Generated By Microwave (i.e., 1mm To 1m) Patents (Class 427/575)
  • Patent number: 10410860
    Abstract: A method for coating a substrate comprises producing a plasma ball using a microwave plasma source in the presence of a mixture of gases. The plasma ball has a diameter. The plasma ball is disposed at a first distance from the substrate and the substrate is maintained at a first temperature. The plasma ball is maintained at the first distance from the substrate, and a diamond coating is deposited on the substrate. The diamond coating has a thickness. Furthermore, the diamond coating has an optical transparency of greater than about 80%. The diamond coating can include nanocrystalline diamond. The microwave plasma source can have a frequency of about 915 MHz.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: September 10, 2019
    Assignee: UChicago Argonne, LLC
    Inventors: Anirudha V. Sumant, Adam Khan
  • Patent number: 10246771
    Abstract: A PCVD apparatus includes a waveguide member which supports the workpiece with a portion of the waveguide member positioned in a reactor and causes microwaves output from a high-frequency output device to propagate to the workpiece. In a process of gradually increasing an intensity of the microwaves propagating to the workpiece through the waveguide member from “0”, the intensity of the microwaves output from the high-frequency output device when step-up of a bias current of the workpiece occurs is referred to as a first intensity, and in a process of gradually increasing the intensity of the microwaves from the first intensity, the intensity of the microwaves when step-up of the bias current occurs again is referred to as a second intensity. During film formation, the microwaves having an intensity of higher than the first intensity and lower than the second intensity are output from the high-frequency output device.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: April 2, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kazutaka Tachibana, Takayasu Sato, Yoji Sato, Hiromichi Nakata, Kazuyoshi Manabe, Seiji Okamura, Izuru Yamamoto
  • Patent number: 10121670
    Abstract: Methods of fabricating a semiconductor structure comprise forming an opening through a stack of alternating tier dielectric materials and tier control gate materials, and laterally removing a portion of each of the tier control gate materials to form control gate recesses. A charge blocking material comprising a charge trapping portion is formed on exposed surfaces of the tier dielectric materials and tier control gate materials in the opening. The control gate recesses are filled with a charge storage material. The method further comprises removing the charge trapping portion of the charge blocking material disposed horizontally between the charge storage material and an adjacent tier dielectric material to produce air gaps between the charge storage material and the adjacent tier dielectric material. The air gaps may be substantially filled with dielectric material or conductive material. Also disclosed are semiconductor structures obtained from such methods.
    Type: Grant
    Filed: August 16, 2017
    Date of Patent: November 6, 2018
    Assignee: Micron Technology, Inc.
    Inventor: John D. Hopkins
  • Patent number: 9741561
    Abstract: A method for coating a substrate comprises producing a plasma ball using a microwave plasma source in the presence of a mixture of gases. The plasma ball has a diameter. The plasma ball is disposed at a first distance from the substrate and the substrate is maintained at a first temperature. The plasma ball is maintained at the first distance from the substrate, and a diamond coating is deposited on the substrate. The diamond coating has a thickness. Furthermore, the diamond coating has an optical transparency of greater than about 80%. The diamond coating can include nanocrystalline diamond. The microwave plasma source can have a frequency of about 915 MHz.
    Type: Grant
    Filed: July 10, 2015
    Date of Patent: August 22, 2017
    Assignee: UCHICAGO ARGONNE, LLC
    Inventors: Anirudha V. Sumant, Adam Khan
  • Patent number: 9410242
    Abstract: A microwave plasma reactor for manufacturing synthetic diamond material via chemical vapour deposition, the microwave plasma reactor comprising: a plasma chamber; a substrate holder disposed in the plasma chamber and comprising a supporting surface for supporting a substrate on which the synthetic diamond material is to be deposited in use; a microwave coupling configuration for feeding microwaves from a microwave generator into the plasma chamber; and a gas flow system for feeding process gases into the plasma chamber and removing them therefrom; wherein the microwave plasma reactor further comprises an electrically conductive plasma stabilizing annulus disposed around the substrate holder within the plasma chamber.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: August 9, 2016
    Assignee: Element Six Technologies Limited
    Inventors: Geoffrey Alan Scarsbrook, Jonathan James Wilman, Helen Wilman, Joseph Michael Dodson, John Robert Brandon, Steven Edward Coe, Christopher John Howard Wort
  • Patent number: 9395243
    Abstract: A handheld LIBS analyzer includes a laser source for generating a laser beam and a spectrometer subsystem for analyzing a plasma generated when the laser beam strikes a sample. A nose section includes an end plate with an aperture for the laser beam, a purge cavity behind the aperture fluidly connected to a source of purge gas, and a shield covering the purge cavity. A vent removes purge gas from the purge cavity when the end plate is placed on the sample.
    Type: Grant
    Filed: January 29, 2015
    Date of Patent: July 19, 2016
    Assignee: SciAps, Inc.
