Inorganic Oxide Containing Plating Or Implanted Material Patents (Class 427/529)
  • Patent number: 11241714
    Abstract: The present invention addresses the problem of providing a flame treatment device which is capable of performing a flame treatment on a metal-based base material without requiring a preheat treatment. For the purpose of solving the above-described problem, a flame treatment device according to the present invention comprises: a first temperature measurement unit which measures the temperature of a metal-based base material before a flame treatment; a control unit which determines the combustion energy of flame on the basis of the temperature before a flame treatment, said temperature having been measured by the first temperature measurement unit, so that the surface temperature of the metal-based base material during the flame treatment is 56° C. or higher; and a flame treatment unit which performs a flame treatment on the metal-based base material on the basis of the combustion energy, which has been determined by the control unit.
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: February 8, 2022
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Masaki Satou, Seiju Suzuki, Shuichi Sugita
  • Publication number: 20150147481
    Abstract: A method for making a scissoring type current-perpendicular-to-the-plane magnetoresistive sensor with exchange-coupled soft side shields uses oblique angle ion milling to remove unwanted material from the side edges of the upper free layer. All of the layers making up the sensor stack are deposited as full films. The sensor stack is then ion milled to define the sensor side edges. The side regions are then refilled by deposition of an insulating layer. Next, the lower soft magnetic layers of the exchange-coupled side shields are deposited, which also coats the insulating layer up to and past the side edges of the upper free layer. The soft magnetic material adjacent the side edges of the upper free layer is removed by oblique angle ion beam milling. The material for the antiparallel-coupling (APC) layers is deposited, followed by deposition of the material for the upper soft magnetic layers of the exchange-coupled side shields.
    Type: Application
    Filed: November 20, 2013
    Publication date: May 28, 2015
    Applicant: HGST Nertherlands B..V.
    Inventors: Patrick Mesquita Braganca, Jordan Asher Katine, Neil Smith
  • Patent number: 8999456
    Abstract: A method for manufacturing a drug-releasing stent is provided. The method includes providing a titanium precursor, a carrier gas and a reactant gas in a plasma vacuum chamber, and generating a plasma for 1 to 6 hours to form a titanium oxide thin film on the surface of a stent. The method further includes providing steam or oxygen and hydrogen in the plasma vacuum chamber and generating a low-temperature plasma for 10 minutes to 2 hours to modify the surface of the titanium oxide thin film. The method further includes reacting the titanium oxide thin film of the stent with a drug in an acidic solution and under an inert gas atmosphere at room temperature to 100° C. for 30 minutes to 4 hours to attach the drug.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: April 7, 2015
    Assignee: Industry Foundation of Chonnam National University
    Inventors: Dong Lyun Cho, Sun-Jung Song, Myung Ho Jeong, Kyoung Seok Kim, Yu Jeong Park
  • Patent number: 8993092
    Abstract: A polycrystalline ferroelectric and/or multiferroic oxide article includes a substrate having a biaxially textured surface; at least one biaxially textured buffer layer supported by the substrate; and a biaxially textured ferroelectric or multiferroic oxide layer supported by the buffer layer. Methods for making polycrystalline ferroelectric and/or multiferroic oxide articles are also disclosed.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: March 31, 2015
    Assignee: UT-Battelle, LLC
    Inventors: Amit Goyal, Junsoo Shin
  • Publication number: 20150045205
    Abstract: A soft-landing (SL) instrument for depositing ions onto substrates using a laser ablation source is described herein. The instrument of the instant invention is designed with a custom drift tube and a split-ring ion optic for the isolation of selected ions. The drift tube allows for the separation and thermalization of ions formed after laser ablation through collisions with an inert bath gas that allow the ions to be landed at energies below 1 eV onto substrates. The split-ring ion optic is capable of directing ions toward the detector or a landing substrate for selected components. The inventors further performed atomic force microscopy (AFM) and drift tube measurements to characterize the performance characteristics of the instrument.
    Type: Application
    Filed: November 12, 2013
    Publication date: February 12, 2015
    Inventors: Guido Fridolin Verbeck, IV, Stephen Davila
  • Publication number: 20150021324
    Abstract: A method of manufacturing an article comprises providing a lid or nozzle for an etch reactor. Ion assisted deposition (IAD) is then performed to deposit a protective layer on at least one surface of the lid or nozzle, wherein the protective layer is a plasma resistant rare earth oxide film having a thickness of less than 300 ?m and an average surface roughness of 10 micro-inches or less.
    Type: Application
    Filed: September 23, 2013
    Publication date: January 22, 2015
    Applicant: Applied Materials, Inc.
