Organic Substrate Patents (Class 427/536)
  • Patent number: 6949290
    Abstract: A method of manufacturing an imprinted effect in a plastic film, characterized by the following steps: (a) applying a hardenable mixture of lacquer and solvent subject to volumetric shrinkage in liquid form to a localized area of the plastic film, whereby the plastic film surface is for all practical purposes made insoluble by the solvent; (b) drying the lacquer-solvent material; (c) hardening the lacquer to a lacquer-laminate layer that is completely bound to a localized area of the surface; and (d) allowing the lacquer-laminate layer to shrink, with a simultaneous tightening of the laminated plastic film below the lacquer-laminate layer without formation of wrinkles.
    Type: Grant
    Filed: March 14, 2003
    Date of Patent: September 27, 2005
    Assignee: Siegwerk Druckfarben GmbH & Co. KG
    Inventors: Lothar Schaeffeler, Wolfgang Mauer
  • Patent number: 6946166
    Abstract: A magnetic recording medium according to the invention includes a nonmagnetic substrate made of a polymer resin, the nonmagnetic substrate having been treated to improve an adhesion characteristic thereof; an adhesive layer on the nonmagnetic substrate, a nonmagnetic undercoating layer on the an adhesive layer; a magnetic layer above the nonmagnetic undercoating layer; a protection layer above the magnetic layer; and a liquid lubricant layer on the protection layer. A method of manufacturing the magnetic recording medium described above includes the steps of: treating a nonmagnetic substrate to improve an adhesion characteristic thereof; forming an adhesive layer on the nonmagnetic substrate, the adhesion thereof having been improved; forming a nonmagnetic undercoating layer on the adhesive layer; forming a magnetic layer above the nonmagnetic undercoating layer; forming a protection layer above the magnetic layer; and forming a liquid lubricant layer on the protection layer.
    Type: Grant
    Filed: December 12, 2002
    Date of Patent: September 20, 2005
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Akira Iso, Takahiro Shimizu, Naoki Takizawa
  • Patent number: 6942903
    Abstract: A method for forming a thin film includes the steps of: supplying a deposition material in the form of a liquid onto a heated surface; heating and vaporizing the deposition material on the heated surface while the deposition material is undergoing movement; and depositing the deposition material onto a deposition surface. The deposition material is supplied onto a position of the heated surface where the vaporized deposition material does not reach the deposition surface.
    Type: Grant
    Filed: March 4, 2003
    Date of Patent: September 13, 2005
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Kazuyoshi Honda, Masaru Odagiri, Kiyoshi Takahashi, Noriyasu Echigo, Nobuki Sunagare
  • Patent number: 6936309
    Abstract: A method for depositing a low dielectric constant film having an improved hardness and elastic modulus is provided. In one aspect, the method comprises depositing a low dielectric constant film having silicon, carbon, and hydrogen, and then treating the deposited film with a plasma of helium, hydrogen, or a mixture thereof at conditions sufficient to increase the hardness of the film.
    Type: Grant
    Filed: April 2, 2002
    Date of Patent: August 30, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Lihua Li, Tzu-Fang Huang, Li-Qun Xia, Ellie Yieh
  • Patent number: 6913796
    Abstract: Low dielectric constant porous materials with improved elastic modulus and hardness. The process of making such porous materials involves providing a porous dielectric material and plasma curing the porous dielectric material to produce a plasma cured porous dielectric material. Plasma curing of the porous dielectric material yields a material with improved modulus and hardness. The improvement in elastic modulus is typically greater than or about 50%, more typically greater than or about 100%, and more typically greater than or about 200%. The improvement in hardness is typically greater than or about 50%. The plasma cured porous dielectric material can optionally be post-plasma treated. The post-plasma treatment of the plasma cured porous dielectric material reduces the dielectric constant of the material while maintaining an improved elastic modulus and hardness as compared to the plasma cured porous dielectric material.
    Type: Grant
    Filed: September 14, 2001
    Date of Patent: July 5, 2005
    Assignees: Axcelis Technologies, Inc., Dow Corning Corporation
    Inventors: Ralph Albano, Cory Bargeron, Ivan L. Berry, III, Jeff Bremmer, Phil Dembowski, Orlando Escorcia, Qingyuan Han, Nick Sbrockey, Carlo Waldfried
  • Patent number: 6914014
    Abstract: A method for depositing a low dielectric constant film on a substrate. The method includes depositing a low dielectric constant film comprising silicon, carbon, oxygen and hydrogen on the substrate disposed in a chemical vapor deposition chamber, introducing a gas mixture comprising a hydrogen-containing gas to the chemical vapor deposition chamber, forming a plasma of the gas mixture proximate the low dielectric constant film using a radio frequency power, and applying a direct current bias to at least one of the substrate or a gas distribution plate to cure the low dielectric constant film.