    Inventors: David R. Day, Konstantin Derman, John Francis Egan, Paul Edward Soucy
  • Patent number: 9376753
    Abstract: The invention relates to an apparatus for performing a plasma chemical vapor deposition process. The apparatus comprises a mainly cylindrical resonator being provided with an outer cylindrical wall enclosing a resonant cavity having a substantially rotational symmetric shape with respect to a cylindrical axis. The resonator further includes side wall portions bounding the resonant cavity in opposite cylindrical axis directions. In addition, the apparatus comprises a microwave guide extending through the outer cylindrical wall into the resonant cavity. The length of the resonant cavity in the cylindrical direction varies as a function of the radial distance to the cylindrical axis.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: June 28, 2016
    Assignee: Draka Comteq B.V.
    Inventors: Mattheus Jacobus Nicolaas van Stralen, Igor Milicevic, Johannes Antoon Hartsuiker
  • Patent number: 9372416
    Abstract: A method for manufacturing an electrophotographic photosensitive member using plasma CVD includes steps of placing a cylindrical base member in a reactor which can be evacuated, the reactor having an electrode therein, so as to be spaced apart from the electrode, introducing a raw material gas for deposited film formation into the reactor, and applying an alternating voltage of a rectangular wave having a frequency in the range of 3 kHz to 300 kHz between the electrode and the cylindrical base member so that a potential at one of the electrode and the cylindrical base member with respect to a potential at the other becomes alternately positive and negative, to decompose the raw material gas, and forming a deposited film on the cylindrical base member. The magnitude of the potential difference between the electrode and the cylindrical base member is selectively controlled.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: June 21, 2016
    Assignee: Canon Kabushiki Kaisha
    Inventors: Satoshi Kojima, Kazunari Ooyama, Yukihiro Abe
  • Patent number: 9371582
    Abstract: A method for manufacturing a silicon carbide thin film comprises steps of: (a) utilizing a mechanical pump to remove gases in a chamber such that the pressure in the chamber is reduced to a base pressure; (b) utilizing a microwave generator to generate microwaves at 1200 W to 1400 W so as to form microwave plasma inside the chamber; and (c) introducing into the chamber a silicon-based compound containing chlorine atoms that serve as a precursor, during the time that the temperature of a substrate disposed in the chamber is stable at 400° C. to 500° C., in which the temperature of the substrate is risen by the microwave plasma without heating the substrate additionally, so as to form a film of cubic silicon carbide on the substrate. In the present invention, the SiC thin film has good crystallinity and is manufactured by using MPECVD in a low temperature process.
    Type: Grant
    Filed: June 25, 2014
    Date of Patent: June 21, 2016
    Assignee: NATIONAL TSING HUA UNIVERSITY
    Inventors: Chi-Young Lee, Ru-Chien Chiu
  • Patent number: 9336991
    Abstract: The disclosed ion implantation apparatus has a vacuum chamber 11, a roller electrode 13 having a portion of an outer circumferential part on which a film 3 is wound, voltage application unit 23 for applying a voltage to the roller electrode, and a gas introduction unit having a gas supply outlet for supplying an ion implantation gas into the vacuum chamber, wherein the gas introduction unit and a gas discharge outlet are disposed so as to be opposite each other along the axial direction of the roller electrode, the roller electrode intervening therebetween.
    Type: Grant
    Filed: September 12, 2013
    Date of Patent: May 10, 2016
    Assignee: LINTEC Corporation
    Inventors: Satoshi Naganawa, Daisuke Goto, Suguru Kenmochi
  • Patent number: 9159960
    Abstract: The present disclosure relates to an annealing apparatus and an annealing method, which are applied to the packaging art of the AMOLED panel, wherein the annealing apparatus comprises an electromagnetic wave generator coupled with a plurality of irradiators and comprises a plate whose surface is provided with the irradiators and which is placed above or below the AMOLED panel for annealing it. The method comprises the following steps: annealing the AMOLED panel by an annealing apparatus which comprises an electromagnetic wave generator and a plate having lots of irradiators; when the irradiators aim at the annealing area, the annealing areas are annealed by the high frequency electromagnetic wave generated by the electromagnetic wave generator and irradiated from the irradiators. The present disclosure can save the time of the annealing process and can improve the process situation. Meanwhile, the present disclosure increases production yield and improves product quality.
    Type: Grant
    Filed: April 22, 2014
    Date of Patent: October 13, 2015
    Assignee: EVERDISPLAY OPTRONICS (SHANGHAI) LIMITED
    Inventor: PoChun Hsieh
  • Patent number: 9039872
    Abstract: A method for producing a transparent and conductive metal oxide layer on a substrate, includes atomizing at least one component of the metal oxide layer by highly ionized, high power pulsed magnetron sputtering to condense on the substrate. The pulses of the magnetron have a peak power density of more than 1.5 kW/cm2, the pulses of the magnetron have a duration of ?200 ?s, and the average increase in current density during ignition of the plasma within an interval, which is ?0.025 ms, is at least 106 A/(ms cm2).
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: May 26, 2015
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung E.V.
    Inventors: Felix Horstmann, Volker Sittinger, Bernd Szyszka
  • Publication number: 20150135993
    Abstract: A method of treating particles by disaggregating, deagglomerating, exfoliating, cleaning, functionalising, doping, decorating and/or repairing said particles, in which the particles are subjected to plasma treatment in a treatment chamber containing a plurality of electrodes which project therein and wherein plasma is generated by said electrodes which are moved during the plasma treatment to agitate the particles.
