Condenser Or Capacitor Patents (Class 427/79)
  • Publication number: 20120063060
    Abstract: A collector for an electric double layer capacitor including a conductive sheet, and a film adhered on surface of the conductive sheet and including carbon fine particle and polysaccharide and/or cross-linked polysaccharide. An electrode for an electric double layer capacitor including a collector having a conductive sheet and a film adhered on surface of the conductive sheet, and a film including activated carbon and adhered on surface of the film of the collector. The film of the collector includes carbon fine particle and polysaccharide and/or cross-linked polysaccharide. An electric double layer capacitor including an electrode, a separator, and an electrolyte. The electrode includes a collector having a conductive sheet and a film adhered on surface of the conductive sheet, and a film including activated carbon and adhered on surface of the film of the collector. The film of the collector includes carbon fine particle and polysaccharide and/or cross-linked polysaccharide.
    Type: Application
    Filed: November 22, 2011
    Publication date: March 15, 2012
    Applicant: SHOWA DENKO K.K.
    Inventor: Masahiro OHMORI
  • Publication number: 20120063058
    Abstract: Disclosed are a composite electrode active material and a supercapacitor using the same, and more particularly, an electrode active material having M1-xRuxO3 (M=Sr, Ba, Mg) and a supercapacitor using the same, wherein the electrode active material is characterized by comprising M1-xRuxO3, where M is at least one selected from a group consisting of strontium, barium and magnesium, and a method for fabricating a composite electrode active material comprises (a) preparing a spinning solution containing a precursor of M oxide, a precursor of Ru oxide, a polymer and a solvent, (b) spinning the spinning solution on a collector to fabricate a nanofiber web having M1-xRuxO3 precursor, and (c) performing heat treatment for the nanofiber web to remove the polymer so as to make an electrode active material in the structure of porous nanofiber web having M1-xRuxO3, wherein the M comprises at least one selected from a group consisting of strontium, barium and magnesium.
    Type: Application
    Filed: September 13, 2010
    Publication date: March 15, 2012
    Inventors: Il Doo KIM, Yong-Won SONG, Tae Seon HYUN
  • Publication number: 20120057273
    Abstract: A nanoporous templating substrate, which is an anodically oxidized alumina (AAO) substrate, is employed to form a pseudocapacitor having high stored energy density. A pseudocapacitive material is deposited conformally along the sidewalls of the AAO substrate by atomic layer deposition, chemical vapor deposition), and/or electrochemical deposition employing a nucleation layer. The thickness of the pseudocapacitive material on the walls can be precisely controlled in the deposition process. The AAO is etched to form an array of nanotubes of the PC material that are cylindrical and structurally robust with cavities therein. Because the AAO substrate that acts as scaffolding is removed, only the active PC material is left behind, thereby maximizing the energy per mass. In addition, nanotubes may be de-anchored from a substrate so that free-standing nanotubes having randomized orientations may be deposited on a conductive substrate to form an electrode of a pseudocapacitor.
    Type: Application
    Filed: September 7, 2010
    Publication date: March 8, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Richard A. Haight, Stephen M. Rossnagel
  • Patent number: 8117734
    Abstract: A process for the manufacture of small sensors with reproducible surfaces, including electrochemical sensors. One process includes forming channels in the surface of a substrate and disposing a conductive material in the channels to form an electrode. The conductive material can also be formed on the substrate by other impact and non-impact methods. In a preferred embodiment, the method includes cutting the substrate to form a sensor having a connector portion and a transcutaneous portion, the two portions having edges that define one continuous straight line.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: February 21, 2012
    Assignee: Abbott Diabetes Care Inc.
    Inventors: James Say, Michael F. Tomasco, Adam Heller, Yoram Gal, Behrad Aria, Ephraim Heller, Phillip John Plante, Mark S. Vreeke
  • Publication number: 20120014037
    Abstract: A process to deposit a conformal coating of manganese oxide nanocrystals within a high surface area connected pore structure of a carbon paper electrode. A two-step process is utilized. In the first step the carbon paper electrode is immersed in an alkaline manganese oxide solution to form a nanocrystal seed layer on the surface and within the pores of the carbon paper. In the second step the seeded carbon paper is immersed in an acidic manganese oxide solution. The result is a densely packed continuous conformal nanocrystal coating both on the surface of the carbon and deep within its pores. The carbon paper is highly suitable for use as an electrode in a supercapacitor.