    Type: Grant
    Filed: January 13, 2003
    Date of Patent: July 5, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Lihua Li, Tzu-Fang Huang, Li-Qun Xia, Juan Carlos Rocha-Alvarez, Maosheng Zhao
  • Patent number: 6893731
    Abstract: This invention provides a water-based composition suitable for use on polyester-based substrates for increasing adhesion between the substrate and a topcoat or overcoat. The composition comprises: (1) a latex polymer formed from the polymerization of at least one monomer selected from the group consisting of bicyclic alkyl (meth)acrylates and aromatic (meth)acrylates and at least one monomer which imparts to the polymer the ability to be crosslinked; (2) a water soluble or water dispersible polymer selected from the group consisting of acrylate-based resins, sulfonated polyester-based resins and combinations thereof; and (3) a crosslinking agent.
    Type: Grant
    Filed: September 25, 2001
    Date of Patent: May 17, 2005
    Assignee: 3M Innovative Properties Company
    Inventor: William L. Kausch
  • Patent number: 6881492
    Abstract: A composition suitable for forming a primer layer on a polymer sheet comprising: a) polyethyleneimine; b) latex; wherein the latex has a Tg lower than 25° C. and c) a hydrophilic colloid material. A method of coating the composition is also disclosed.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: April 19, 2005
    Assignee: Eastman Kodak Company
    Inventors: Yuanqiao Rao, DeBasis Majumdar, Robert J. Kress, David E. Decker
  • Patent number: 6878419
    Abstract: The application discloses methods of plasma treatment that employ an ion sheath in a capacitively-coupled system to increase the hydrophilicity of porous articles, including microporous articles having pore sizes of 0.05 to 1.5 micrometers, both on their surfaces and in their pores such that the articles' bulk wetting properties are improved.
    Type: Grant
    Filed: December 14, 2001
    Date of Patent: April 12, 2005
    Assignee: 3M Innovative Properties Co.
    Inventors: Moses Mekala David, Brinda Balasubramaniam Lakshmi
  • Patent number: 6878418
    Abstract: A system and method for improving the durability and reliability of recording media used in hard drives is disclosed. A protective overcoat made by depositing a diamond like carbon (DLC) layer over a magnetic layer and then depleting a portion of the DLC protective layer of hydrogen before it is coated with a Perfluoropolyethers (PFPE) using an in-situ vapor lubrication technique. The portion of the DLC layer which is depleted can be data zone of the media so that the lubricant-bonding ratio is higher for the landing zone than it is for the data zone.
    Type: Grant
    Filed: March 27, 2003
    Date of Patent: April 12, 2005
    Assignee: Seagate Technology LLC
    Inventors: Xiaoding Ma, Michael Joseph Stirniman, Jing Gui
  • Patent number: 6875480
    Abstract: The present invention is to provide a method of enhancement of electrical conductivity for conductive polymer by use of field effect control, wherein on the substrate, whose surface was treated with a field, was coated by a containing monomer or oligomer solution of conductive polymer, through a field mechanism a monomer or oligomer of conductive polymer can demonstrate the sequential order molecular structure layer on the substrate, on this molecular structure layer was coated by an available amount of oxidant to proceed the polymerization, it was subjected to a field during polymerization to form 3-dimensional order stacking structure in order to increase the functional characteristic and electrical conductivity for conductive polymer.
    Type: Grant
    Filed: February 27, 2002
    Date of Patent: April 5, 2005
    Assignee: Industrial Technology Research Institute
    Inventors: Tsung-Hsiung Wang, Jing-Pin Pan
  • Patent number: 6869645
    Abstract: The present invention relates to an improved apparatus for plasma treatment of golf ball surface. The improved apparatus comprises a cylindrical basket shaped rotating tumbler made from aluminum sheet metal that holds a plurality of golf balls within a sealed casing for surface preparation. A staggered hole pattern yields about 57% of open area in the tumbler surface to insure evacuation with minimum resistance. The holes are individually machined and have machined radiuses at each side of the sheet metal to allow for adequate coverage of a hard anodic coating which is necessary for protection of the sheet metal from the high intensity plasma. A two stage dry vacuum pumping system is used to reduce hydrocarbon impurities and improve print and paint adhesion.
    Type: Grant
    Filed: February 8, 2002
    Date of Patent: March 22, 2005
    Assignee: Acushnet Company
    Inventor: William Brum
  • Patent number: 6866810
    Abstract: A treatment method for the internal surface of a molded polyethylene plastics material container such as a drum, including the steps of: introducing an ionizable gas, such as argon, into the container; generating a plasma of the introduced gas by applying electric field of sufficient strength to the container and introduced gas, so as to cause an interaction with the internal surface of the container; coating the internal surface of the container with a curable epoxy-based first polymeric composition; and then curing the polymeric composition to form a coating on the internal surfaces of the container. A second coating, preferably with electrical conductive properties, may be applied and cured over the first coating. Conductive properties may be provided by including conductive particles such as antimony doped tin dioxide, graphite or metal powders, in the second composition.