    Type: Application
    Filed: November 12, 2014
    Publication date: May 21, 2015
    Inventors: John Buckland, Dylan Walters
  • Publication number: 20150118416
    Abstract: Provided is a substrate treating apparatus. The substrate treating apparatus includes a processing chamber, a substrate supporting unit, an antenna plate, a dielectric plate, a gas supplying unit or the like. In the gas supplying unit, an excitation gas injection unit is provided at a position higher than that of a process injection unit so as to inject an excitation gas containing an inert gas from a position higher than that of a process gas, thereby preventing a damage of the dielectric plate, generating high-density plasma, and preventing degradation of process performance in a process which is performed under a process pressure of 50 mTorr or more or uses a hydrogen gas.
    Type: Application
    Filed: October 30, 2014
    Publication date: April 30, 2015
    Inventors: Yong Su JANG, Sung Hwan HONG
  • Publication number: 20150079342
    Abstract: A method of forming graphene includes placing a substrate in a processing chamber and introducing a cleaning gas including hydrogen and nitrogen into the processing chamber. The method also includes introducing a carbon source into the processing chamber and initiating a microwave plasma in the processing chamber. The method further includes subjecting the substrate to a flow of the cleaning gas and the carbon source for a predetermined period of time to form the graphene.
    Type: Application
    Filed: January 10, 2014
    Publication date: March 19, 2015
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: David A. Boyd, Nai-Chang Yeh
  • Patent number: 8955456
    Abstract: A microwave plasma reactor for manufacturing a synthetic diamond material via chemical vapour deposition, the microwave plasma reactor comprising: a plasma chamber (2); a substrate holder (4) disposed in the plasma chamber for supporting a substrate on which the synthetic diamond material is to be deposited in use; a microwave coupling configuration (12) for feeding microwaves from a microwave generator (8) into the plasma chamber; and a gas flow system (13,16) for feeding process gases into the plasma chamber and removing them therefrom, wherein the microwave coupling configuration for feeding microwaves from the microwave generator into the plasma chamber comprises: an annular dielectric window (18) formed in one or several sections; a coaxial waveguide (14) having a central inner conductor (20) and an outer conductor (22) for feeding microwaves to the annular dielectric window; and a waveguide plate (24) comprising a plurality of apertures (28) disposed in an annular configuration with a plurality of arms
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: February 17, 2015
    Assignee: Element Six Limited
    Inventors: Alexander Lamb Cullen, Joseph Michael Dodson, Stephen David Williams, John Robert Brandon
  • Publication number: 20150030786
    Abstract: A microwave plasma reactor for manufacturing synthetic diamond material via chemical vapour deposition, the microwave plasma reactor comprising: a plasma chamber; a substrate holder disposed in the plasma chamber for supporting a substrate on which the synthetic diamond material is to be deposited in use; a microwave coupling configuration for feeding microwaves from a microwave generator into the plasma chamber; and a gas flow system for feeding process gases into the plasma chamber and removing them therefrom; wherein the gas flow system comprises a gas inlet nozzle array comprising a plurality of gas inlet nozzles disposed opposite the substrate holder for directing process gases towards the substrate holder, the gas inlet nozzle array comprising: at least six gas inlet nozzles disposed in a substantially parallel or divergent orientation relative to a central axis of the plasma chamber; a gas inlet nozzle number density equal to or greater than 0.
    Type: Application
    Filed: December 14, 2011
    Publication date: January 29, 2015
    Applicant: ELEMENT SIX LIMITED
    Inventors: Steven Edward Coe, Jonathan James Wilman, Daniel James Twitchen, Geoffrey Alan Scarsbrook, John Robert Brandon, Christopher John Howard Wort
  • Patent number: 8895114
    Abstract: The invention relates to a method for functionalizing the surfaces of adhesive closing parts which form, with correspondingly formed adhesive closing parts, an adhesive closure that can be repeatedly opened and closed. The surface energy of the adhesive closing part is modified by means of a proton and/or electron exchanging medium, especially in the form of donors or collectors, using high energy in such a way that the physicochemical properties of the material of the adhesive closing part can be adjusted without a coating and with ageing resistance, by the attachment of functional groups of the exchanging medium to the adhesive closing part material. The invention also relates to a device for carrying out one such method.
    Type: Grant
    Filed: May 26, 2007
    Date of Patent: November 25, 2014
    Assignee: Gottlieb Binder GmbH & Co. KG
    Inventor: Konstantinos Poulakis
  • Publication number: 20140342122
    Abstract: A polycrystalline chemical vapour deposited (CVD) diamond wafer comprising: a largest linear dimension equal to or greater than 125 mm; a thickness equal to or greater than 200 ?m; and one or both of the following characteristics measured at room temperature (nominally 298 K) over at least a central area of the polycrystalline CVD diamond wafer, said central area being circular, centred on a central point of the polycrystalline CVD diamond wafer, and having a diameter of at least 70% of the largest linear dimension of the polycrystalline CVD diamond wafer: an absorption coefficient?0.2 cm?1 at 10.6 ?m; and a dielectric loss coefficient at 145 GHz, of tan ??2×10?4.