    Type: Application
    Filed: July 13, 2010
    Publication date: January 19, 2012
    Inventors: Michael A. Mastro, Francis J. Kub
  • Patent number: 8092721
    Abstract: Methods and compositions for the deposition of ternary oxide films containing ruthenium and an alkali earth metal.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: January 10, 2012
    Assignees: L'Air Liquide Societe Anonyme pour l'Etude Et l'Exploitation des Procedes Georges Claude, American Air Liquide, Inc.
    Inventors: Satoko Gatineau, Julien Gatineau, Christian Dussarrat
  • Patent number: 8092862
    Abstract: Provided is a method for forming a dielectric film in a semiconductor device, wherein the method can improve a dielectric characteristic and a leakage current characteristic. According to specific embodiments of the present invention, the method for forming a dielectric film includes: forming a zirconium dioxide (ZrO2) layer over a wafer in a predetermined thickness that does not allow continuous formation of the ZrO2 layer; and forming an aluminum oxide (Al2O3) layer over portions of the wafer where the ZrO2 layer is not formed, in a predetermined thickness that does not allow continuous formation of the Al2O3 layer.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: January 10, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventors: Deok Sin Kil, Kwon Hong, Seung Jin Yeom
  • Publication number: 20120002347
    Abstract: A method for forming a plurality of strips to be used for formulating high-breakdown strength and high-temperature capacitors is disclosed. The method includes forming a metalized substrate having a particular pattern, masking a portion of the metalized substrate, coating the metalized substrate with a dielectric material and removing the masking material and thus the dielectric layer from a portion of the metalized layer to form a contact surface. In lieu of placing a masking material on the metalized substrate, the exposed contact area can be formed by shielding a portion of the metalized substrate while depositing the dielectric layer.
    Type: Application
    Filed: July 2, 2010
    Publication date: January 5, 2012
    Applicant: FARADOX ENERGY STORAGE, INC.
    Inventors: William M. Balliette, Keith D. Jamison
  • Publication number: 20120003449
    Abstract: A multilayer dielectric structure is formed by vacuum depositing two-dimensional matrices of nanoparticles embedded in polymer dielectric layers that are thicker than the effective diameter of the nanoparticles, so as to produce a void-free, structured, three-dimensional lattice of nanoparticles in a polymeric dielectric material. As a result of the continuous, repeated, and controlled deposition process, each two-dimensional matrix of nanoparticles consists of a layer of uniformly distributed particles embedded in polymer and separated from adjacent matrix layers by continuous polymer dielectric layers, thus forming a precise three-dimensional nanoparticle matrix defined by the size and density of the nanoparticles in each matrix layer and by the thickness of the polymer layers between them. The resulting structured nanodielectric exhibits very high values of dielectric constant as well as high dielectric strength.
    Type: Application
    Filed: June 30, 2010
    Publication date: January 5, 2012
    Applicant: Sigma Laboratories of Arizona, LLC.
    Inventors: Angelo Yializis, Gordon Goodyear
  • Publication number: 20110300721
    Abstract: There is disclosed a method of forming crystalline tantalum pentoxide on a ruthenium-containing material having an oxygen-containing surface wherein the oxygen-containing surface is contacted with a treating composition, such as water, to remove at least some oxygen. Crystalline tantalum pentoxide is formed on at least a portion of the surface having reduced oxygen content.
    Type: Application
    Filed: August 16, 2011
    Publication date: December 8, 2011
    Applicant: Micron Technology, Inc.
    Inventors: Vishwanath Bhat, Rishikesh Krishnan, Daniel Gealy
  • Patent number: 8071156
    Abstract: A hydrophilic ceramic coating is formed on an endoprosthesis preform. The hydrophilic ceramic coating is porous and can store nano-sized drug particles.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: December 6, 2011
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Jan Weber, Torsten Scheuermann
  • Publication number: 20110292569
    Abstract: A multi-layer electrode includes a current collector having opposing first and second major surfaces, a fused carbon layer formed over one or both of the major surfaces, a conductive adhesion layer formed over each fused carbon layer, and an activated carbon layer formed over each conductive adhesive layer. The multi-layer electrode can be incorporated into a high energy density, high power density device such as an electric double layer capacitor.
    Type: Application
    Filed: May 27, 2010
    Publication date: December 1, 2011
    Inventors: Kishor Purushottam Gadkaree, James Robert Lim, Kamjula Pattabhirami Reddy
  • Publication number: 20110279979
    Abstract: Some embodiments include methods of forming rutile-type titanium oxide. A monolayer of titanium nitride may be formed. The monolayer of titanium nitride may then be oxidized at a temperature less than or equal to about 550° C. to convert it into a monolayer of rutile-type titanium oxide. Some embodiments include methods of forming capacitors that have rutile-type titanium oxide dielectric, and that have at least one electrode comprising titanium nitride. Some embodiments include thermally conductive stacks that contain titanium nitride and rutile-type titanium oxide, and some embodiments include methods of forming such stacks.