    Inventors: Jennifer Y. Sun, Biraja P. Kanungo, Vahid Firouzdor, Ying Zhang
  • Patent number: 8932686
    Abstract: A method for producing a piezoelectric composite substrate having a single-crystal thin film of a piezoelectric material includes an ion-implantation step and a separation step. In the ion-implantation step, He+ ions are implanted into the single-crystal base made of the piezoelectric material to form localized microcavities in a separation layer located inside the single-crystal base and apart from a surface of the single-crystal base. In the separation step, the microcavities formed in the ion-implantation step are subjected to thermal stress to divide the separation layer of the piezoelectric single-crystal base, thereby detaching the single-crystal thin film.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: January 13, 2015
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Norihiro Hayakawa, Takashi Iwamoto, Hajime Kando
  • Publication number: 20140349092
    Abstract: A surface-tensioned sapphire plate and a corresponding manufacturing process. The plate may include a planar sapphire substrate and at least one layer disposed on the surface of the substrate for tensing the substrate. The layer may include at least 50 wt.-% of aluminum oxide (Al2O3). The manufacturing process for producing of a sapphire plate may include providing a planar sapphire substrate, and coating at least one surface of the substrate with a layer tensing the substrate. The layer may include at least 50 wt.-% of aluminum oxide (Al2O3).
    Type: Application
    Filed: August 6, 2014
    Publication date: November 27, 2014
    Inventors: Rudolf Beckmann, Markus Kress
  • Patent number: 8871362
    Abstract: The present invention relates to a cutting tool having a base body and a multilayered coating applied thereto, wherein at least two layers of the multilayered coating arranged one on top of the other contain, or consist of, metal oxide of the same metal or of different metals. In order to create cutting tools which are better than those of the prior art, it is proposed according to the invention that the at least two metal oxide layers arranged one on top of the other be produced successively by different PVD-processes, selected from i) reactive magnetron sputtering (RMS), ii) arc vapour deposition (arc-PVD), iii) ion plating, iv) electron beam vapour deposition and v) laser deposition, wherein modifications of the respective processes i) to v) do not constitute different PVD-processes.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: October 28, 2014
    Assignee: Walter AG
    Inventor: Veit Schier
  • Publication number: 20140295109
    Abstract: The present invention provides a film with a transparent electroconductive membrane including a transparent base material and a transparent electroconductive membrane. The transparent electroconductive membrane has on its surface crystalline secondary particles having an average particle diameter of 0.1 to 1 ?m in an amount of 1 to 100 particles/?m2. A substrate for a display, a display, a liquid crystal display device, and an organic EL element using the film with a transparent electroconductive membrane are also provided.
    Type: Application
    Filed: June 13, 2014
    Publication date: October 2, 2014
    Inventor: Osamu SAKAKURA
  • Publication number: 20140285952
    Abstract: A process for producing anodes includes providing a foil comprising tantalum or niobium. A surface of the foil is oxidized so as to form oxides on the foil surface. The foil is heated so that the oxides formed on the foil surface diffuse into the foil. A paste comprising a powder selected from the group consisting of a tantalum powder, a niobium powder, a niobium oxide powder and mixtures thereof is applied to the foil. The foil with the applied paste is sintered.
    Type: Application
    Filed: October 25, 2012
    Publication date: September 25, 2014
    Inventor: Ralph Otterstedt
  • Patent number: 8795790
    Abstract: [Problem] An object is to provide a magnetic recording medium with improved HDI characteristics, such as impact resistance, and its manufacturing method. [Solution] A typical structure of a magnetic recording medium 100 according to the present invention includes, on a base, at least a magnetic recording layer 122, a protective layer 126, and a lubricating layer 128, wherein the magnetic recording layer 122 includes, in an in-plane direction, a magnetic recording part 136 configured of a magnetic material and a non-recording part 134 magnetically separating the magnetic recording part 136, and a surface corresponding to the non-recording part 134 protuberates more than a surface corresponding to the magnetic recording part 136.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: August 5, 2014
    Assignee: WD Media (Singapore) Pte. Ltd.
    Inventors: Yoshiaki Sonobe, Akira Shimada, Tsuyoshi Ozawa, Masanori Aniya
  • Patent number: 8778463
    Abstract: Disclosed herein is a method of manufacturing a color-controlled sapphire, comprising: vaporizing a metal material, irradiating the vaporized metal material with electron beams or high-frequency waves to form the vaporized metal material into a plasma state, and then implanting the metal ions into a sapphire by extracting the metal ions from the plasma and accelerating the metal ions (step 1); and heat-treating the sapphire implanted with the metal plasma ions in an oxygen atmosphere or in air (step 2). According to the method of manufacturing a sapphire of the present invention, a sapphire, which can exhibit various colors, can be manufactured by implanting the ions, which can cause optical band gap changes into the sapphire, and a sapphire, which cannot be damaged by radiation and can exhibit colors uniformly, can be manufactured by conducting heat treatment under an oxygen atmosphere.