    Type: Grant
    Filed: January 26, 2001
    Date of Patent: March 15, 2005
    Assignee: Harcostar Drums Limited
    Inventors: Qamar Uddin Ahmed, Michael David Christy, Phillip Andrew Wallis
  • Patent number: 6863934
    Abstract: Disclosed is a method of surface treatment of a thermoplastic resin film (i) which comprises the steps of subjecting the thermoplastic resin film (i) to surface oxidation, coating the oxidized film with a surface modifier (A) and then stretching the coated film, and which is characterized in that: the surface modifier (A) is an aqueous dispersion prepared by dispersing an olefin copolymer (a) with an unsaturated carboxylic acid or its anhydride bonded thereto in water along with at least one dispersant (b) selected from the group consisting of nonionic surfactants, nonionic water-soluble polymers, cationic surfactants and cationic water-soluble polymers; the ratio by weight of (a)/(b) in terms of the solid content thereof falls between 100/1 and 100/30; and the mean particle size of the resin in the surface modifier (A) is at most 5 ?m. The method can provide a thermoplastic resin film of good melt thermal transfer printability and good offset printability capable of giving prints of good water resistance.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: March 8, 2005
    Assignee: Yupo Corporation
    Inventors: Seiichiro Iida, Hisashi Tani
  • Patent number: 6863933
    Abstract: Coating compositions, methods and articles of manufacture comprising a nanoparticle system employing same to impart surface modifying benefits for all types of soft surfaces, and in some cases, hard surfaces, are disclosed. In some embodiments, dispersement of nanoparticles in a suitable carrier medium allows for the creation of coating compositions, methods and articles of manufacture that create multi-use benefits to the modified surfaces. These surface modifications can produce long lasting or semi-permanent multi-use benefits that, in some embodiments, may include at least one of the following improved surface properties: cleaning, wettability, liquid strike-through, comfort, stain resistance, soil removal, malodor control, modification of surface friction, reduced damage to abrasion and color enhancement, relative to the surfaces unmodified with such nanoparticle systems.
    Type: Grant
    Filed: January 30, 2002
    Date of Patent: March 8, 2005
    Assignee: The Procter and Gamble Company
    Inventors: Ronald Dean Cramer, Robert Henry Rohrbaugh, John David Carter, Karl Edward Thuemmler, Ekaterina Anatolyevna Ponomarenko, Mattias Schmidt
  • Patent number: 6858309
    Abstract: The present invention provides improved methods for conducting living/controlled polymerization on polymeric solid supports. The improved methods allow polymerization to occur directly from the non-functionalized surface of a bulk support. In addition, polymerization may be re-initiated to provide co-polymers. The disclosed methods may employ the non-nitroxide-based RAFT and ATRP control agents that allow controlled polymerization to proceed at relatively low temperatures (<80° C.). Furthermore, these improved methods may provide graft polymers with decreased levels of “in-growth” of the bulk solid support. The invention also provides substrate polymers, with improved properties for solid phase synthesis and diagnostic applications, which may be made by the disclosed methods.
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: February 22, 2005
    Assignee: Polymerat Pty. Ltd.
    Inventors: Peter Kambouris, Michael Whittaker, Tom Davis, Idriss Blakey, Gary M. Day
  • Patent number: 6852647
    Abstract: A method is provided for processing a substrate including removing amorphous carbon material disposed on a low k dielectric material with minimal or reduced defect formation and minimal dielectric constant change of the low k dielectric material. In one aspect, the invention provides a method for processing a substrate including depositing at least one dielectric layer on a substrate surface, wherein the dielectric layer comprises silicon, oxygen, and carbon and has a dielectric constant of about 3 or less, forming amorphous carbon material on the at least one dielectric layer, and removing the one or more amorphous carbon layers by exposing the one or more amorphous carbon layers to a plasma of a hydrogen-containing gas.
    Type: Grant
    Filed: March 7, 2003
    Date of Patent: February 8, 2005
    Assignee: Applied Materials, Inc.
    Inventor: Christopher Dennis Bencher
  • Patent number: 6838184
    Abstract: An aromatic polyimide film for producing an electro-conductive sealing element of a packaged semi-conductor device, has a thickness of 20 to 60 ?m, a moisture vapor transmission coefficient of 0.05 to 0.8 g/mm/m2·24 hrs, a water absorption ratio of 2.0% or less, and an elastic modulus in tension of 5,000 MPa or more, in which a surface of the polyimide film has been treated with reduced-pressure plasma discharge.
    Type: Grant
    Filed: March 21, 2003
    Date of Patent: January 4, 2005
    Assignee: Ube Industries, Ltd.
    Inventors: Takuji Takahashi, Toshihiko Anno, Kohji Narui, Shozo Katsuki
  • Publication number: 20040253388
    Abstract: Disclosed is a method for forming a low dielectric layer of a semiconductor device. The method includes the steps of forming a low dielectric polymer layer on a semiconductor substrate and performing an in-situ plasma-assistant surface modification process with respect to the low dielectric polymer layer, thereby forming an adhesion promoter layer on the low dielectric polymer layer. The method prevents a film from being delaminated at an interfacial surface due to film stress or adhesion fault, after processes for forming the low dielectric layer and a low resistance metal wiring have been completed to achieve semiconductor devices operated at a high speed.