    Type: Application
    Filed: December 12, 2012
    Publication date: November 20, 2014
    Applicant: ELEMENT SIX TECHNOLOGIES LIMITED
    Inventors: Paul Nicholas Inglis, John Robert Brandon, Joseph Michael Dodson, Timothy Peter Mollart
  • Publication number: 20140335617
    Abstract: The subject innovation is directed to hierarchical structures characterized by ultrahigh surface area and methods of fabricating the same, as well as attachment of functional species to these structures to alter interactions of these hierarchical structures with their environments, such as by making them permanently or reversibly hydrophilic. One such example hierarchical structure can include a solid substrate, an intermediate layer, at least one plurality of nanoscale attachments that are strongly bonded to the intermediate layer, and an oxygen containing species coating the at least one plurality of nanoscale attachments.
    Type: Application
    Filed: May 14, 2014
    Publication date: November 13, 2014
    Applicant: WRIGHT STATE UNIVERSITY
    Inventor: Sharmila M. Mukhopadhyay
  • Patent number: 8883269
    Abstract: A method of processing a substrate in a processing chamber is provided. The method generally includes applying a microwave power to an antenna coupled to a microwave source disposed within the processing chamber, wherein the microwave source is disposed relatively above a gas feeding source configured to provide a gas distribution coverage covering substantially an entire surface of the substrate, and exposing the substrate to a microwave plasma generated from a processing gas provided by the gas feeding source to deposit a silicon-containing layer on the substrate at a temperature lower than about 200 degrees Celsius, the microwave plasma using a microwave power having a power density of about 500 milliWatts/cm2 to about 5,000 milliWatts/cm2 at a frequency of about 1 GHz to about 10 GHz.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: November 11, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Tae Kyung Won, Helinda Nominanda, Seon-Mee Cho, Soo Young Choi, Beom Soo Park, John M. White, Suhail Anwar, Jozef Kudela
  • Publication number: 20140322456
    Abstract: A method for manufacturing a primary preform including providing a hollow substrate tube, supplying to the interior of the tube a main gas flow containing at least one glass-forming gas and at least one secondary gas flow containing at least one precursor for a dopant, creating a plasma reaction zone in the interior of the tube to effect deposition, and interrupting the supply of the at least one secondary gas flow near the reversal points of the supply and discharge sides of the substrate tube.
    Type: Application
    Filed: April 22, 2014
    Publication date: October 30, 2014
    Applicant: Draka Comteq B.V.
    Inventors: Igor Milicevic, Mattheus Jacobus Nicolaas Van Stralen, Johannes Antoon Hartsuiker
  • Publication number: 20140308461
    Abstract: A microwave plasma reactor for manufacturing a synthetic diamond material via chemical vapour deposition, the microwave plasma reactor comprising: a plasma chamber (2); a substrate holder (4) disposed in the plasma chamber for supporting a substrate on which the synthetic diamond material is to be deposited in use; a microwave coupling configuration (12) for feeding microwaves from a microwave generator (8) into the plasma chamber; and a gas flow system (13,16) for feeding process gases into the plasma chamber and removing them therefrom, wherein the microwave coupling configuration for feeding microwaves from the microwave generator into the plasma chamber comprises: an annular dielectric window (18) formed in one or several sections; a coaxial waveguide (14) having a central inner conductor (20) and an outer conductor (22) for feeding microwaves to the annular dielectric window; and a waveguide plate (24) comprising a plurality of apertures (28) disposed in an annular configuration with a plurality of arms
    Type: Application
    Filed: December 14, 2011
    Publication date: October 16, 2014
    Applicant: ELEMENT SIX LIMITED
    Inventors: Alexander Lamb Cullen, Joseph Michael Dodson, Stephen David Williams, John Robert Brandon
  • Patent number: 8859057
    Abstract: A device for applying electromagnetic microwave radiation in a plasma inside a substrate tube including inner and outer cylindrical walls defining an annular cavity therebetween, the inner wall having a circumferential applicator slit, an elongate microwave guide arranged with a first end in communication with the annular cavity and a second end in communication with a microwave generating means for supplying microwaves to the annular cavity, and means for supplying a cooling gas through the elongate microwave guide to a position near the applicator slit.
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: October 14, 2014
    Assignee: Draka Comteq B.V.