    Type: Grant
    Filed: June 12, 2008
    Date of Patent: July 15, 2014
    Inventors: Jae-Won Park, Ju-Hyung Ahn, Young-chool Kim, Jang-Min Han, Junyeon Kim
  • Publication number: 20140186640
    Abstract: The present invention provides an anti-adhesion transparent thin film, which uses physical vapor deposition to deposit a transparent thin film on the surface of a substrate. The transparent film has the characteristics of high light perviousness, good hardness, excellent acid resistivity, and superior anti-adhesion capability. Furthermore, an oxide layer can be formed between the surface of the substrate and the transparent thin film for improving the stability of the transparent thin film adhering to the surface of the substrate. In addition, the process temperature according to the present invention is less than 100; and the transparent thin film according to the present invention requires no metal- or fluorine-containing precursor. Thereby, the costs for industrial applications can be reduced substantially. It is also suitable for the substrates with less temperature tolerance such as metal, nonmetal, and polymer-like substrates. Hence, the applicable industries are extensive.
    Type: Application
    Filed: December 27, 2012
    Publication date: July 3, 2014
    Applicant: METAL INDUSTRIES RESEARCH & DEVELOPMENT CENTRE
    Inventor: METAL INDUSTRIES RESEARCH & DEVELOPMENT CENTRE
  • Patent number: 8747628
    Abstract: A method according to one embodiment includes forming a high Ku first oxide magnetic layer above a substrate by sputtering; forming a low Ku second oxide magnetic layer above the first oxide magnetic layer by sputtering; forming an exchange coupling layer of CoCrPt-oxide above the second oxide magnetic layer; and forming a magnetic cap layer above the exchange coupling layer. Additional systems and methods are also presented.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: June 10, 2014
    Assignee: HGST Netherlands B.V.
    Inventors: Xiaoping Bian, Jack Jyh-Kau Chang, Qing Dai, Hoa V. Do, Yoshihiro Ikeda, Kentaro Takano, Chu S. Tran
  • Patent number: 8747599
    Abstract: The present invention relates to a process for making self-patterning substrates comprising the steps of providing electrically conductive traces on a substrate; pre-coating the substrate with at least a layer of complementary reactant electrically resistant reactant formulations; altering the conductivity of complementary reactant formulation selectively upon application of external source of energy and a self-patterning substrate using the said process.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: June 10, 2014
    Inventors: Chidella Krishna Sastry, Chidella Venkata Krishna Mohan Sharma, Srinivas Tangirala
  • Patent number: 8673404
    Abstract: An object of the present invention is to provide a barrier film having the extremely high barrier property and the better transparency, a method for manufacturing the same, and a laminated material, a container for wrapping and an image displaying medium using the barrier film. According to the present invention, there is provided a barrier film provided with a barrier layer on at least one surface of a substrate film, wherein the barrier layer is a silicon oxide film having an atomic ratio in a range of Si:O:C=100:160 to 190:30 to 50, a peak position of infrared-ray absorption due to Si—O—Si stretching vibration between 1030 to 1060 cm?1, a film density in a range of 2.5 to 2.7 g/cm3, and a distance between grains of 30 nm or shorter.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: March 18, 2014
    Assignee: Dai Nippon Printing Co., Ltd.
    Inventor: Minoru Komada
  • Patent number: 8652589
    Abstract: The method for manufacturing a hydrogen permeation barrier comprises the steps of a) depositing on a substrate (SUB) a layer system (LS) comprising at least one layer (L1,L2,L3); characterized in that step a) comprises the step of b) depositing at least one hydrogen barrier layer (HPBL) comprising an at least ternary oxide. The apparatus comprises a sealable volume and a wall forming at least a portion of a boundary limiting said volume, wherein said wall comprises a hydrogen permeation barrier comprising a layer system (LS) comprising at least one layer, wherein said layer system comprises at least one hydrogen barrier layer (HPBL) comprising an at least ternary oxide. Preferably, said at least ternary oxide is substantially composed of Al, Cr and O, and said depositing said at least one hydrogen barrier layer (HPBL) is carried out using a physical vapor deposition method, in particular a cathodic arc evaporation method.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: February 18, 2014
    Assignee: Oerlikon Trading AG, Truebbach
    Inventor: Jurgen Ramm
  • Patent number: 8556969
    Abstract: We describe herein biocompatible single crystal Cu-based shape memory alloys (SMAs). In particular, we show biocompatibility based on MEM elution cell cytotoxicity, ISO intramuscular implant, and hemo-compatibility tests producing negative cytotoxic results. This biocompatibility may be attributed to the formation of a durable oxide surface layer analogous to the titanium oxide layer that inhibits body fluid reaction to titanium nickel alloys, and/or the non-existence of crystal domain boundaries may inhibit corrosive chemical attack. Methods for controlling the formation of the protective aluminum oxide layer are also described, as are devices including such biocompatible single crystal copper-based SMAs.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: October 15, 2013
    Assignee: Ormco Corporation
    Inventor: Alfred David Johnson
  • Publication number: 20130251087
    Abstract: Provided in one embodiment is a method comprising: disposing atoms of at least one non-metal element over a surface of a cladding material of a nuclear fuel element; and forming at least one product comprising the at least one non-metal element in, over, or both, a surface layer of the cladding material; wherein the at least one non-metal element has an electronegativity that is smaller than or equal to that of oxygen. Also provided is a nuclear fuel element comprising a modified surface layer adapted to mitigate formation of Chalk River Unidentified Deposits (CRUD) on the cladding material.