    Type: Application
    Filed: December 22, 2003
    Publication date: December 16, 2004
    Inventor: Tae Kyung Kim
  • Patent number: 6830784
    Abstract: A substrate containing a natural polymeric material is modified by: A) treating the substrate containing the natural polymeric material with a modifying agent selected from the group consisting of organo-functional coupling agents and multi-functional amine containing organic compounds; and B) optionally exposing the substrate containing natural polymeric material with one or more treatments selected from the consisting of: i) subjecting the substrate to extraction with a solvent to reduce the content of extractable materials associated with the natural polymeric material prior to or during treatment with the modifying agent; ii) treatment with a physical field selected from static physical fields, high-frequency alternating physical fields and combinations of two or more thereof either prior to, during or after treatment with the modifying agent; and iii) oxidation of at least part of the natural polymeric material prior to or during treatment with the modifying agent.
    Type: Grant
    Filed: July 24, 2002
    Date of Patent: December 14, 2004
    Assignee: Commonwealth Scientific and Industrial Research Organisation
    Inventors: Wojciech Stanislaw Gutowski, Lee Joy Russell, Alexander Bilyk, Pamela Maree Hoobin, Sheng Li, Can Filippou, Mark Spicer
  • Patent number: 6830782
    Abstract: A method of modifying a polymeric material which comprises the steps of activation-treatment and a hydrophilic polymer-treatment, or comprises the steps of activation-treatment, a hydrophilic polymer-treatment, and monomer grafting in this order, or comprises the step of a solvent-treatment followed by these steps. Thus, the polymeric material, e.g., polyolefin, is improved in hydrophilicity, adhesion, etc. without lowering the practical strength thereof. The polymeric material thus improved in adhesion and other properties can be used in many applications where water absorption and adhesion are required, such as an absorption material, e.g., a wiping/cleansing material, a water retention material, a material for microorganism culture media, a separator for batteries (or cells), a synthetic paper, a filter medium, a textile product for clothing, a medical/sanitary/cosmetic supply, and reinforcing fibers for composite materials.
    Type: Grant
    Filed: August 27, 2001
    Date of Patent: December 14, 2004
    Inventor: Hitoshi Kanazawa
  • Patent number: 6827986
    Abstract: The present invention is a grafted polymer electrolyte membrane prepared by first preparing a precursor membrane comprising a polymer which is capable of being graft polymerized, exposing the surface of the precursor membrane to a plasma in an oxidative atmosphere, then graft-polymerizing a side chain polymer to the plasma treated precursor membrane and introducing a proton conductive functional group to the side chain. The resulting grafted polymer electrolyte membrane has excellent stability and performance when used in a proton-exchange membrane fuel cell or for electrolysis of water.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: December 7, 2004
    Assignee: Aisin Seiki Kabushiki Kaisha
    Inventors: Michio Asukabe, Michiaki Kato, Takumi Taniguchi, Yu Morimoto, Masaya Kawasumi
  • Patent number: 6818259
    Abstract: Porous organic articles having no surface functionality may be treated by remote plasma discharge to thereby introduce functionality to the surface of the article. The functionality is introduced throughout the article's surface, including the exterior surface and the surfaces of the pores. Little or no degradation of the porous organic article occurs as a result of the functionalization. Amino, hydroxyl, carbonyl and carboxyl groups may be introduced to the article. In this way, an essentially inert hydrophobic porous article, made from, for example, polyethylene, can have its surface modified so that the surface becomes hydrophilic. The remote plasma discharge process causes essentially no change in the bulk properties of the organic article. The remote plasma discharge process is preferably conducted so that no photons, and particularly no ultraviolet radiation, is transmitted from the plasma glow to the porous article.
    Type: Grant
    Filed: November 23, 1998
    Date of Patent: November 16, 2004
    Assignee: The United States of America as represented by the National Aeronautics and Space Administration
    Inventor: Steven L. Koontz
  • Patent number: 6803079
    Abstract: A method and apparatus for forming a hydrophilic layer on a surface of polymer layer of a reflector economically and safely. The method for manufacturing a reflector includes steps of molding a base body of the reflector; forming reflective layer for reflecting light on a surface of the base body; forming a layer of water-repellent polymer on a surface of the reflective layer; and performing hydrophilic treatment on a surface of the polymer layer using plasma of gaseous argon.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: October 12, 2004
    Assignee: Koito Manufacturing Co., Ltd.
    Inventor: Teruaki Inaba
  • Patent number: 6803069
    Abstract: Disclosed are implantable medical devices with enhanced patency. Expanded polytetrafluoroethylene small caliber vascular grafts coated with polymer bound bio-active agents that exhibit enhanced patency are disclosed. The polymer bound bio-active agents can include anti-thrombogenic agents, antibiotics, antibacterial agents and antiviral agents. Methods of preparing same are also provided.
    Type: Grant
    Filed: June 20, 2001
    Date of Patent: October 12, 2004
    Assignee: SciMed Life Systems, Inc.
