Chemical Compound Reducing Agent Utilized (i.e., Electroless Deposition) Patents (Class 427/437)
  • Publication number: 20110305919
    Abstract: Formation of an authentication element by deposition of a metal layer with embedded particles on a metal substrate, wherein the embedded particles are configured to convert energy from one wavelength to another. The embedded particles may be upconverters, downconverters, or phosphorescent phosphors, which can be detected and measured with analytical equipment when deposited in the metal layer. A metal substrate may include coinage.
    Type: Application
    Filed: June 9, 2011
    Publication date: December 15, 2011
    Applicant: AUTHENTIX, INC.
    Inventors: Jeffrey L. Conroy, Philip B. Forshee, James A. Shearer
  • Patent number: 8070860
    Abstract: An H2-permeable membrane system (117) comprises an electroless-deposited plating (115) of Pd or Pd alloy on a porous support (110, 110?). The Pd plating comprises face-centered cubic crystals cumulatively having a morphology of hexagonal platelets. The permeability to H2 of the membrane plating (115) on the porous support is significantly enhanced, being at least greater than about 1.3×10?8 mol·m?1·s?·Pa?0.5 at 350° C., and even greater than about 3.4×10?8 mol·m?1·s?1·Pa?0.5. The porous support (110, 110?) may be stainless steel (1100 and include a thin ceramic interlayer (110?) on which the Pd is plated. The method of providing the electroless-deposited plating includes preheating a Pd electroless plating solution to near a plating temperature substantially greater than room temperature, e.g. 60° C., prior to plating.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: December 6, 2011
    Assignee: United Technologies Corporation
    Inventors: Thomas Henry Vanderspurt, Ying She, Zissis Dardas, Craig Walker, James D. MacLeod
  • Patent number: 8058171
    Abstract: An apparatus and system for stirring liquid inside a flow cell. In one implementation, the apparatus includes a rotatable disc configured to receive liquid at a top side of the disc and distribute the liquid substantially evenly around a periphery of the flow cell. The disc has a triangular cross sectional area. The apparatus may further include a set of fins attached to a bottom side of the disc, wherein the set of fins is configured to draw the liquid from the periphery of the flow cell into the center of the flow cell.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: November 15, 2011
    Assignee: Intermolecular, Inc.
    Inventor: Rajesh Kelekar
  • Patent number: 8034746
    Abstract: Disclosed herein is a method of manufacturing round wire using superconducting tape, including the steps of: slitting superconducting tape into superconducting tape strips; silver-coating the slit superconducting tape strips; laminating the silver-coated superconducting tape strips to form a superconducting tape laminate having a square cross-section; holding the superconducting tape laminate; heat-treating the fixed superconducting tape laminate to cause diffusion junction between silver; and copper-plating the heat-treated superconducting tape laminate to have a circular section.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: October 11, 2011
    Assignee: Korea Electrotechnology Research Institute
    Inventors: Hong Soo Ha, Sang Soo Oh, Dong Woo Ha, Rock Kil Ko, Ho Sup Kim
  • Patent number: 8021721
    Abstract: A method of modifying a bottomhole assembly that includes metal plating at least a portion of a bottomhole assembly, wherein the metal-plating comprises superabrasive nanoparticles is disclosed.
    Type: Grant
    Filed: May 1, 2007
    Date of Patent: September 20, 2011
    Assignee: Smith International, Inc.
    Inventor: Anthony Griffo
  • Patent number: 7988773
    Abstract: An electroless gold plating bath includes a water-soluble gold compound, a complexing agent, an aldehyde compound, and an amine compound represented by R1—NH—C2H4—NH—R2 or (CH2—NH—C2H4—NH—CH2)n—R4 (wherein R1 to R4 represent —OH, —CH3, —CH2OH, —C2H4OH, —CH2N(CH3)2, —CH2NH(CH2OH), —CH2NH(C2H4OH), —C2H4NH(CH2OH), —C2H4NH(C2H4OH), —CH2N(CH2OH)2, —CH2N(C2H4OH)2, —C2H4N(CH2OH)2 or —C2H4N(C2H4OH)2, and n is an integer of 1 to 4). The electroless gold plating can be carried out without corrosion of an underlying metal to be plated at a stable deposition rate. Because of the high deposition rate and the immersion and reduction types, thickening of a plated coating is possible in one solution and the color of the coating is not degraded to provide a good appearance while keeping a lemon yellow color inherent to gold.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: August 2, 2011
    Assignee: C. Uyemura & Co., Ltd.