    Type: Application
    Filed: February 15, 2013
    Publication date: September 26, 2013
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventor: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
  • Publication number: 20130224452
    Abstract: Methods of forming a metal nanoparticle-graphene composite are provided. The methods include providing a functionalized hydrogen exfoliated wrinkled graphene (f-HEG) substrate and dispersing metal nanoparticles on a first major surface of the f-HEG substrate to form the metal nanoparticle-graphene composite.
    Type: Application
    Filed: February 28, 2012
    Publication date: August 29, 2013
    Applicant: Indian Institute of Technology Madras
    Inventors: Sundara Ramaprabhu, Tessy Theres Baby
  • Publication number: 20130199361
    Abstract: Monolithic ceramic bodies that have a mixed-oxide marginal region and a metallic surface, where the ceramic body includes an oxide of a first metal (I), while the mixed-oxide marginal region includes the oxide of the first metal (I) and the oxide of a further metal (II) having a high affinity for oxygen, and the metallic surface includes the further metal (II). The mixed oxide marginal region includes a continuous concentration gradient of the first metal (I), from 100% in the core to 0% in the transitional region to the metallic surface of the ceramic body, and a continuous concentration gradient of the further metal (II), starting from 0% in the core to 100% in the transitional region to the metallic surface of the ceramic body, where the oxygen concentration in the mixed-oxide marginal region remains constant, and the monolithic structure of the ceramic body has no phase boundaries.
    Type: Application
    Filed: October 6, 2011
    Publication date: August 8, 2013
    Applicant: CeramOss GmbH
    Inventors: Sorin Lenz, Christian Mahringer, Günter Rübig, Alexander Schreiner
  • Publication number: 20130115426
    Abstract: A method for manufacturing a flexible electronic device includes forming a first layer on a substrate to define a first area and a second area surrounding the first area such that the substrate is exposed at least partially in the first area and the first layer is in the second area, forming a second layer on the first area and the first layer over the second area such that an adhesion force between the second layer and the substrate in the first area is weaker than that between the second and first layers in the second area, forming an electronic device layer (EDL) on the second layer over the first area, the EDL defining a boundary projectively within the first area, and separating the EDL from the substrate by cutting through the first and second layers along a contour within the first area but not less than the boundary.
    Type: Application
    Filed: November 9, 2011
    Publication date: May 9, 2013
    Applicant: AU OPTRONICS CORPORATION
    Inventors: Chun-Hsiang Fang, Yu-Ling Lin
  • Patent number: 8435633
    Abstract: To provide a laminate excellent in weather resistance, moisture-proof property, adhesion between layers and its long-term stability, and a process for its production. A laminate comprising a substrate sheet containing a fluororesin, an adhesive layer, and a moisture-proof layer containing, as the main component, at least one inorganic compound selected from the group consisting of an inorganic oxide, an inorganic nitride and an inorganic oxynitride, laminated in this order, wherein the adhesive layer contains, as the main component, at least one metal oxide selected from the group consisting of zirconium oxide, tantalum oxide and hafnium oxide.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: May 7, 2013
    Assignee: Asahi Glass Company, Limited
    Inventors: Naoto Kihara, Takuya Nakao, Hiroshi Aruga, Eiji Shidoji
  • Patent number: 8357345
    Abstract: Disclosed is a method for removing oxygen from aluminum nitride by carbon. At first, an oven is provided. An aluminum nitride substrate is located in the oven. Nitrogen is introduced into the oven to form an atmosphere of nitrogen. The temperature is increased to the transformation point of the aluminum nitride substrate in the oven. Then, the heating is stopped and quenching is conducted in the oven. Carbon is introduced into the oven in the quenching. Thus, oxygen included in the aluminum nitride substrate reacts with the carbon to produce carbon monoxide or carbon dioxide. The carbon monoxide or carbon is released from the oven as well as the nitrogen. Thus, the aluminum nitride substrate is purified.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: January 22, 2013
    Assignee: Chung-Shan Institute of Science and Technology, Armaments, Bureau, Ministry of National Defense
    Inventors: Yang-Kuao Kuo, Chia-Yi Hsiang, Ching-Hui ChiangLin, Te-Po Liu
  • Publication number: 20120328803
    Abstract: Certain example embodiments relate to substrates or assemblies having two-colored laser-fused frits, and/or methods of making the same. In certain example embodiments, a first pattern is formed or written on a glass sheet by laser fusing a first frit material to the glass sheet. A second pattern is formed by laser fusing a second frit material disposed on the first frit material. An optional thin film coating is supported by the glass sheet. The glass sheet with the first and second patterns and optional coating is cut prior to heat treatment. A YAG or other type of laser may be used to directly or indirectly heat the frit materials, at the same or different times, and the frit materials may be wet-applied to the substrate. In certain instances, the laser firing raises the temperature of the glass substrate to no more than 100 degrees C. or preferably even lower.
