Silicon Containing Coating Material Patents (Class 427/563)
  • Patent number: 5415756
    Abstract: A process for depositing a compound of a metal and a reactive gas includes heating a metal target (32), in an evacuated chamber (22) to a predetermined reaction temperature. The reaction temperature is above a critical temperature which is higher than about half the melting point of the metal but below the vaporization temperature of the metal target. At this reaction temperature, the metal target reacts with the reactive gas to produce, in gaseous form, the compound or a sub-compound of the metal and the reactive gas. The gaseous compound or sub-compound is reacted with the reactive gas on a substrate (36) to form a solid layer of the compound on the substrate.
    Type: Grant
    Filed: March 28, 1994
    Date of Patent: May 16, 1995
    Assignee: University of Houston
    Inventors: John C. Wolfe, Wong S. Ho, Darian L. Licon, Yat-Lung Chau
  • Patent number: 5393699
    Abstract: By providing a deposited film formation method in which aluminum or a metal composed mainly of aluminum of good quality is selectively deposited according to the CVD method utilizing an alkyl aluminum hydride and hydrogen, and then pure aluminum or a metal composed mainly of aluminum is non-selectively deposited, it becomes possible to form an electroconductive film of good quality within fine openings or on an insulating layer.
    Type: Grant
    Filed: October 30, 1992
    Date of Patent: February 28, 1995
    Assignee: Canon Kabushiki Kaisha
    Inventors: Nobuo Mikoshiba, Kazuo Tsubouchi, Kazuya Masu
  • Patent number: 5378510
    Abstract: A barrier coating is formed on a polymeric article, such as on the interior of a thermoplastic container. An oxidizing gas is converted to a plasma in a plasma chamber remote from the treatment chamber. The resulting plasma-activated oxidizing species are delivered to the interior of the container. An organosilicon reactant vapor is separately but simultaneously delivered to the interior of the container so that the organosilicon vapor and oxidizing active species mix within the container. An electric field is also applied to the container, so that the reaction products are deposited under the influence of the electrical field to form the barrier coating.
    Type: Grant
    Filed: February 15, 1994
    Date of Patent: January 3, 1995
    Assignee: Polar Materials Inc.
    Inventors: H. Ronald Thomas, Robert J. Babacz, Robert R. Newton
  • Patent number: 5279868
    Abstract: In the manufacture of ultrafine particles of semiconductor compound, pulse laser with high output is irradiated on an evaporation source having the same or similar composition as the above semiconductor compound to evaporate the source in a moment and the ultrafine particles of the semiconductor compound are produced utilizing the nuclear growth in inert gas. A process wherein a material for ultrafine particles is heated/evaporated by laser in inert gas and the resulting vapor is rapidly cooled by a collision with the inert gas whereby the resulting ultrafine particles of said material is sticked on a base plate and another process wherein a material for matrix is heated/evaporated by laser whereby the matrix is formed on the base plate are carried out alternately so that the ultrafine particles are homogeneously dispersed in the matrix to prepare the material wherein the ultrafine particles are dispersed.
    Type: Grant
    Filed: September 30, 1992
    Date of Patent: January 18, 1994
    Assignee: Nippon Sheet Glass Co., Ltd.
    Inventors: Shunsuke Ohtsuka, Hisao Nagata, Ken Yamashita, Tadashi Koyama, Shuhei Tanaka
  • Patent number: 5269848
    Abstract: An apparatus for forming a functional silicon- or germanium-containing amorphous deposited film on a substrate which comprises a film-forming chamber having a film-forming space, a substrate holder and an electric heater for positioning the substrate in the film-forming chamber, an exhaust pipe in fluid communication with the film-forming chamber, a first gas-introducing portion for providing an active species (H), having an activation space for generating the active species (H), a microwave discharge supply source and a passage for providing a gaseous hydrogen-containing material into the activation space in order to produce the active species (H), a second gas-introducing portion for providing a gaseous silicon-or germanium-containing material (X), capable of reacting with the active species (H) to form a reaction product (HX) that is capable of forming the functional deposited film on the substrate, and a transportation path having a mixing space and a second microwave discharge energy supply source for pr
    Type: Grant
    Filed: April 15, 1993
    Date of Patent: December 14, 1993
    Assignee: Canon Kabushiki Kaisha
    Inventor: Katsumi Nakagawa
  • Patent number: 5266398
    Abstract: An amorphous thin film as a solid lubricant having a low coefficient of friction. It is composed of silicon (Si), oxygen (O), carbon (C), and hydrogen (H), and has a composition defined by the formula: Si.sub.x (O.sub.m, C.sub.n, H.sub.l-m-n).sub.1-x where, x=0.03-0.02, m=0.05-0.5, =0.1-0.9, and 0.6.ltoreq.m+n.ltoreq.0.95. This thin film exhibits extremely low friction stably from the beginning of sliding. It has superior wear resistance owing to its high hardness.
    Type: Grant
    Filed: September 17, 1992
    Date of Patent: November 30, 1993
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Tatsumi Hioki, Kazuyuki Oguri
  • Patent number: 5258207
    Abstract: An amorphous silicon film contains not less than 30 at. % hydrogen and includes silicon atoms joined with one hydrogen atom and silicon atoms joined with two hydrogen atoms, the ratio of the silicon atoms joined with two hydrogen atoms to the silicon atoms joined with one hydrogen atom being not more than 0.4. This amorphous silicon films is produced by performing plasma-assisted chemical vapor deposition at a substrate temperature of not more than 100.degree. C., while supplying hydrogen and silane in the predetermined ratio, the ratio of the flow of hydrogen to that of silane being not less than 1.
    Type: Grant
    Filed: July 23, 1992
    Date of Patent: November 2, 1993
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Masayuki Iwamoto, Koji Minami, Toshihiko Yamaoki
  • Patent number: 5244698
    Abstract: A process for forming a deposited film comprises introducing into a film forming space housing a substrate therein an active species (A) formed by decomposition of a compound containing silicon and a halogen and an active species (B) formed from a chemical substance for film formation which is chemically mutually reactive with said active species (A) separately from each other, then providing them with discharge energy and thereby allowing both the species to react chemically with each other to form a deposited film on the substrate.
    Type: Grant
    Filed: April 12, 1991
    Date of Patent: September 14, 1993
    Assignee: Canon Kabushiki Kaisha
    Inventors: Shunichi Ishihara, Shigeru Ohno, Masahiro Kanai, Shunri Oda, Isamu Shimizu
  • Patent number: 5180435
    Abstract: A remote plasma enhanced CVD apparatus and method for growing semiconductor layers on a substrate, wherein a intermediate feed gas, which does not itself contain constituent elements to be deposited, is first activated in an activation region to produce plural reactive species of the feed gas. These reactive species are then spatially filtered to remove selected of the reactive species, leaving only other, typically metastable, species which are then mixed with a carrier gas including constituent elements to be deposited on the substrate. During this mixing, the selected spatially filtered reactive species of the feed gas chemically interacts, i.e., partially dissociates and activates, in the gas phase, the carrier gas, with the process variables being selected so that there is no back-diffusion of gases or reactive species into the feed gas activation region. The dissociated and activated carrier gas along with the surviving reactive species of the feed gas then flows to the substrate.
    Type: Grant
    Filed: October 29, 1990
    Date of Patent: January 19, 1993
    Assignee: Research Triangle Institute, Inc.
    Inventors: Robert J. Markunas, Robert Hendry, Ronald A. Rudder