    Inventors: Masayuki Kiso, Yoshikazu Saijo, Tohru Kamitamari
  • Patent number: 7988774
    Abstract: Systems and methods for electroless deposition of a cobalt-alloy layer on a copper surface include a solution characterized by a low pH. This solution may include, for example, a cobalt(II) salt, a complexing agent including at least two amine groups, a pH adjuster configured to adjust the pH to below 7.0, and a reducing agent. In some embodiments, the cobalt-alloy is configured to facilitate bonding and copper diffusion characteristics between the copper surface and a dielectric in an integrated circuit.
    Type: Grant
    Filed: August 10, 2010
    Date of Patent: August 2, 2011
    Assignee: Lam Research Corporation
    Inventors: Algirdas Vaskelis, Aldona Jagminiene, Ina Stankeviciene, Eugenijus Norkus
  • Patent number: 7985285
    Abstract: An electroless gold plating bath includes a water-soluble gold compound, a complexing agent, a formaldehyde metabisulfite adduct, and an amine compound represented by R1—NH—C2H4—NH—R2 or (CH2—NH—C2H4—NH—CH2)n—R4 (wherein R1 to R4 represent —OH, —CH3, —CH2OH, —C2H4OH, —CH2N(CH3)2, —CH2NH(CH2OH), —CH2NH(C2H4OH), —C2H4NH(CH2OH), —C2H4NH(C2H4OH), —CH2N(CH2OH)2, —CH2N(C2H4OH)2, —C2H4N(CH2OH)2 or —C2H4N(C2H4OH)2, and n is an integer of 1 to 4). A gold plated coating of a good appearance can be formed without causing a failure in appearance owing to the progress of intergranular corrosion in a nickel surface.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: July 26, 2011
    Assignee: C. Uyemura & Co., Ltd.
    Inventors: Masayuki Kiso, Yukinori Oda, Seigo Kurosaka, Tohru Kamitamari, Yoshikazu Saijo, Katsuhisa Tanabe
  • Patent number: 7964069
    Abstract: A device for galvanic coating of a piston has a pot-shaped interior for accommodating the piston and an electrolyte fluid, a holder device for fixing the piston in place, a cover that is structured like a shutter and leaves only the surfaces of the piston that are to be coated uncovered, a first electrical contact that is connected with an anode and with the plus pole of a direct voltage source, and a second electrical contact that connects the piston with the minus pole of a direct voltage source. The piston can be simply and quickly attached to the holder device, since the holder device is in plate shape, and has an oblong centering device, the length of which corresponds to the radial inside diameter of the piston to be coated so that the piston can be pushed onto the centering device by way of its underside.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: June 21, 2011
    Assignee: MAHLE International GmbH
    Inventors: Rudolf Bergmann, Kurt Nikolei
  • Patent number: 7935310
    Abstract: Devices, systems and methods of using same where hybrid substrate materials are provided with a substantially uniform surface to provide uniformity of properties, including interaction with their environments. Uniform surfaces are applied as coatings over, e.g., hybrid metal/silica, metal/polymer, metal/metal surfaces to mask different chemical properties of differing regions of the surface and to afford a protective surface for the hybrid structure.
    Type: Grant
    Filed: November 27, 2006
    Date of Patent: May 3, 2011
    Assignee: Pacific Biosciences of California, Inc.
    Inventor: Jonas Korlach
  • Patent number: 7932035
    Abstract: Devices, systems and methods of using same where hybrid substrate materials are provided with a substantially uniform surface to provide uniformity of properties, including interaction with their environments. Uniform surfaces are applied as coatings over, e.g., hybrid metal/silica, metal/polymer, metal/metal surfaces to mask different chemical properties of differing regions of the surface and to afford a protective surface for the hybrid structure.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: April 26, 2011
    Assignee: Pacific Biosciences of California, Inc.