    Type: Application
    Filed: June 24, 2011
    Publication date: December 27, 2012
    Applicant: Guardian Industries Corp.
    Inventor: Jason E. THEIOS
  • Patent number: 8329260
    Abstract: A substrate is implanted with a species to form a layer of microbubbles in the substrate. The species may be hydrogen or helium in some embodiments. The size at which the microbubbles are stable within the substrate is controlled. In one example, this is by cooling the substrate. In one embodiment, the substrate is cooled to approximately between ?150° C. and 30° C. This cooling also may reduce diffusion of the species in the substrate and will reduce surface roughness when the substrate is cleaved along the layer of microbubbles.
    Type: Grant
    Filed: July 29, 2008
    Date of Patent: December 11, 2012
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Julian G. Blake, Paul J. Murphy
  • Publication number: 20120295120
    Abstract: Disclosed is a transparent conductive film, including a substrate and, formed on at least one surface of the substrate, a gas barrier layer and a transparent conductive layer, wherein the gas barrier layer is formed of a material containing at least oxygen atoms, nitrogen atoms, and silicon atoms, and includes a surface layer part which has an oxygen atom fraction of 60 to 75%, a nitrogen atom fraction of 0 to 10%, and a silicon atom fraction of 25 to 35%, each atom fraction being calculated with respect to the total number of the oxygen atoms, nitrogen atoms, and silicon atoms contained in the surface layer part and which has a film density of 2.4 to 4.0 g/cm3.
    Type: Application
    Filed: March 25, 2011
    Publication date: November 22, 2012
    Applicant: LINTEC CORPORATION
    Inventors: Koichi Nagamoto, Takeshi Kondo, Yuta Suzuki, Wataru Iwaya, Satoshi Naganawa
  • Patent number: 8304033
    Abstract: Disclosed are methods of operation to grow, modify, deposit, or dope a layer upon a substrate using a multi-nozzle and skimmer assembly for introducing a process gas mixture, or multiple process gases mixtures, in a gas cluster ion beam (GCIB) system. Also disclosed is a method of forming a shallow trench isolation (STI) structure on a substrate, for example, an SiO2 STI structure, using a multiple nozzle system with two separate gas supplies, for example providing a silicon-containing gas and an oxygen-containing gas.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: November 6, 2012
    Assignee: TEL Epion Inc.
    Inventors: Martin D. Tabat, Matthew C. Gwinn, Robert K. Becker, Avrum Freytsis, Michael Graf
  • Publication number: 20120237691
    Abstract: Provided is a method of forming a metal oxide film. In the method, a metal oxide film is formed on a substrate using a coating solution including a metal precursor, and electrical conductivity of the metal oxide film is controlled.
    Type: Application
    Filed: February 9, 2012
    Publication date: September 20, 2012
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Jonghyurk Park, Jeong Young Park
  • Publication number: 20120220069
    Abstract: An embodiment of this invention provides a method to produce a conductive thin film, which comprises: providing a substrate; forming a first metal oxide layer on the substrate; forming an indium-free metal layer on the first metal oxide layer; and forming a second metal oxide layer on the indium-free layer, wherein the first metal oxide layer, the indium-free metal layer, and the second oxide layer are all solution processed.