    Inventors: Igor Milicevic, Mattheus Jacobus Nicolaas Van Stralen, Johannes Antoon Hartsuiker
  • Patent number: 8859044
    Abstract: Disclosed is a method of forming a graphene layer, including: putting a substrate in a chamber of an electron cyclotron resonance device, and then evacuating the chamber. Conducting a carbon-containing gas into the chamber, wherein the carbon-containing gas has a pressure of 10?2 torr to 10?4 torr in the chamber. Heating the substrate until the substrate has a temperature of 100° C. to 600° C., and using a microwave with an electron cyclotron resonance mechanism to excite the carbon-containing gas to deposit a graphene layer on the substrate.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: October 14, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Kun-Ping Huang, Chih-Chen Chang, Yu-Tse Hsieh, Po-Wen Chiu, Henry Medina
  • Patent number: 8859058
    Abstract: A microwave plasma reactor for manufacturing synthetic diamond material via chemical vapor deposition, the microwave plasma reactor comprising: a microwave generator configured to generate microwaves at a frequency f; a plasma chamber comprising a base, a top plate, and a side wall extending from said base to said top plate defining a resonance cavity for supporting a microwave resonance mode between the base and the top plate; a microwave coupling configuration for feeding microwaves from the microwave generator into the plasma chamber; a gas flow system for feeding process gases into the plasma chamber and removing them therefrom; a substrate holder disposed in the plasma chamber and comprising a supporting surface for supporting a substrate; and a substrate disposed on the supporting surface, the substrate having a growth surface on which the synthetic diamond material is to be deposited in use, wherein the substrate dimensions and location within the resonance cavity are selected to generate a localized a
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: October 14, 2014
    Assignee: Element Six Limited
    Inventors: Carlton Nigel Dodge, Paul Nicolas Inglis, Geoffrey Alan Scarsbrook, Timothy Peter Mollart, Charles Simon James Pickles, Steven Edward Coe, Joseph Michael Dodson, Alexander Lamb Cullen, John Robert Brandon, Christopher John Howard Wort
  • Publication number: 20140287162
    Abstract: A microwave plasma apparatus for processing a material includes a plasma chamber, a microwave radiation source, and a waveguide guiding microwave radiation from the microwave radiation source to the plasma chamber. A process gas flows through the plasma chamber and the microwave radiation couples to the process gas to produce a plasma jet. A process material is introduced to the plasma chamber, becomes entrained in the plasma jet, and is thereby transformed to a stream of product material droplets or particles. The product material droplets or particles are substantially more uniform in size, velocity, temperature, and melt state than are droplets or particles produced by prior devices.
    Type: Application
    Filed: June 6, 2014
    Publication date: September 25, 2014
    Inventors: Eric Jordan, Baki Cetegen, Kamal Hadidi, Paul P. Woskov
  • Publication number: 20140263179
    Abstract: A system includes a tuning element comprising a shaft and a tuning stub. The tuning stub includes a surface with a center point. The shaft is connected to the surface of the tuning stub at a location that is offset from the center point. A waveguide includes an opening into an inner portion of the waveguide. The shaft passes through the opening and the tuning stub is arranged in the inner portion of the waveguide. A first actuator selectively rotates the shaft.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: Lam Research Corporation
    Inventors: Carlo Waldfried, Orlando Escorcia, William Hansen
  • Publication number: 20140255701
    Abstract: A diamond-like carbon film for improving an efficiency of a field emitting element is disclosed in the present invention. The abovementioned diamond-like carbon film is deposited on a substrate and uses a mixture of graphite fiber and diamond powder as its nucleation layer. Furthermore, a method for fabricating the abovementioned diamond-like carbon film is also disclosed in the present invention and at least comprises the following steps. First, a substrate and a mixing solution composed of graphite fiber and diamond powder are provided. And then, a nucleation layer is formed on the substrate by utilizing the mixing solution. A diamond-like carbon film is finally deposited on the substrate by utilizing the nucleation layer.
    Type: Application
    Filed: August 19, 2013
    Publication date: September 11, 2014
    Applicant: National Tsing Hua University
    Inventors: Chi-Young Lee, I-Nan Lin, Chien-Fu Chen
  • Patent number: 8828504
    Abstract: A hydrogenated thin film is formed in a controlled vacuum on a substrate by evaporating one or more solid materials and passing the resulting vapor and a hydrogen-containing gas into a space between two electrodes. One of the electrodes includes openings for allowing the vapor to enter the space. Plasma is generated within the space to cause dissociation of the hydrogen-containing gas and promote a reaction between the material(s) and hydrogen-containing gas.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: September 9, 2014
    Assignee: International Business Machines Corporation
    Inventors: Osama Tobail, Ahmed Abou-Kandil, Mostafa M. El-Ashry, Jeehwan Kim, Paul M. Kozlowski, Mohamed Saad, Devendra K. Sadana
  • Publication number: 20140234556
    Abstract: A microwave plasma reactor for manufacturing synthetic diamond material via chemical vapour deposition, the microwave plasma reactor comprising: a microwave generator configured to generate microwaves at a frequency f; a plasma chamber comprising a base, a top plate, and a side wall extending from said base to said top plate defining a resonance cavity for supporting a microwave resonance mode between the base and the top plate; a microwave coupling configuration for feeding microwaves from the microwave generator into the plasma chamber; a gas flow system for feeding process gases into the plasma chamber and removing them therefrom; a substrate holder disposed in the plasma chamber and comprising a supporting surface for supporting a substrate; and a substrate disposed on the supporting surface, the substrate having a growth surface on which the synthetic diamond material is to be deposited in use, wherein the substrate dimensions and location within the resonance cavity are selected to generate a localized