    Inventor: Jonas Korlach
  • Patent number: 7931867
    Abstract: Devices, systems and methods of using same where hybrid substrate materials are provided with a substantially uniform surface to provide uniformity of properties, including interaction with their environments. Uniform surfaces are applied as coatings over, e.g., hybrid metal/silica, metal/polymer, metal/metal surfaces to mask different chemical properties of differing regions of the surface and to afford a protective surface for the hybrid structure.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: April 26, 2011
    Assignee: Pacific Biosciences of California, Inc.
    Inventor: Jonas Korlach
  • Patent number: 7897198
    Abstract: Electroless plating is performed to deposit conductive materials on work pieces such as partially fabricated integrated circuits. Components of an electroless plating bath are separately applied to a work piece by spin coating to produce a very thin conductive layer (in the range of a few hundred angstroms). The components are typically a reducing agent and a metal source.
    Type: Grant
    Filed: September 3, 2002
    Date of Patent: March 1, 2011
    Assignee: Novellus Systems, Inc.
    Inventors: Heung L. Park, Eric G. Webb, Jonathan D. Reid, Timothy Patrick Cleary
  • Patent number: 7875110
    Abstract: An electroless plating composition comprising succinic acid, potassium carbonate, a source of cobalt metal ions, a reducing agent, and water is provided. An optional buffering agent may also be included in the composition. The composition may be used to deposit cobalt metal in or on semiconductor substrate surfaces including vias, trenches, and interconnects.
    Type: Grant
    Filed: February 16, 2010
    Date of Patent: January 25, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Rita J. Klein, Adam J. Regner, III
  • Patent number: 7758681
    Abstract: A cobalt-based alloy electroless plating solution according to the present invention comprises a cobalt precursor, a tungsten precursor, a phosphorus precursor, a reducing agent, a complexing agent, a pH regulator and a stabilizer, in which the reducing agent is dimethylamine borane (DMAB) or borohydride and the stabilizer is one or more compounds selected from a group consisting of imidazole, thiazole, triazole, disulfide and their derivatives; and which is stable enough for long-term reuse and prevents deterioration of metal thin-film quality by inhibiting the formation of a precipitate.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: July 20, 2010
    Assignee: LG Chem, Ltd.
    Inventors: Sang-chul Lee, Min-kyoun Kim, Min-jin Ko
  • Publication number: 20100151188
    Abstract: A structure having on a flexible substrate an organic-inorganic composite layer which contains a polymer and a metal as its main components and in which one of the components forms microdomains oriented perpendicularly to the substrate by using a microphase-separated morphology formed from a block copolymer, and a manufacturing method capable of manufacturing the structure at a low cost and over a large surface area are provided. The structure includes in order on the flexible substrate, a conductive layer; an adsorbing compound layer, and the organic-inorganic composite layer having the microphase-separated morphology which includes a polymer phase and a metal phase and in which one of the phases makes up cylindrical or lamellar microdomains oriented perpendicularly to the flexible substrate.
    Type: Application
    Filed: December 16, 2009
    Publication date: June 17, 2010
    Applicant: FUJIFILM Corporation
    Inventors: Kenichi ISHIZUKA, Taisei NISHIMI
  • Patent number: 7721425
    Abstract: A method of connecting an electronic part, containing: forming an electroless nickel plating coat containing phosphorous on a substrate metal layer which constitutes a connecting terminal of an electronic part; and carrying out connecting to the nickel plating coat through a lead-free solder, wherein a half-width of X-ray diffraction of a (111) plane of Ni crystal in the nickel plating coat is 5 degrees or less.
    Type: Grant
    Filed: July 30, 2003
    Date of Patent: May 25, 2010
    Assignee: The Furukawa Electric Co., Ltd.
    Inventor: Junya Hirano
  • Patent number: 7704562
    Abstract: A process is disclosed for the purpose of increasing the adhesion of a polymeric material to a metal surface. The process comprises plating the metal surface with a layer of electroless nickel, electroless cobalt or electroless (or immersion) tin followed by phosphating the plated layer prior to bonding the polymeric material thereto. The process is particularly suited to treating printed circuit board inner-layers and lead frames.
    Type: Grant
    Filed: August 14, 2006
    Date of Patent: April 27, 2010
    Inventor: John L. Cordani, Jr.