    Inventors: Birendra K. Patnaik, Horng-Ban Lin, David J. Lentz, Richard J. Zdrahala
  • Patent number: 6793960
    Abstract: A medical device comprising a substrate having a plasma polymerized functionally bonded to at least a portion of the substrate. A superoxide dismutase mimic agent having a complimentary functional group to the plasma polymerized functionality is bonded to the portion of the substrate by bonding to the plasma polymerized functionality.
    Type: Grant
    Filed: December 3, 2001
    Date of Patent: September 21, 2004
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: Eugene T. Michal, Murthy Simhambhatla, Charles D. Claude
  • Patent number: 6793759
    Abstract: A method for creating adhesion includes plasma treating two substrates and thereafter contacting the substrates. The method can be used on a variety of dry surfaces. The method is used to adhere nonadhesive surfaces such as a cured silicone with a ceramic or semiconductor.
    Type: Grant
    Filed: October 9, 2001
    Date of Patent: September 21, 2004
    Assignee: Dow Corning Corporation
    Inventors: Manoj Kumar Chaudhury, Andrew James Goodwin, Yeong Joo Lee, Bhukandas Parbhoo
  • Patent number: 6787441
    Abstract: A method of depositing indium oxide or indium tin oxide thin film on a polymer substrate is disclosed. In the method, oxygen or argon ion beam is radiated on a polymer substrate by a constant accelerating energy in a vacuum state to modify the surface of the polymer substrate, on which an IO thin film or an ITO thin film is deposited while oxygen ion beam, argon ion beam or their mixture ion beam is being radiated in a vacuum state. In addition, ion beam is generated from a cold cathode ion source by using argon, oxygen or their mixture gas and sputtered at a target substance composed of In2O3 or In2O3 and SnO2, thereby an IO or an ITO thin film can be deposited on the surface-modified polymer substrate.
    Type: Grant
    Filed: November 13, 2002
    Date of Patent: September 7, 2004
    Assignee: Korea Institute of Science and Technology
    Inventors: Seok-Keun Koh, Young-Whoan Beag, Jun-Sik Cho, Young-Gun Han
  • Patent number: 6787179
    Abstract: The invention provides a method for single-step surface modification, grafting and sterilization for bio-active coating on materials and biomaterials used in medical devices, such as catheters, tissue engineering scaffolds, or drug delivery carrier materials. This may include any medical device or implantable that could benefit from improved antithrombogenic and biocompatible surfaces. Other relevant device examples may include heparin or urokinase coated stents to reduce clotting and restenosis, dental or ophthamological implants. These materials may be comprised of a variety of polymeric compositions such as, polyurethane, polyester, polytetrafluoroethylene, polyethylene, polymethylmethacrylate, polyHEMA, polyvinyl alcohol, polysiloxanes, polylactic or glycolic acids, polycaprolactone, etc. The substrates can also be metal, ceramics or biologically derived materials.
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: September 7, 2004
    Assignee: Ethicon, Inc.
    Inventors: Debra A. Timm, Henry K. Hui, Mark B. Roller, Mora C. Melican, Syed Hossainy
  • Patent number: 6767644
    Abstract: A metallized polyimide film of the present invention comprises a polyimide film 1 which has undergone surface roughening treatment to produce a surface Ra value of 2 to 10 nm, an intermediate layer 2 formed from one, or two or more elements selected from a group consisting of molybdenum, silicon and silicon monoxide, which is formed on top of the surface which has undergone surface roughening treatment with an average thickness of 5 to 50% of the aforementioned Ra value, and a conductive metal layer 4 which is formed on top of the intermediate layer 2. This construction improves the bonding strength between the polyimide film and the metal layer.
    Type: Grant
    Filed: October 1, 2002
    Date of Patent: July 27, 2004
    Assignee: Mitsubishi Shindoh Co., Ltd.
    Inventor: Masayuki Aida
  • Patent number: 6759098
    Abstract: Low dielectric constant film materials with improved elastic modulus. The method of making such film materials involves providing a porous methyl silsesquioxane based dielectric film material produced from a resin molecule containing at least 2 Si—CH3 groups and plasma curing the porous film material to convert the film into porous silica. Plasma curing of the porous film material yields a film with improved modulus and outgassing properties. The improvement in elastic modulus is typically greater than or about 100%, and more typically greater than or about 200%. The plasma cured porous film material can optionally be annealed. The annealing of the plasma cured film may reduce the dielectric constant of the film while maintaining an improved elastic modulus as compared to the plasma cured porous film material. The annealed, plasma cured film has a dielectric constant between about 1.1 and about 2.4 and an improved elastic modulus.
    Type: Grant
    Filed: July 16, 2001
    Date of Patent: July 6, 2004
    Assignees: Axcelis Technologies, Inc., Chemat Technology, Inc.