    Type: Application
    Filed: December 14, 2011
    Publication date: August 21, 2014
    Applicant: ELEMENT SIX LIMITED
    Inventors: Carlton Nigel Dodge, Paul Nicolas Inglis, Geoffrey Alan Scarsbrook, Timothy Peter Mollart, Charles Simon James Pickles, Steven Edward Coe, Joseph Michael Dodson, Alexander Lamb Cullen, John Robert Brandon, Christopher John Howard Wort
  • Patent number: 8808812
    Abstract: Disclosed is a method capable of accelerating the growth of oriented carbon nanotubes when manufacturing the oriented carbon nanotubes by a plasma CVD. Under the circulation of a gas which is the raw material of the carbon nanotubes, plasma is generated by an antenna (6) provided in a depressurized treatment chamber (2), and substrates (9, 15) provided with a reaction prevention layer and a catalyst material layer which are formed on a base material are held at a distance, to which a radical can reach and an attack of an ion generated as a by-product of the radical can be avoided, from a plasma generation area (7). The tip (6a) of the antenna (6) can be controlled so as to match with the position of the anti-node of a stationary wave (27) of microwaves.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: August 19, 2014
    Assignees: Honda Motor Co., Ltd., Waseda University
    Inventors: Hiroshi Kawarada, Ryogo Kato, Toshiyuki Ohashi, Toshio Tokune, Hidefumi Nikawa
  • Patent number: 8747963
    Abstract: An apparatus and methods for forming a diamond film, are provided. An example of an apparatus for forming a diamond film includes an electrodeless microwave plasma reactor having a microwave plasma chamber configured to contain a substrate and to contain a reactant gas excited by microwaves to generate a microwave plasma discharge. Gas injection ports extend through an outer wall of the plasma chamber at a location upstream of the plasma discharge and above the substrate. Gas jet injection nozzles interface with the gas injection ports and are configured to form a directed gas stream of reactant gas having sufficient kinetic energy to disturb a boundary layer above an operational surface of the substrate to establish a convective transfer of the film material to the operational surface of the substrate.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: June 10, 2014
    Assignee: Lockheed Martin Corporation
    Inventors: Mark Phillip D'Evelyn, John Dewey Blouch, Ludwig Christian Haber, Hongying Peng, David Dils, Svetlana Selezneva, Kristi Jean Narang
  • Patent number: 8741779
    Abstract: A plasma processing apparatus for processing an object to be processed using a plasma. The apparatus includes a processing chamber defining a processing cavity for containing an object to be processed and a process gas therein, a microwave radiating antenna having a microwave radiating surface for radiating a microwave in order to excite a plasma in the processing cavity, and a dielectric body provided so as to be opposed to the microwave radiating surface, in which the distance D between the microwave radiating surface and a surface of the dielectric body facing away from the microwave radiating surface, which is represented with the wavelength of the microwave being a distance unit, is determined to be in the range satisfying the inequality 0.7×n/4?D?1.3×n/4 (n being a natural number).
    Type: Grant
    Filed: July 17, 2013
    Date of Patent: June 3, 2014
    Assignees: ROHM Co., Ltd.
    Inventors: Tadahiro Ohmi, Kazuhide Ino, Takahiro Arakawa
  • Patent number: 8728588
    Abstract: A method of treating a surface of at least one part by individual sources of an electron cyclotron resonance plasma is characterized by subjecting the part(s) to at least one movement of revolution with regard to at least one fixed linear row of elementary sources. The linear row or rows of elementary sources are disposed parallel to the axis or axes of revolution of the part or parts.
    Type: Grant
    Filed: October 9, 2008
    Date of Patent: May 20, 2014
    Assignee: H.E.F.
    Inventors: Beat Schmidt, Christophe Heau, Philippe Maurin-Perrier
  • Patent number: 8728586
    Abstract: In large area plasma processing systems, process gases may be introduced to the chamber via the showerhead assembly which may be driven as an RF electrode. The gas feed tube, which is grounded, is electrically isolated from the showerhead. The gas feed tube may provide not only process gases, but also cleaning gases from a remote plasma source to the process chamber. The inside of the gas feed tube may remain at either a low RF field or a zero RF field to avoid premature gas breakdown within the gas feed tube that may lead to parasitic plasma formation between the gas source and the showerhead. By feeding the gas through an RF choke, the RF field and the processing gas may be introduced to the processing chamber through a common location and thus simplify the chamber design.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: May 20, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Jozef Kudela, Carl A. Sorensen, John M. White
  • Publication number: 20140106102
    Abstract: The method serves for the plasma treatment of container-like workpieces. The workpiece is inserted into an at least partially evacuable chamber of a treatment station. The plasma chamber is bounded by a chamber base, a chamber cover and a lateral chamber wall. The plasma treatment causes a coating to be deposited on the workpiece. The plasma is ignited by microwave energy. The coating consists at least of a gas barrier layer and a bonding layer arranged between the workpiece and the gas barrier layer. The gas barrier layer contains SiOx and the bonding layer contains carbon. The gas barrier layer is produced from a gas that contains at least one silicon compound and argon.