  • Patent number: 7682703
    Abstract: A method of selectively and electrolessly depositing a metal onto a substrate having a metallic microstructured surface is disclosed. The method includes forming a self-assembled monolayer on the metallic microstructured surface, exposing the self-assembled monolayer to an electroless plating solution including a soluble form of a deposit metal, and depositing electrolessly the deposit metal selectively on the metallic microstructured surface. Article formed from this method are also disclosed.
    Type: Grant
    Filed: November 29, 2006
    Date of Patent: March 23, 2010
    Assignee: 3M Innovative Properties Company
    Inventors: Matthew H. Frey, Khanh P. Nguyen
  • Patent number: 7648913
    Abstract: A film formation method is provided which includes positioning an object within an electroless deposition apparatus having means for instantaneous temperature control of the object and electrolessly depositing a material upon the object. More specifically, the method includes instantaneously changing the temperature of the object by the means of instantaneous control at one or more predetermined times during the step of electrolessly depositing the material, wherein the predetermined times correspond to different film-growth stages of the material.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: January 19, 2010
    Assignee: Lam Research Corporation
    Inventor: Igor C. Ivanov
  • Patent number: 7641944
    Abstract: A method for forming gold plating. The method includes preparing a solution containing gold ions and a reductant, immersing an object that is to be plated in the solution, irradiating the object with ultraviolet rays, and depositing gold on the object to form gold plating when the ultraviolet rays cause a photochemical reaction in the solution.
    Type: Grant
    Filed: July 21, 2004
    Date of Patent: January 5, 2010
    Assignee: Kabushiki Kaisha Tokai Rika Denki Seisakusho
    Inventors: Masaya Ichimura, Kanji Masui
  • Patent number: 7641781
    Abstract: In a method for coating a substrate, and a coated object, in a first step, in an external current-less or electrolytic manner, nickel and/or cobalt and/or platinum are deposited on a substrate in a deposition bath. In the deposition bath, particles are additionally suspended which contain at least one metal selected from Mg, Al, Ti, Zn and no Cr, the particles becoming occluded in the coating. In a second step, the actual protective layer is produced by heat treatment. The coating of component parts may be used for aircraft turbines or gas turbines or for garbage incineration systems having temperature-resistant protective layers against high temperature corrosion.
    Type: Grant
    Filed: November 3, 2003
    Date of Patent: January 5, 2010
    Assignee: MTU Aero Engines GmbH
    Inventors: Andreas Dietz, Gebhard Klumpp, Juergen Olfe
  • Publication number: 20090302005
    Abstract: Process for roughening a surface of a base metal substrate includes contacting the surface with an aqueous solution comprising oxalic acid, sulfuric acid, and hydrogen peroxide at a temperature and for a period of time effective to roughen the surface to an average roughness greater than 60 Ra, removing a modest amount of base material, and generating no narrow and deep crevices at all. The surface is roughened prior to application of an electroless coating onto the substrate.
    Type: Application
    Filed: June 4, 2008
    Publication date: December 10, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Lawrence Bernard Kool, Michael David Feldstein, Eugenio Giorni, Dennis Michael Gray, Thomas Stephen Lancsek, Francesco Sorbo, Steven Alfred Tysoe
  • Patent number: 7598204
    Abstract: A reagent suitable for use as a catalyst comprises a first metal species substrate having a second reduced metal species coated thereon, the second reduced metal species being less electropositive than the first metal. Methods of manufacture are also provided.
    Type: Grant
    Filed: September 19, 2005
    Date of Patent: October 6, 2009
    Assignee: General Motors Corporation
    Inventors: Andrew M. Mance, Tao Xie, Belabbes Merzougui
  • Patent number: 7585546
    Abstract: Methods and structures for reducing and/or eliminating moisture penetration in an optical package. The optical package may include (1) a layer of inorganic material placed over the points of the optical package susceptible moisture penetration of the optical package; (2) a portion of hygroscopic material placed over the points of the optical package susceptible to moisture penetration; (3) a layer of hygroscopic material placed on the interior surface of the optical package; and/or (4) a layer of hydrophobic material coated on the optical surfaces of the optical package.