    Inventors: Qingyuan Han, Carlo Waldfried, Orlando Escorcia, Ralph Albano, Ivan L. Berry, III, Jeff Jang, Ian Ball
  • Publication number: 20040094357
    Abstract: A method for manufacturing a speaker diaphragm used for a range of audio equipment, a speaker diaphragm made using this manufacturing method, and a speaker employing such diaphragm. This manufacturing method for a speaker diaphragm offers good productivity, preventing deviation in wettability and heat deformation of speaker diaphragms in plasma treatment, and also offers a speaker with good input power durability. A meshed etching tunnel (2) made of aluminum is disposed inside a cylindrical quartz reactive chamber (1), and speaker diaphragms (4) are aligned inside the tunnel at a certain interval. Opposing electrodes (5) are disposed outside the reactive chamber (1). Plasma is applied at low temperature to prevent heat deformation. Uniform wettability is also assured by the use of the meshed etching tunnel (2), achieving high productivity.
    Type: Application
    Filed: July 3, 2003
    Publication date: May 20, 2004
    Inventors: Hitoshi Sato, Sinya Mizone, Kiyoshi Ikeda, Hiroko Yamazaki
  • Publication number: 20040094356
    Abstract: A method for manufacturing a speaker diaphragm used for a range of audio equipment, a speaker diaphragm made using this manufacturing method, and a speaker employing such diaphragms. This manufacturing method for a speaker diaphragm offers good productivity, preventing deviation in wettability and heat deformation of speaker diaphragms in plasma treatment, and also offers a speaker with good input power durability. A meshed etching tunnel (2) made of aluminum is disposed inside a cylindrical quartz reactive chamber (1), and speaker diaphragms (4) are aligned inside the tunnel at a certain interval. Opposing electrodes (5) are disposed outside the reactive chamber (1). Plasma is applied at low temperature to prevent heat deformation. Uniform wettability is also assured by the use of the meshed etching tunnel (2), achieving high productivity.
    Type: Application
    Filed: July 3, 2003
    Publication date: May 20, 2004
    Inventors: Hitoshi Sato, Sinya Mizone, Kiyoshi Ikeda, Hiroko Yamazaki
  • Patent number: 6733847
    Abstract: The invention relates to a process for the production of strongly adherent coatings on an inorganic or organic substrate, in which process in a first step: a) the inorganic or organic substrate is subjected to the action of a low-temperature plasma discharge, a corona discharge, high-energy UV radiation or electron radiation, the radiation or discharge is then discontinued, in a further step: b) at least one electron- or H-donor, each containing at least one ethylenically unsaturated group, is applied to the inorganic or organic substrate in vacuo or at normal pressure and reacted with the free radicals formed there, and c1) the substrate so precoated with coinitiator is coated with a composition comprising at least one ethylenically unsaturated monomer or oligomer and a photoinitiator, and the coating is cured by means of electromagnetic and/or ionizing radiation; or c2) the substrate so precoated with coinitiator is coated with a composition comprising at least one ethylenically unsaturated monomer or oligo
    Type: Grant
    Filed: July 11, 2002
    Date of Patent: May 11, 2004
    Assignee: Ciba Specialty Chemicals Corporation
    Inventors: Martin Kunz, Michael Bauer
  • Publication number: 20040058088
    Abstract: Disclosed is a processing method for forming a thick film having an improved adhesion to a surface-modified substrate and an apparatus thereof enabling to form a thick film having the improved adhesion to a polymeric surface by modifying the polymeric surface to have a hydrophilic property. The method includes the steps of preparing a substrate of a polymer material, surface-modifying the substrate, forming a seed layer on the substrate, and forming the thick film on the seed layer. The apparatus includes an unloading area supplying a substrate of a polymer material, a surface treating area modifying a surface of the substrate, a seed layer formation area forming a seed layer on the surface-modified substrate, a thick film formation area forming a thick film on the seed layer, and a loading area loading the substrate.
    Type: Application
    Filed: September 2, 2003
    Publication date: March 25, 2004
    Inventors: Young-Whoan Beag, Sung Han, Jun-Sik Cho, Cheol-Su Lee, Sung-Soo Koh, Jin-Woo Seok
  • Patent number: 6709754
    Abstract: Styrene resin films having been imparted antistatic properties to both film surfaces and good adhesion properties of the films to envelope paper, and a process for producing the same. In these styrene resin films, the surface tension of the front surface of the film base differs from the surface tension of the back surface owing to a hydrophilic treatment and modifiers having almost the same compositions are applied onto the respective surfaces each in an adequate weight.
    Type: Grant
    Filed: May 30, 2002
    Date of Patent: March 23, 2004
    Assignee: Asahi Kasei Kabushiki Kaisha
    Inventors: Kouichi Yasukata, Manabu Tanuma, Yoshiyuki Tazuke, Osamu Mizukami
  • Patent number: 6709718
    Abstract: A method is provided for surface treating a porous sheet material. The surface treatment involves contacting at least one porous surface of the film with plasma at atmospheric pressure and a plasma generating electrode frequency of greater than 1 MHz. This method provides treatment which penetrates into the pores of the sheet material.