    Type: Application
    Filed: June 15, 2012
    Publication date: April 17, 2014
    Applicant: KHS CORPOPLAST GMBH
    Inventors: Sonke Siebels, Michael Herbort
  • Patent number: 8697196
    Abstract: A method of forming a metal pattern comprises: (a) providing a substrate; (b) depositing at least one patterned metal layer which includes a metal selected from an inert metal, an inert metal alloy, and combinations thereof; (c) disposing the substrate and the patterned metal layer in a vacuum chamber, vacuuming the vacuum chamber, and introducing a gas into the vacuum chamber; and (d) applying microwave energy to the gas to produce a microwave plasma of the gas within the vacuum chamber so that the patterned metal layer is acted by the microwave plasma and formed into a plurality of spaced apart metal nanoparticles on the substrate.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: April 15, 2014
    Inventors: Kuan-Jiuh Lin, Chuen-Yuan Hsu
  • Patent number: 8679592
    Abstract: A method for continuously processing carbon fiber including establishing a microwave plasma in a selected atmosphere contained in an elongated chamber having a microwave power gradient along its length defined by a lower microwave power at one end and a higher microwave power at the opposite end of the elongated chamber. The elongated chamber having an opening in each of the ends of the chamber that are adapted to allow the passage of the fiber tow while limiting incidental gas flow into or out of said chamber. A continuous fiber tow is introduced into the end of the chamber having the lower microwave power. The fiber tow is withdrawn from the opposite end of the chamber having the higher microwave power. The fiber to is subjected to progressively higher microwave energy as the fiber is being traversed through the elongated chamber.
    Type: Grant
    Filed: October 4, 2010
    Date of Patent: March 25, 2014
    Assignee: UT-Battelle, LLC
    Inventors: Terry L. White, Felix L. Paulauskas, Timothy S. Bigelow
  • Patent number: 8679594
    Abstract: The invention includes the structure of a multilayer protective coating, which may have, among other properties, scratch resistance, UV absorption, and an effective refractive index matched to a polymer substrate such as polycarbonate. Each layer may contain multiple components consisting of organic and inorganic materials. The multilayer protective coating includes interleaved organic layers and inorganic layers. The organic layers may have 20% or more organic compounds such as SiOxCyHz. The inorganic layers may have 80% or more inorganic materials, such as SiO2, SiOxNy, and ZnO, or mixtures thereof. Each layer of the multilayer protective coating is a micro layer and may have a thickness of 5 angstroms or less in various embodiments. The multilayer protective coating may contain in the order of hundreds or thousands of micro layers, depending upon the design requirement of applications. In each micro layer, the components may have substantially continuous variations in concentration.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: March 25, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Michael W. Stowell, Manuel D. Campo
  • Patent number: 8668962
    Abstract: New and improved microwave plasma assisted reactors, for example chemical vapor deposition (MPCVD) reactors, are disclosed. The disclosed microwave plasma assisted reactors operate at pressures ranging from about 10 Torr to about 760 Torr. The disclosed microwave plasma assisted reactors include a movable lower sliding short and/or a reduced diameter conductive stage in a coaxial cavity of a plasma chamber. For a particular application, the lower sliding short position and/or the conductive stage diameter can be variably selected such that, relative to conventional reactors, the reactors can be tuned to operate over larger substrate areas, operate at higher pressures, and discharge absorbed power densities with increased diamond synthesis rates (carats per hour) and increased deposition uniformity.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: March 11, 2014
    Assignees: Board of Trustees of Michigan State University, Fraunhofer USA
    Inventors: Jes Asmussen, Timothy Grotjohn, Donnie K. Reinhard, Thomas Schuelke, M. Kagan Yaran, Kadek W. Hemawan, Michael Becker, David King, Yajun Gu, Jing Lu
  • Publication number: 20140050857
    Abstract: A method for using an integrated battery and device structure includes using two or more stacked electrochemical cells integrated with each other formed overlying a surface of a substrate. The two or more stacked electrochemical cells include related two or more different electrochemistries with one or more devices formed using one or more sequential deposition processes. The one or more devices are integrated with the two or more stacked electrochemical cells to form the integrated battery and device structure as a unified structure overlying the surface of the substrate. The one or more stacked electrochemical cells and the one or more devices are integrated as the unified structure using the one or more sequential deposition processes. The integrated battery and device structure is configured such that the two or more stacked electrochemical cells and one or more devices are in electrical, chemical, and thermal conduction with each other.
    Type: Application
    Filed: October 22, 2013
    Publication date: February 20, 2014
    Applicant: Sakti3, Inc.
    Inventors: Fabio ALBANO, Chia Wei WANG, Ann Marie SASTRY
  • Patent number: 8637123
    Abstract: A method of radical-enhanced atomic layer deposition (REALD) involves alternating exposure of a substrate to a first precursor gas and to radicals, such as monatomic oxygen radicals (O.), generated from an oxygen-containing second precursor gas, while maintaining spatial or temporal separation of the radicals and the first precursor gas. Simplified reactor designs and process control are possible when the first and second precursor gases are nonreactive under normal processing conditions and can therefore be allowed to mix after the radicals recombine or otherwise abate. In some embodiments, the second precursor gas is an oxygen-containing compound, such as carbon dioxide (CO2) or nitrous oxide (N2O) for example, or a mixture of such oxygen-containing compounds, and does not contain significant amounts of normal oxygen (O2).
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: January 28, 2014
    Assignee: Lotus Applied Technology, LLC
    Inventors: Eric R. Dickey, William A. Barrow
  • Publication number: 20130337194
    Abstract: A magnetic data storage medium may include a substrate, a magnetic recording layer, a protective carbon overcoat, and a monolayer covalently bound to carbon atoms adjacent a surface of the protective carbon overcoat. According to this aspect of the disclosure, the monolayer comprises at least one of hydrogen, fluorine, nitrogen, oxygen, and a fluoro-organic molecule. In some embodiments, a surface of a read and recording head may also include a monolayer covalently bound to carbon atoms of a protective carbon overcoat.