    Type: Application
    Filed: May 18, 2011
    Publication date: August 30, 2012
    Applicant: NATIONAL TAIWAN UNIVERSITY
    Inventors: CHING-FUH LIN, MING-SHIUN LIN
  • Publication number: 20120213964
    Abstract: A polycrystalline ferroelectric and/or multiferroic oxide article includes a substrate having a biaxially textured surface; at least one biaxially textured buffer layer supported by the substrate; and a biaxially textured ferroelectric or multiferroic oxide layer supported by the buffer layer. Methods for making polycrystalline ferroelectric and/or multiferroic oxide articles are also disclosed.
    Type: Application
    Filed: February 18, 2011
    Publication date: August 23, 2012
    Applicant: UT-Battelle, LLC
    Inventors: Amit GOYAL, Junsoo Shin
  • Patent number: 8242876
    Abstract: A trimmable resistor for use in an integrated circuit is trimmed using a heater. The heater is selectively coupled to a voltage source. The application of voltage to the heater causes the heater temperature to increase and produce heat. The heat permeates through a thermal separator to the trimmable resistor. The resistance of the trimmable resistor is permanently increased or decreased when the temperature of the resistor is increased to a value within a particular range of temperatures.
    Type: Grant
    Filed: September 17, 2009
    Date of Patent: August 14, 2012
    Assignees: STMicroelectronics, Inc., STMicroelectronics (Grenoble) SAS
    Inventors: Olivier Le Neel, Pascale Dumont-Girard, Chengyu Niu, Fuchao Wang, Michel Arnoux
  • Patent number: 8216671
    Abstract: The present invention relates to a luminescent glass element comprising a luminescent glass substrate, which a metal layer is positioned on a surface thereof. The metal layer is provided with a metal microstructure. The luminescent glass substrate has composite oxides represented as the following formula: aM2O.bY2O3.cSiO2.dCe2O3, wherein M represents alkali metal element, a, b, c and d are, by mol part, 25-60, 1-30, 20-70 and 0.001-10 respectively. The present invention also provides a producing method of the luminescent glass element and a luminescing method thereof. The metal layer is positioned on the luminescent glass substrate, thereby improving luminescence efficiency of the luminescent glass substrate. The luminescent glass element can be used in luminescent devices with ultrahigh brightness or high-speed operation.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: July 10, 2012
    Assignee: Ocean's King Lighting Science & Technology Co., Ltd.
    Inventors: Mingjie Zhou, Wenbo Ma, Yugang Liu
  • Patent number: 8192805
    Abstract: Embodiments of methods for improving electrical leakage performance and minimizing electromigration in semiconductor devices are generally described herein. Other embodiments may be described and claimed.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: June 5, 2012
    Assignee: TEL Epion Inc.
    Inventors: Noel Russell, Steven Sherman, John J. Hautala
  • Publication number: 20120135157
    Abstract: The present invention relates to a ceramic coating and ion beam mixing apparatus for improving corrosion resistance, and a method of reforming an interface between a coating material and a base material. In samples fabricated using the coating and ion beam mixing apparatus, adhesiveness is improved, and the base material is reinforced, thereby improving resistance to thermal stress at high temperatures and high-temperature corrosion resistance of a material to be used in a sulfuric acid decomposition apparatus for producing hydrogen.
    Type: Application
    Filed: February 3, 2012
    Publication date: May 31, 2012
    Applicants: KOREA HYDRO AND NUCLEAR POWER CO., LTD., KOREA ATOMIC ENERGY RESEARCH INSTITUTE
    Inventors: Jaewon Park, Chang-Kue Park, Jonghwa Chang, Byungho Choi, Yongwan Kim
  • Patent number: 8182862
    Abstract: An ion source impinging on the surface of the substrate to be coated is used to enhance a MOCVD, PVD or other process for the preparation of superconducting materials.
    Type: Grant
    Filed: June 5, 2003
    Date of Patent: May 22, 2012
    Assignee: SuperPower Inc.
    Inventors: Venkat Selvamanickam, Hee-Gyoun Lee
  • Publication number: 20120121926
    Abstract: A coated article includes a substrate, an anti-corrosion layer formed on the substrate, and a decorative layer formed on the anti-corrosion layer. The substrate is made of aluminum or aluminum alloy. The anti-corrosion layer includes an aluminum layer formed on the substrate and an aluminum oxide layer formed on the aluminum layer. The coated article has improved corrosion resistance.
    Type: Application
    Filed: August 19, 2011
    Publication date: May 17, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD.
    Inventors: HSIN-PEI CHANG, WEN-RONG CHEN, HUANN-WU CHIANG, CHENG-SHI CHEN, XIAO-QIANG CHEN
  • Publication number: 20120088180
    Abstract: A membrane electrode assembly including an anode that incorporates a porous support and a hydrogen permeable metal thin film disposed on the porous support; a cathode; and a proton conductive solid oxide electrolyte membrane disposed between the anode and the cathode.