    Type: Grant
    Filed: April 10, 2001
    Date of Patent: March 23, 2004
    Assignee: ExxonMobil Oil Corporation
    Inventor: Jeffrey J. O'Brien
  • Patent number: 6692834
    Abstract: Coating an implantable device, such as micro electromechanical devices, is highly desirable to protect the implantable device from corrosion. A coating method includes depositing, preferably by plasma glow discharge, a reactant monomer on at least one surface of an implantable device, preferably at ambient temperature. The method will likely decrease the manufacturing time required for assembling such devices because completely assembled devices can be coated.
    Type: Grant
    Filed: June 28, 1999
    Date of Patent: February 17, 2004
    Assignee: Medtronic, Inc.
    Inventors: Gonzalo Martinez, Catherine E. Taylor, Kenneth W. Keeney, Markus Haller
  • Patent number: 6653247
    Abstract: A semiconductor device includes a low dielectric constant insulating film exhibiting an Si—H Fourier Transform Infrared (FTIR) doublet defined by a first and a second peak, wherein the first peak is located at a higher wave number than the second peak, and wherein the ratio of the first peak to the second peak is greater than unity. A method of producing such a semiconductor device includes depositing a dielectric layer over a substrate and treating the dielectric layer in a hydrogen containing plasma such that the dielectric layer exhibits an Si—H Fourier Transform Infrared (FTIR) doublet defined by a first and a second peak, wherein the first peak is located at a higher wave number than the second peak, and wherein the ratio of the first peak to the second peak is greater than unity.
    Type: Grant
    Filed: August 31, 2001
    Date of Patent: November 25, 2003
    Assignee: Trikon Holdings Limited
    Inventor: John MacNeil
  • Publication number: 20030207099
    Abstract: A membrane having a stable low-contact angle that is used as a template in forming biological microarrays is provided. The membrane is formed of a polymeric material that has been surface modified by a first plasma treatment and subsequently by a second plasma treatment. The surface modification accomplished by the first plasma treatment results in a significant reduction in the contact angle for the membrane, causing the membrane to become hydrophilic, and the surface modification by the second membrane treatment permanently stabilizes the reduction in the contact angle produced by the first plasma treatment. The resulting membrane allows a solution containing a biological material to wet the surface of the membrane such that the membrane can quickly and easily form a biological microarray on substrate in which the features of the array are distinctly formed on the substrate.
    Type: Application
    Filed: May 1, 2002
    Publication date: November 6, 2003
    Inventors: Susan D. Gillmor, Ferencz S. Denes, Max G. Lagally
  • Patent number: 6632470
    Abstract: A method of modifying surfaces of a device, for example, a medical device, is disclosed. The method includes modifying a surface of a device by providing a device, exposing the device to a reactive gas and plasma energy to create a plasma deposited surface on the device, and quenching the device with the reactive gas. The device exhibits changes in its surface properties thereby making it more desirable for an intended use.
    Type: Grant
    Filed: January 31, 2001
    Date of Patent: October 14, 2003
    Assignee: Percardia
    Inventors: Marco Morra, Clara Cassinelli, Linda Lee Cahalan, Patrick T. Cahalan
  • Patent number: 6630243
    Abstract: The present invention provides an optically clear, hydrophilic coating upon the surface of a silicone medical device by sequentially subjecting the surface of the lens to plasma polymerization in a hydrocarbon-containing atmosphere and then covalently attaching a preformed hydrophilic polymer to the surface of the carbon coating. The invention is especially useful for forming a biocompatible coating on a silicone contact lens.
    Type: Grant
    Filed: May 20, 1999
    Date of Patent: October 7, 2003
    Assignee: Bausch & Lomb Incorporated
    Inventors: Paul L. Valint, Jr., Daniel M. Ammon, Jr., Joseph A. McGee, George L. Grobe, III, Richard M. Ozark
  • Patent number: 6627140
    Abstract: A meshed etching tunnel made of aluminum is disposed inside a cylindrical quartz reactive chamber, and speaker diaphragms are aligned inside the tunnel at a certain interval. Opposing electrodes are disposed outside the reactive chamber. Plasma is applied at low temperature to prevent heat deformation. Uniform wettability is also assured by the use of the meshed etching tunnel, achieving high productivity. Uniform wettability further stabilizes bonding and improves bonding strength of the speaker diaphragm onto the voice coil and edge, offering a speaker with improved input power durability.
    Type: Grant
    Filed: May 22, 2000
    Date of Patent: September 30, 2003
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hitoshi Sato, Sinya Mizone, Kiyoshi Ikeda, Hiroko Yamazaki
  • Patent number: 6623786
    Abstract: A method of modifying the surface characteristics of a polymeric hydrogel, and a polymer article formed therefrom, without causing substantial swelling or distortion or the hydrogel. A preferred method includes photoinitating of the surface of the article with a benzophenone and grafting a macromer having a number-average molecular weight greater than 1000 in the presence of UV irradiation. The preferred article is a siloxane-containing hydrogel, especially a soft contact lens.