    Type: Application
    Filed: July 24, 2013
    Publication date: December 19, 2013
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Paul M. Jones, Xiaoping Yan, Lei Li, James Dillon Kiely, Christopher Loren Platt, Michael J. Stirniman, Jiping Yang, Yiao-Tee Hsia
  • Patent number: 8603402
    Abstract: A microwave-excited plasma device is proposed. The device comprises of a plurality of microwave plasma reaction units which are capable of generating plasma independently such that a large-area plasma is able to be generated by all of the units. Besides, the high cost of the large-area microwave coupling window and its deformation together with possible breakage caused by atmospheric pressure can be prevented. Moreover, when a plurality of permanent magnets is assembled upon each of the plasma reaction units, the microwave-excited plasma device is improved to be a large-area electron cyclotron resonance (ECR) plasma device.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: December 10, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Chih-Chen Chang, Kun-Ping Huang, Yu-Tse Hsieh
  • Publication number: 20130302536
    Abstract: The invention relates to a method for producing a transparent bather layer system, wherein in a vacuum chamber at least two transparent barrier layers and a transparent intermediate layer disposed between the two barrier layers are deposited on a transparent plastic film, wherein for deposition of the barrier layers aluminium is vaporised and simultaneously at least one first reactive gas is introduced into the vacuum chamber and wherein for deposition of the intermediate layer aluminium is vaporised and simultaneously at least one second reactive gas and a gaseous or vaporous organic component are introduced into the vacuum chamber.
    Type: Application
    Filed: February 15, 2012
    Publication date: November 14, 2013
    Applicant: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    Inventors: Steffen Guenther, Bjoern Meyer, Steffen Straach, Thomas Kuehnel, Sebastian Bunk, Nicolas Schiller
  • Patent number: 8574687
    Abstract: In a method for depositing a non-metallic, in particular ceramic, coating on a substrate (2) by cold gas spraying, the method has the steps of: producing a reactive gas flow (5) having at least one reactive gas, injecting into the reactive gas flow (5) particles (4) consisting of at least one material required for producing a non-metallic, in particular ceramic, coating material by reaction with the reactive gas, so as to form a mixture flow of reactive gas and particles (4), producing reactive gas radicals in the mixture flow, and directing the mixture flow having reactive gas radicals and particles onto a surface of a substrate (2) to be coated, and so a non-metallic, in particular ceramic, coating is deposited on the surface of the substrate (2). In addition, a description is given of a device (1) for carrying out the method.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: November 5, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventors: Dirk Janz, Jens Dahl Jensen, Jens Klingemann, Ursus Krüger, Daniel Körtvelyessy, Volkmar Lüthen, Ralph Reiche, Oliver Stier
  • Publication number: 20130287969
    Abstract: The invention relates to a method for producing a transparent barrier layer system, wherein in a vacuum chamber at least two transparent barrier layers and a transparent intermediate layer disposed between the two barrier layers are deposited on a transparent plastic film, wherein for deposition of the barrier layers aluminium is vaporised and simultaneously at least one first reactive gas is introduced into the vacuum chamber and wherein for deposition of the intermediate layer aluminium is vaporised and simultaneously at least one second reactive gas is introduced into the vacuum chamber, and a silicon-containing layer is deposited as intermediate layer by means of a PECVD process.
    Type: Application
    Filed: February 15, 2012
    Publication date: October 31, 2013
    Applicant: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    Inventors: Steffen Guenther, Bjoern Meyer, Steffen Straach, Thomas Kuehnel, Sebastian Bunk, Nicolas Schiller
  • Publication number: 20130280542
    Abstract: In a method for producing a pyrolysis compatible component of a cooking appliance, designed to carry out a pyrolysis operation a silicon dioxide coating is applied on a base part of the component by PECVD deposition. PECVD deposition can hereby involve high-rate PECVD deposition at a speed faster than 0.5 ?m/min.
    Type: Application
    Filed: December 16, 2011
    Publication date: October 24, 2013
    Applicant: BSH BOSCH UND SIEMENS HAUSGERÄTE GMBH
    Inventors: Jochen Herbolsheimer, Frank Jördens, Jürgen Salomon, Philipp Schaller, Gerhard Schmidmayer
  • Publication number: 20130264303
    Abstract: The method serves for the plasma treatment of workpieces. The workpiece is inserted into a chamber of a treatment station that can be at least partially evacuated. The plasma chamber is bounded by a chamber bottom, a chamber top and a lateral chamber wall. The plasma treatment involves depositing a coating on the workpiece. The ignition of the plasma is performed by microwave energy. The coating consists at least of a gas barrier layer and a protective layer. The gas barrier layer contains SiOx and the protective layer contains carbon. The protective is produced from a gas that contains at least a silicon compound and argon.
    Type: Application
    Filed: December 15, 2011
    Publication date: October 10, 2013
    Applicant: KHS CORPOPLAST GMBH
    Inventors: Arne Andersen, Michael Herbort, Sonke Siebels