    Type: Application
    Filed: June 29, 2011
    Publication date: April 12, 2012
    Applicants: SNU R&DB Foundation, Samsung Electronics Co., Ltd.
    Inventors: Pil-won HEO, Yoon-ho Lee, Sang-kyun Kang, Jin-su Ha, Suk-won Cha
  • Patent number: 8153207
    Abstract: A silicon oxide of a film thickness of about 50 nm is formed on a surface of a silicon substrate by thermal oxidation. Silver is implanted into the silicon oxide with implantation energy of about 30 keV by a negative ion implantation method. By subjecting the silicon oxide, into which the silver has been implanted, to heat treatment at a temperature of not lower than 200° C. and lower than the melting point of silver, silver particles are formed. By oxidizing the surface portions of the fine particles by heat treatment in an oxidizing atmosphere, silver oxide is formed as a coating layer.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: April 10, 2012
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Nobutoshi Arai, Hiroshi Iwata
  • Publication number: 20120069442
    Abstract: Polymer based lens including a hardening layer, an interferential multi-layer and an absorbent layer therebetween. The absorbent layer is made from a metal, metal oxide or metal nitride, suitable for producing a transparent layer via deposition by sputtering, and includes cations of a coloring metal from the group made up of transition elements which, in oxided form, have a cation that absorbs electromagnetic radiation in the visible spectrum. The cations of the coloring metal are in a proportion between 10% and 70% atomic percentage of the cations with respect to the cation of the predominant metal in said absorbent layer.
    Type: Application
    Filed: March 11, 2010
    Publication date: March 22, 2012
    Inventors: Ricardo Fernández Serrano, Antoni Vilajoana Mas, Juan Carlos Dürsteler López, Jorge Gil Rostra, Francisco Yubero Valencia, Agustín Rodriguez-González-Elipe
  • Patent number: 8133553
    Abstract: A process for forming a ceramic layer comprising a compound of a metal on a deposition surface of a workpiece comprises providing a reactive gas, selecting the amounts of a vapor of the metal and ions of the metal relative to each other, generating the metal vapor, and projecting an ion beam of the metal ions. The metal vapor, the metal ions, and the reactive gas form the ceramic layer with a desired structure. The process may include the step of controlling a deposition surface temperature. In one embodiment, the metal vapor comprises zirconium vapor and the ion beam comprises zirconium ions. The relative amounts of the zirconium vapor and the zirconium ions are selected to form a zirconia ceramic layer on the deposition surface. The zirconia may have multiple crystal phases that are formed according to a predetermined ratio.
    Type: Grant
    Filed: June 18, 2007
    Date of Patent: March 13, 2012
    Assignee: Zimmer, Inc.
    Inventors: Jeffrey P. Anderson, Oludele Popoola
  • Publication number: 20120038713
    Abstract: A piezoelectric film is constituted of a perovskite oxide represented as: Pb1+?(ZrxTiy)1-a(MgbNb1-b)aOz, where ? and z are values within ranges where a perovskite structure is obtained and ?=0 and z=3 are standard, Pb is replaceable with another A site element in an amount of a range where the perovskite structure is obtained, b is a value in a range of 0.090?b?0.25, and a Nb ratio at a B site satisfies 0.13?a×(1?b).
    Type: Application
    Filed: August 10, 2011
    Publication date: February 16, 2012
    Inventor: Takayuki NAONO
  • Publication number: 20120026456
    Abstract: An optical article comprising: an optical base material; and a translucent layer that contains TiOx (0<x?2), the translucent layer is formed on the optical base material either directly or via some other layer, and the translucent layer has an argon concentration higher on a surface side of the translucent layer than on an optical base material side of the translucent layer.
    Type: Application
    Filed: June 29, 2011
    Publication date: February 2, 2012
    Applicant: SEIKO EPSON CORPORATION
    Inventors: Keiji NISHIMOTO, Takashi NOGUCHI, Hiroyuki SEKI
  • Publication number: 20120028038
    Abstract: A corrosion-resistant member has a composite titanium oxide film for reducing corrosion deposited on a surface of a construction material, where the composite titanium oxide film is represented by a molecular formula MTiO3 in which M is a transition element, and the corrosion-resistant member is preliminarily manufactured by depositing titanium oxide on the surface of the construction material, and the titanium oxide is subsequently or simultaneously subjected to high temperature treatment under existence of an ion of the transition metal.
