about 2.7 to about 7.0 percent silicon, with the atomic ratio of silicon:hafnium being from about 1.7:1 to about 5.6:1.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: June 24, 2003
    Assignee: General Electric Company
    Inventors: Joseph D. Rigney, Ramgopal Darolia, William S. Walston
  • Patent number: 6579635
    Abstract: A ferromagnetic film suitable for ultra-high density perpendicular recording, and a process for producing the film. The process generally entails forming a film of ferromagnetic material on a surface of a substrate, such that the film is characterized by perpendicular magnetic anisotropy and comprises a plurality of magnetic domains defined by domain walls perpendicular to a major surface of the film. The ferromagnetic film is formed to have a linear strain defect for the purpose of smoothing and stabilizing the domain walls during subsequent magnetization reversal of the ferromagnetic material. Such smoothing and stabilizing serves to control temporal magnetic noise due to motion of magnetic domains, arrest domain wall motion (reducing velocity) when the film is subjected to the magnetic reversal fields, and controls spatial magnetic noise due to domain wall jaggedness.
    Type: Grant
    Filed: July 26, 2001
    Date of Patent: June 17, 2003
    Assignee: International Business Machines Corporation
    Inventors: Lia Krusin-Elbaum, Takasada Shibauchi
  • Patent number: 6579568
    Abstract: This invention provides a copper foil for a printed wiring board, which comprises a copper foil, an alloy layer (A) comprising copper, zinc, tin and nickel which is formed on a surface of the copper foil, said surface to be brought into contact with a substrate for a printed wiring board, and a chromate layer which is formed on a surface of the alloy layer (A). The copper foil for a printed wiring board has the following features: even if a printed wiring board is produced using a long-term stored copper foil, the interface between the copper foil and the substrate is only slightly corroded with chemicals; even if the copper foil contacts a varnish containing an organic acid, e.g., a varnish for an acrylic resin, in the formation of a copper-clad laminate, the bond strength is sufficient.
    Type: Grant
    Filed: October 26, 2001
    Date of Patent: June 17, 2003
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Kazuhisa Fujiwara, Hiroshi Tan, Mitsuo Fujii, Masanobu Tsushima
  • Patent number: 6569492
    Abstract: The invention relates to a process of repairing a MCrAlY-coating of an article, which has being exposed to the hot gases of, for example, a gas turbine. The MCrAlY-coating is examined and repaired only locally where it is needed and then, subsequently, on top of the MCrAlY-coating the article is aluminized and/or chromized, avoiding the stripping of the whole coating and re-coating over the entire surface of the article. This is for replenishing the coating of Al and/or Cr that become depleted during engine operation, in an easy, cost and time saving manner.
    Type: Grant
    Filed: June 1, 2001
    Date of Patent: May 27, 2003
    Assignee: Alstom Ltd
    Inventors: John Fernihough, Abdus S. Khan, Maxim Konter, Markus Oehl, Hans-Joachim Dorn
  • Publication number: 20030092957
    Abstract: The present invention is directed to a brachytherapy device comprising a substrate comprising at least one radioactive coating layer formed thereon. The radioactive coating layer has a total radioactivity that varies in at least one dimension of the device. Methods of making radioactive coatings, such as electrochemical deposition, electroless deposition and sol-gel are also disclosed. Suitable substrates include medical devices, such as catheters, stents, brachytherapy devices and guidewires, or components thereof. The disclosed methods produce medical devices capable of generating asymmetric, or targeted, radiation fields that correspond to the morphology of a tumor. Methods of using these devices to treat cancer of the breast, brain, prostate, uterine, head and neck are also disclosed.
    Type: Application
    Filed: April 2, 2002
    Publication date: May 15, 2003
    Inventors: Neal A. Scott, Janet M. Hampikian
  • Patent number: 6558878
    Abstract: Disclosed is a microlens manufacturing method which comprises the step of: positioning a X-ray mask for manufacturing the microlens on an substrate on which a sensitive film is formed, and arranging a rotation axis of the substrate and a central axis of the X-ray mask; applying X-rays to the X-ray mask to expose the sensitive film while fixing the X-ray mask and rotating the substrate; developing the sensitive film to form the microlens; performing an electroplating process on the plating base to form a metal layer; and separating the metal layer from the sensitive film structure and combining the metal layer with a mold frame for injection molding the microlens and manufacturing an injection mold.
    Type: Grant
    Filed: June 1, 2000
    Date of Patent: May 6, 2003
    Assignee: Korea Electronics Technology Institute
    Inventors: Hyo-Derk Park, Suk-Won Jung, Kwang-Bum Park, In-Hoe Kim, Hyun-Chan Moon, Kun-Nyun Kim, Soon-Sup Park, Sang-Mo Shin
  • Publication number: 20030077510
    Abstract: The object of present invention is to provide a battery container, of which the inner surface is provided with a surface-treated layer having low internal resistance and the outer surface is provided with a surface-treated layer having high quality and excellent continuous formability. Another object is to provide a surface-treated steel sheet suitably used for manufacturing the battery container.
    Type: Application
    Filed: December 5, 2002
    Publication date: April 24, 2003
    Applicant: TOYO KOHAN CO., LTD.
    Inventors: Hitoshi Ohmura, Tatsuo Tomomori, Hideo Ohmura, Keiji Yamane
  • Patent number: 6528123
    Abstract: This invention relates to a method for preparing the surface of a ceramic component that enables direct brazing using a non-active braze alloy. The present invention also relates to a method for directly brazing a ceramic component to a ceramic or metal member using this method of surface preparation, and to articles produced by using this brazing method. The ceramic can be high purity alumina. The method comprises applying a first coating of a silicon-bearing oxide material (e.g. silicon dioxide or mullite (3Al2O3.2SiO2) to the ceramic. Next, a thin coating of active metal (e.g. Ti or V) is applied. Finally, a thicker coating of a non-active metal (e.g. Au or Cu) is applied. The coatings can be applied by physical vapor deposition (PVD). Alternatively, the active and non-active metals can be co-deposited (e.g. by sputtering a target made of mullite).
    Type: Grant
    Filed: June 28, 2000
    Date of Patent: March 4, 2003
    Assignee: Sandia Corporation
    Inventors: Charles H. Cadden, F. Michael Hosking
  • Patent number: 6521053
    Abstract: A substrate is protected by first providing the substrate, and applying a ceramic coating overlying and bonded to the substrate. The ceramic coating is formed of an open-cell solid foam of ceramic cell walls having an interconnected intracellular volume therebetween which is filled at least in part with a metallic alloy. The ceramic coating has an exposed surface remote from the substrate. The exposed surface of the ceramic coating is heated to an exposure temperature such that at least some of the metallic alloy is lost from the intracellular volume.
    Type: Grant
    Filed: November 8, 2000
    Date of Patent: February 18, 2003
    Assignee: General Electric Co.
    Inventors: Richard John Grylls, Curtiss Mitchell Austin
  • Patent number: 6517893
    Abstract: A printed wiring board (PWB) and a method of manufacturing the same. In one embodiment, the PWB includes: (1) a substrate having a conductive trace located thereon and (2) a multi-purpose finish including palladium alloy where palladium is alloyed with cobalt or a platinum group metal and is located on at least a portion of the conductive trace, which forms both a non-contact finish and a contact finish for the PWB.
    Type: Grant
    Filed: August 28, 2001
    Date of Patent: February 11, 2003
    Assignee: Lucent Technologies Inc.
    Inventors: Joseph A. Abys, Chonglun Fan, Brian T. Smith, Bruce F. Stacy, Chen Xu