    Type: Grant
    Filed: August 11, 2004
    Date of Patent: September 8, 2009
    Assignee: Finisar Corporation
    Inventors: Ming Shi, William Freeman, Johnny Zhong, Liren Du, Xin Lou, Steve Wang
  • Patent number: 7582330
    Abstract: A method of making metallic nanostructures by mixing (a) an aqueous composition comprising a chromonic material with (b) a metal salt in solution or a suspension of metal particles.
    Type: Grant
    Filed: November 24, 2004
    Date of Patent: September 1, 2009
    Assignee: 3M Innovative Properties Counsel
    Inventor: Hassan Sahouani
  • Patent number: 7563487
    Abstract: The present invention is directed to an anisotropic conductive film and manufacturing methods thereof, in which an electrically insulative porous film made of synthetic resin is used as a base film and in which conductive parts capable of being provided with conductiveness in the film thickness direction are formed independently at plural positions of the base film by adhering conductive metal to resinous parts of porous structure in such a manner as piercing through from a first surface to a second surface.
    Type: Grant
    Filed: March 12, 2004
    Date of Patent: July 21, 2009
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yasuhito Masuda, Yasuhiro Okuda, Fumihiro Hayashi, Tsuyoshi Haga
  • Patent number: 7537799
    Abstract: An ink-jettable composition including a palladium aliphatic amine complex solvated in a liquid vehicle can be used in formation of electronic devices. The ink-jettable composition containing a palladium aliphatic amine complex can be jetted onto a substrate in a predetermined pattern. A second composition can also be applied to the substrate using ink-jet printing or other printing techniques, wherein the second composition is applied onto at least a portion of the predetermined pattern. The second composition can include a reducing agent which is capable of reducing the palladium aliphatic amine complex to palladium metal, typically upon the application of heat. The described ink-jettable palladium complex compositions can be stable over a wide range of conditions and allow for the formation electronic devices on a variety of substrates.
    Type: Grant
    Filed: July 11, 2003
    Date of Patent: May 26, 2009
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventor: Tom Etheridge
  • Patent number: 7517555
    Abstract: A copper plating solution according to the present invention is characterized by that it comprising 0.03 mol/L to 0.5 mol/L of copper sulfate, 0.05 mol/L to 0.7 mol/L of ethylenediaminetetraacetic acid and 0.02 mol/L to 0.3 mol/L of sulfite, and has a pH adjusted to 5.0 to 8.5. A method for copper plating according to the present invention is characterized by that it comprises using the copper plating solution above. The copper plating solution and the method for copper plating according to the present invention stably provide a uniform copper plating film excellent in adhesion on the surface of an article to be plated, such as rare earth metal-based permanent magnet.
    Type: Grant
    Filed: April 26, 2002
    Date of Patent: April 14, 2009
    Assignee: Hitachi Metals, Ltd.
    Inventors: Fumiaki Kikui, Kaoru Kojima, Yoriyoshi Oooka, Kohshi Yoshimura
  • Patent number: 7510744
    Abstract: A process for producing a resin composition having a high adhesion between a resin layer and a metallic layer as well as an excellent durability includes providing a porous structure at least on the surface of the resin layer; and forming the metallic layer on the surface of the resin layer.
    Type: Grant
    Filed: May 4, 2005
    Date of Patent: March 31, 2009
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Hiroshi Tamemasa, Makoto Omata, Shigeo Ohta, Takahiro Okayasu
  • Patent number: 7498062
    Abstract: A method for applying a strike voltage to one or more substrates during plating. During this method, the substrates are moved in a planetary manner while being held at their exterior edges by a set of parallel mandrels. (The substrates are held in a mutually parallel orientation, typically vertically, during plating.) A voltage is applied to the substrates via a contact pin, a contact plate, a set of ball bearings, a rack end-plate, and the mandrels.
    Type: Grant
    Filed: May 26, 2004
    Date of Patent: March 3, 2009
    Assignee: WD Media, Inc.
    Inventors: Anthony Calcaterra, David Knox
  • Patent number: 7476412
    Abstract: The invention relates to a process for the metallization of an insulator and/or a dielectric, wherein the insulator is firstly activated, it is subsequently coated with another insulator and the latter is patterned, then the first is seeded and lastly metallized.