    Type: Application
    Filed: March 26, 2010
    Publication date: February 2, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Masato Okamura, Osamu Shibasaki, Seiji Yamamoto, Toyoaki Miyazaki
  • Publication number: 20120021137
    Abstract: A method for manufacturing a cutting tool includes the steps of providing a body of cermet or cemented carbide, having a cutting edge with an edge radius Re smaller than 40 ?m, a flank a rake face, applying by PVD a single or a multilayer coating to at least a part of the surface of the body, comprising at least a part of the cutting edge and applying by PVD said single or multilayer coating, comprising PVD coating with at least one oxidic layer.
    Type: Application
    Filed: September 29, 2011
    Publication date: January 26, 2012
    Applicant: OERLIKON TRADING AG, TRUEBBACH
    Inventors: Dennis T. QUINTO, Christian WOHLRAB, Jürgen RAMM
  • Publication number: 20120001091
    Abstract: The present invention relates to a luminescent glass element comprising a luminescent glass substrate, which a metal layer is positioned on a surface thereof. The metal layer is provided with a metal microstructure. The luminescent glass substrate has composite oxides represented as the following formula: aM2O.bY2O3.cSiO2.dPr2O3, wherein M represents alkali metal element, a, b, c and d are, by mol part, 25-60, 1-30, 20-70 and 0.001-10 respectively. The present invention also provides a producing method of the luminescent glass element and a luminescing method thereof. The metal layer is positioned on the luminescent glass substrate, thereby improving luminescence efficiency of the luminescent glass substrate. The luminescent glass element can be used in luminescent devices with ultrahigh brightness or high-speed operation.
    Type: Application
    Filed: September 9, 2011
    Publication date: January 5, 2012
    Applicant: OCEAN'S KING LIGHTING SCIENCE & TECHNOLOGY CO., LTD.
    Inventors: Mingjie Zhou, Wenbo Ma, Yugang Liu
  • Publication number: 20120001092
    Abstract: The present invention relates to a luminescent glass element comprising a luminescent glass substrate, which a metal layer is positioned on a surface thereof. The metal layer is provided with a metal microstructure. The luminescent glass substrate has composite oxides represented as the following formula: aM2O.bY2O3.cSiO2.dSm2O3, wherein M represents alkali metal element, a, b, c and d are, by mol part, 25-60, 1-30, 20-70 and 0.001-10 respectively. The present invention also provides a producing method of the luminescent glass element and a luminescing method thereof. The metal layer is positioned on the luminescent glass substrate, thereby improving luminescence efficiency of the luminescent glass substrate. The luminescent glass element can be used in luminescent devices with ultrahigh brightness or high-speed operation.
    Type: Application
    Filed: September 9, 2011
    Publication date: January 5, 2012
    Applicant: OCEAN'S KING LIGHTING SCIENCE & TECHNOLOGY CO., LTD.
    Inventors: Mingjie Zhou, Wenbo Ma, Yugang Liu
  • Publication number: 20120001093
    Abstract: The present invention relates to a luminescent glass element comprising a luminescent glass substrate, which a metal layer is positioned on a surface thereof. The metal layer is provided with a metal microstructure. The luminescent glass substrate has composite oxides represented as the following formula: aM2O.bY2O3.cSiO2.dEu2O3, wherein M represents alkali metal element, a, b, c and d are, by mol part, 25-60, 1-30, 20-70 and 0.001-10 respectively. The present invention also provides a producing method of the luminescent glass element and a luminescing method thereof. The metal layer is positioned on the luminescent glass substrate, thereby improving luminescence efficiency of the luminescent glass substrate. The luminescent glass element can be used in luminescent devices with ultrahigh brightness or high-speed operation.
    Type: Application
    Filed: September 9, 2011
    Publication date: January 5, 2012
    Applicant: OCEAN'S KING LIGHTING SCIENCE & TECHNOLOGY CO., LTD.
    Inventors: Mingjie ZHOU, Wenbo MA, Yugang LIU
  • Publication number: 20110315896
    Abstract: The present invention relates to a luminescent glass element comprising a luminescent glass substrate, which a metal layer is positioned on a surface thereof. The metal layer is provided with a metal microstructure. The luminescent glass substrate has composite oxides represented as the following formula: aM2O.bY2O3.cSiO2.dTm2O3, wherein M represents alkali metal element, a, b, c and d are, by mol part, 25-60, 1-30, 20-70 and 0.001-10 respectively. The present invention also provides a producing method of the luminescent glass element and a luminescing method thereof. The metal layer is positioned on the luminescent glass substrate, thereby improving luminescence efficiency of the luminescent glass substrate. The luminescent glass element can be used in luminescent devices with ultrahigh brightness or high-speed operation.
    Type: Application
    Filed: September 9, 2011
    Publication date: December 29, 2011
    Applicant: OCEAN'S KING LIGHTING SCIENCE & TECHNOLOGY CO., LTD.
    Inventors: Mingjie ZHOU, Wenbo MA, Yugang LIU