    Type: Grant
    Filed: June 4, 2001
    Date of Patent: September 23, 2003
    Assignee: Novartis AG
    Inventors: Richard Carlton Baron, Qin Liu
  • Patent number: 6623809
    Abstract: There is provided a battery separator comprising synthetic resin fibers, wherein hydrophilization treatment, preferably plasma treatment is applied, and a contact angle to pure water indicates a value of 0 to 100 degrees; an alkali secondary battery in which a electrode group having the separator between a positive electrode and a negative electrode is sealed in a battery case together with an alkali electrolyte, in particular, a nickel-metal hydride secondary battery whose positive electrode is a nickel electrode and whose negative electrode is a hydrogen absorbing alloy electrode, wherein active substances of said nickel electrode comprising powders consisting essentially of nickel hydroxides and higher-order cobalt hydroxides formed a surface of a part or whole thereof are employed, thereby providing its superiority in both of self-discharge properties and charge and discharge cycle life performance.
    Type: Grant
    Filed: October 6, 1999
    Date of Patent: September 23, 2003
    Assignee: Toshiba Battery Co., Ltd.
    Inventors: Masahiko Tsukiashi, Hirohito Teraoka, Katsuyuki Hata, Michiko Tajima
  • Patent number: 6613394
    Abstract: Described is a method of treating or coating homogeneously at least a portion of the surface of a material selected from metallic materials having a thickness of less than 100 &mgr;m and/or polymeric materials. The method of the present invention comprises exposing at least a portion of the surface of the material to an atmospheric plasma generated by an indirect plasmatron. In the method of the present invention, the surface of the material may undergo at least one of an increase in surface tension, a surface grafting, a surface cleaning and a surface sterilization.
    Type: Grant
    Filed: March 6, 2001
    Date of Patent: September 2, 2003
    Assignee: Wolff Walsrode AG
    Inventors: Christian Kuckertz, Sven Jacobsen, Rainer Brandt, Klaus Landes, Ralf Hartmann
  • Patent number: 6610373
    Abstract: In a device for forming magnetic film which deposits magnetic material on a substrate 12, a device is provided which, before the magnetic film is formed in a magnetic film-forming chamber 11, cleans one or both of the film-forming face and reverse face of the substrate 12 in a cleaning processing chamber 13. The cleaning mechanism carries out cleaning by placing a substrate on a horseshoe-shaped insulator substrate-holding part 51 which moves up and down, and emission of gas from the reverse face of the substrate and the like is brought about by generating Ar plasma between the upper periphery of the substrate, the substrate and a lower insulator 61 of the substrate.
    Type: Grant
    Filed: October 10, 2001
    Date of Patent: August 26, 2003
    Assignee: Anelva Corporation
    Inventors: Daisuke Nakajima, Koji Tsunekawa, Naoki Watanabe
  • Patent number: 6610350
    Abstract: A method of modifying a surface of an ophthalmic lens, includes the steps of: generating plasma at an atmospheric pressure between electrodes of a plasma generating device; and blowing the plasma from the plasma generating device by introducing a gas between the electrodes. The ophthalmic lens, which is located outside the plasma generating device, is irradiated with the plasma blown out from the plasma generating device to modify the surface of the ophthalmic lens to form a final ophthalmic lens product.
    Type: Grant
    Filed: October 1, 2001
    Date of Patent: August 26, 2003
    Assignee: Menicon Co., Ltd.
    Inventors: Hiroaki Suzuki, Yuuji Gotou, Kazuhiko Nakada
  • Patent number: 6610368
    Abstract: Tanned leather is dry dressed by plasma deposition at atmospheric pressure of a matrix material such as ITO, a silicone, or polyurethane, upon the protein fibers of the surface of the leather and the collagen fiber skeleton below the surface protein fibers. The leather retains its toughness, elasticity, breathability and softness or hand.
    Type: Grant
    Filed: March 29, 2001
    Date of Patent: August 26, 2003
    Assignee: Lederfabrik Vogl GmbH
    Inventors: Werner Schmitz, Gottfried Holzer, Wolfgang Vogl
  • Patent number: RE38752
    Abstract: A method of contacting s substrate having a surface containing hydroxyl groups with a non-aqueous solution containing a material having a chrolosilyl group; washing if desired; coating the substrate with a non-aqueous solvent containing a compound having a fluorocarbon group and a chlorosilane group or a solvent containing a compound containing a fluorocarbon group and an alkoxysilane; and baking the substrate if necessary in order to form a fluorocarbon-based polymer coating film chemically bonded to the substrate surface. The hydroxyl groups on the substrate surface and chlorosilyl groups are reacted to form a thin film having a large number of silanol groups (—SiOH) capable of connecting the polymer coating film to the substrate to form a heat-, weather-, and wear-resistant film on various surfaces.
    Type: Grant
    Filed: July 9, 1998
    Date of Patent: July 5, 2005
    Assignee: Matsushita Electric Industrial Co., Ltd
    Inventors: Kazufumi Ogawa, Mamoru Soga