    Type: Grant
    Filed: March 27, 2001
    Date of Patent: January 13, 2009
    Assignee: Infineon Technologies AG
    Inventors: Klaus Lowack, Günter Schmid, Recai Sezi
  • Patent number: 7476616
    Abstract: A method for electroless plating of a substrate is provided that comprises exposing an electroless plating reagent comprising a metal to be plated and at least one reducing agent to a solid phase Activation Material to form an activated electroless plating reagent prior to application of the electroless plating reagent to the substrate. The activated electroless plating reagent is applied to a substrate in the process chamber under conditions to cause the metal of the electroless plating reagent to deposit on the substrate. Systems and modules are also described.
    Type: Grant
    Filed: December 13, 2005
    Date of Patent: January 13, 2009
    Assignee: FSI International, Inc.
    Inventor: Kurt Karl Christenson
  • Publication number: 20090004400
    Abstract: A zinc-aluminum eutectoid galvanized steel has been developed. The basic composition of the bath is selected close to the eutectoid point in the binary Zn—Al system, together with ternary additions in the form of bismuth, rare-earths and silicon.
    Type: Application
    Filed: January 21, 2005
    Publication date: January 1, 2009
    Inventors: Madhu Ranjan, Raghvendra Tewari, William J. van Ooij, Vijay K. Vasudevan
  • Publication number: 20080299322
    Abstract: The present invention relates to novel 1,3-diimine copper complexes and the use of 1,3-diimine copper complexes for the deposition of copper on substrates or in or on porous solids in an Atomic Layer Deposition process.
    Type: Application
    Filed: July 29, 2005
    Publication date: December 4, 2008
    Inventors: Bradley Alexander Zak, Jeffery Scott Thompson, Kyung-Ho Park
  • Patent number: 7429400
    Abstract: A method of reducing solder mask interface attack in a process of fabricating printed circuit boards. The method comprises the steps of providing a printed circuit board with a solder mask applied thereon and treating the printed circuit board with an immersion plating solution, wherein the immersion plating solution is plated onto the printed circuit board with the use of ultrasonics in the plating bath. It has been found that the use of ultrasonics at a frequency of about 40 kHz for the entire plating duration provides beneficial results.
    Type: Grant
    Filed: December 14, 2005
    Date of Patent: September 30, 2008
    Inventors: Steve Castaldi, John Swanson, Witold Paw
  • Patent number: 7425256
    Abstract: An apparatus and method for plating a workpiece. The apparatus comprises, generally, an anode, a cathode, and a selective anode shield/material flow assembly. In use, both the anode and the cathode are immersed in a solution, and the cathode is used to support the workpiece. During an electroplating process, the anode and the cathode generate an electric field emanating from the anode towards the cathode, to generate a corresponding current to deposit an electroplating material on the workpiece. The selective shield/material flow assembly is located between the anode and the cathode, and forms a multitude of adjustable openings. These opening have sizes that are adjustable during the electroplating process for selectively and controllably adjusting the amount of electric flux passing through the selective shield/material flow assembly and the distribution of the electroplating material on the workpiece. The selective shield/material flow assembly can also be used with an electroless plating system.
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: September 16, 2008
    Assignee: International Business Machines Corporation
    Inventors: Ralph A. Barrese, Gary Gajdorus, Allen H. Hopkins, John J. Konrad, Robert C. Schaffer, Timothy L. Wells
  • Patent number: 7416763
    Abstract: A process in which a base metal film is formed on the surface of a plastic film using a dry plating process, and a liquid containing an organic monomer is then brought in contact with the base metal film, thereby selectively forming a conductive organic polymer coating within any pinhole defects, and effectively filling the defects. A metal film is then formed on top of the base metal film using an electroplating process, thus forming a metal wet plating layer.
    Type: Grant
    Filed: June 16, 2004
    Date of Patent: August 26, 2008
    Assignee: Cookson Electronics Co.
    Inventors: Yuichi Kanda, Takashi Abe, Atsushi Tanaka, Keisuke Nishu
  • Publication number: 20080199627
    Abstract: A catalyst layer which enables an electroless plating method to be carried out can be formed by an inexpensive and simple process without using palladium. There are provided a tin treatment step of bringing a substrate into contact with a tin compound aqueous solution containing a tin compound; after the tin treatment step, a copper treatment step of bringing a substrate 1 into contact with a copper compound aqueous solution containing a copper compound; after the copper treatment step, a diluted sulfuric acid treatment step of bringing the substrate 1 into contact with diluted sulfuric acid; after the diluted sulfuric acid treatment step, a plating treatment step of bringing the substrate 1 into contact with a plating solution to form a copper plating film 2; and after the plating treatment step, a heat treatment step of heating the substrate 1 in an atmosphere substantially containing no oxygen and hydrogen.
    Type: Application
    Filed: March 31, 2008
    Publication date: August 21, 2008
    Applicant: ALPS ELECTRIC CO., LTD.
    Inventor: Kenichi MITSUMORI
  • Patent number: 7407689
    Abstract: The present invention provides a non-cyanide aqueous acidic immersion plating solution having a pH of from about 3.5 to about 6.5 and comprising zinc ions, nickel ions and/or cobalt iron ions, and fluoride ions. In one embodiment the immersion plating solutions of the invention also contain at least one inhibitor containing one or more nitrogen atoms, sulfur atoms, or both nitrogen and sulfur atoms. The present invention also relates to methods for depositing zinc alloy protective coatings on aluminum and aluminum alloy substrates comprising immersing the aluminum or aluminum alloy substrate in the non-cyanide acidic immersion plating solutions of the invention. Optionally, the zinc alloy coated aluminum or aluminum alloy substrate is plated using an electroless or electrolytic metal plating solution.
    Type: Grant
    Filed: June 26, 2003
    Date of Patent: August 5, 2008
    Assignee: Atotech Deutschland GmbH
    Inventors: Nayan H. Joshi, Maulik D. Mehta
  • Patent number: 7399501
    Abstract: A process for manufacturing a gas sensor including a detecting element having an electrode containing a precious metal formed on a surface of a solid electrolyte, comprising: a first step of applying a nuclei of a precious metal having a catalyzing action on a gas to be measured; and a second step of growing the nuclei, wherein the first step uses a physical vapor deposition method.
    Type: Grant
    Filed: November 6, 2003
    Date of Patent: July 15, 2008
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Takashi Saguchi, Hiroshi Matsuzaki
  • Publication number: 20080152822
    Abstract: Systems and methods for electroless deposition of a cobalt-alloy layer on a copper surface include a solution characterized by a low pH. This solution may include, for example, a cobalt(II) salt, a complexing agent including at least two amine groups, a pH adjuster configured to adjust the pH to below 7.0, and a reducing agent. In some embodiments, the cobalt-alloy is configured to facilitate bonding and copper diffusion characteristics between the copper surface and a dielectric in an integrated circuit.
    Type: Application
    Filed: December 22, 2006
    Publication date: June 26, 2008
    Inventors: Algirdas Vaskelis, Aldona Jagminiene, Ina Stankeviciene, Eugenijus Norkus
  • Patent number: 7384458
    Abstract: The non-cyanide electroless gold plating solution according to the invention is a non-cyanide electroless gold plating solution free from a cyanide compound, wherein bis-(3-sulfopropyl)disulfide is added, as a complexing agent for gold stabilization, to the electroless gold plating solution.
    Type: Grant
    Filed: March 14, 2007
    Date of Patent: June 10, 2008
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventor: Masaki Sanada
  • Publication number: 20080090079
    Abstract: An embodiment of the present invention is a technique to fabricate a device having a magnetic material. A nano-particle colloid is formed in a plating bath of an aqueous solution. The nano-particle colloid has magnetic nano-particles made of magnetic ferrite material. A seed layer is deposited on a substrate. A composite film containing the magnetic nano-particles is deposited on the seed layer using the plating bath.
    Type: Application
    Filed: September 28, 2006
    Publication date: April 17, 2008
    Inventors: Arnel M. Fajardo, Chang-Min Park
  • Publication number: 20080085370
    Abstract: An electroless plating system is provided. The system includes a first vacuum chuck supporting a first wafer and a second vacuum chuck supporting a second wafer such that a top surface of the second wafer is opposing a top surface of the first wafer. The system also includes a fluid delivery system configured to deliver a plating solution to the top surface of the first wafer, wherein in response to delivery of the plating solution, the top surface of the second wafer is brought proximate to the top surface of the first wafer so that the plating solution contacts both top surfaces. A method for applying an electroless plating solution to a substrate is also provided.
    Type: Application
    Filed: October 5, 2006
    Publication date: April 10, 2008
    Inventors: William Thie, John M. Boyd, Yezdi Dordi, Fritz C. Redeker
  • Publication number: 20080075958
    Abstract: The present invention relates to novel 1,3-diimine copper complexes and the use of 1,3-diimine copper complexes for the deposition of copper on substrates or in or on porous solids in an Atomic Layer Deposition process.
    Type: Application
    Filed: August 7, 2006
    Publication date: March 27, 2008
    Inventor: Kyung-Ho Park
  • Patent number: 7338686
    Abstract: The present invention provides a low-cost method for producing conductive particles in a short period of time by simplifying pretreatment in electroless plating. The method for producing conductive particles includes the steps of: introducing a solution composed mainly of palladium chloride and hydrochloric acid into an electroless plating bath containing particles of an organic material or an inorganic material while stirring the bath; and simultaneously applying an electroless plating to the surface of the particles and allowing the palladium catalyst to be carried on the surface of the particles to give conductive particles having an electroless plate coating.
    Type: Grant
    Filed: April 13, 2004
    Date of Patent: March 4, 2008
    Assignee: Kiyokawa Plating Industry Co., Ltd.
    Inventors: Hajime Kiyokawa, Kiyoto Fukuoka
  • Patent number: 7332193
    Abstract: An electroless plating method and composition for depositing Co, Ni, or alloys thereof onto a metal-based substrate in manufacture of microelectronic devices, involving a source of deposition ions selected from the group consisting of Co ions and Ni ions, a reducing agent for reducing the depositions ions to metal onto the substrate, and a hydrazine-based leveling agent.
    Type: Grant
    Filed: March 21, 2005
    Date of Patent: February 19, 2008
    Assignee: Enthone, Inc.
    Inventors: Charles Valverde, Nicolai Petrov, Eric Yakobson, Qingyun Chen, Vincent Paneccasio, Jr., Richard Hurtubise, Christian Witt
  • Patent number: 7323218
    Abstract: Methods of fabricating one-dimensional composite nanofiber on a template membrane with porous array by chemical or physical process are disclosed. The whole procedures are established under a base concept of “secondary template”. First of all, tubular first nanofibers are grown up in the pores of the template membrane. Next, by using the hollow first nanofibers as the secondary templates, second nanofibers are produced therein. Finally, the template membrane is removed to obtain composite nanofibers. Showing superior performance in weight energy density, current discharge efficiency and irreversible capacity, the composite nanofibers are applied to extensive scopes like thin-film battery, hydrogen storage, molecular sieving, biosensor and catalyst support in addition to applications in lithium batteries.
    Type: Grant
    Filed: April 21, 2003
    Date of Patent: January 29, 2008
    Assignee: Industrial Technology Research Institute
    Inventors: Jin-Ming Chen, Chien-Te Hsieh, Hsiu-Wen Huang, Yue-Hao Huang, Hung-Hsiao Lin, Mao-Huang Liu, Shih-Chieh Liao, Han-Chang Shih
  • Patent number: 7320936
    Abstract: An insulating layer (5) and a conductive seed layer (6) are applied to a substrate (1) in a simple process. A photo resist with palladium chloride are provided in a bath for electrophoretic deposition onto the substrate. The photo resist is an insulator and the palladium chloride is a catalyst. The layer is heated with UV to cure it. The layer is plasma etched to expose more of the palladium chloride, which acts as a catalyst for electrodes plating of the conductive seed layer. A thicker conductive layer (7) is then electroplated onto the seed layer. These steps may be repeated for successive insulating and/or conductive layers.
    Type: Grant
    Filed: June 21, 2005
    Date of Patent: January 22, 2008
    Assignee: University College Cork - National University of Ireland, Cork
    Inventors: Magall Brunet, Andrew Mark Connell, Paul McCloskey, Terence O'Donnell, Stephen O'Reilly, Sean Cian O'Mathuna