    Type: Application
    Filed: May 12, 2010
    Publication date: November 17, 2011
    Inventors: Nik Mirin, Tsai-Yu Huang, Vishwanath Bhat, Chris Carlson, Vassil Antonov
  • Patent number: 8053026
    Abstract: A method for the synthesis of nanocomposites is provided. The method comprises the steps of mixing carbon nanotubes with a urea solution to form urea/carbon nanotube composites (first step), mixing the urea/carbon nanotube composites with a solution of a metal oxide or hydroxide precursor to prepare a precursor solution (second step), and hydrolyzing the urea in the precursor solution to form a metal oxide or hydroxide coating on the carbon nanotubes (third step). Further provided are nanocomposites synthesized by the method. In the nanocomposites, a metal oxide or hydroxide is coated to a uniform thickness in the nanometer range on porous carbon nanotubes. Advantageously, the thickness of the coating can be easily regulated by controlling the urea content of urea/carbon nanotube composites as precursors. In addition, the nanocomposites are nanometer-sized powders and have high electrical conductivity and large specific surface area.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: November 8, 2011
    Assignee: Industry-Academic Cooperation Foundation, Yonsei University
    Inventors: Jin Go Kim, Sang Bok Ma, Kwang Heon Kim, Kwang Bum Kim
  • Publication number: 20110268647
    Abstract: Two-dimensional nanomaterials are produced in a process comprising the steps of (a) providing (a1) a mixture comprising graphene oxide particles, water and at least one cationic surfactant and/or nonionic surfactant or (a2) a mixture comprising graphene particles, at least one solvent useful for solution exfoliation of graphite and at least one cationic surfactant and/or nonionic surfactant, (b) adding at least one sol precursor compound to the mixture from step (a), (c) reacting the mixture from step (b) in a sol/gel process to form gel from the at least one sol precursor compound on the graphene oxide particles or, respectively, the graphene particles, (d) removing the at least one surfactant, and (e) optionally heating the gel-coated graphene oxide particles for at least 1 min to at least 500° C. under inert gas atmosphere to reduce the graphene oxide to graphene.
    Type: Application
    Filed: April 21, 2011
    Publication date: November 3, 2011
    Applicants: Max-Planck-Gesellschaft zur Foerd. der Wisse. e.V., BASF SE
    Inventors: Sorin IVANOVICI, Shubin YANG, Xinliang FENG, Klaus MÜLLEN
  • Patent number: 8048478
    Abstract: A method of manufacturing an electrode for an electrochemical device is provided with the steps of: supplying, onto a collector, a powdered mixture containing a binder and an active material; and heating the powdered mixture to form an electrode layer on the collector, that allows continuous mass production of electrodes for electrochemical devices.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: November 1, 2011
    Assignee: Zeon Corporation
    Inventors: Yoshitsugu Hirokawa, Hidekazu Mori, Masahiro Yamakawa
  • Publication number: 20110261500
    Abstract: Apparatus and related fabrication methods are provided for capacitor structures. One embodiment of a capacitor structure comprises a plurality of consecutive metal layers and another metal layer. Each via layer of a plurality of via layers is interposed between metal layers of the plurality of metal layers. The plurality of metal layers and the plurality of via layers are cooperatively configured to provide a first plurality of vertical conductive structures corresponding to a first electrode and a second plurality of vertical conductive structures corresponding to a second electrode. The plurality of consecutive metal layers form a plurality of vertically-aligned regions and provide intralayer electrical interconnections among the first plurality of vertical conductive structures.
    Type: Application
    Filed: April 22, 2010
    Publication date: October 27, 2011
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Patrice M. Parris, Richard J. De Souza, Weize Chen, Moaniss Zitouni
  • Publication number: 20110255212
    Abstract: The invention describes nanocomposites containing carbon nanotubes (CNTs), methods of making the nanocomposites and devices using the nanocomposite materials. Combining CNTs with capacitor materials such as VN provides composite materials having unique supercapacitor properties.
    Type: Application
    Filed: August 31, 2007
    Publication date: October 20, 2011
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Tao Liu, Bhima R. Vijayendran, Abhihek Gupta, Seung Min Paek
  • Publication number: 20110256307
    Abstract: Disclosed herein is a method for manufacturing a capacitive touch screen. The method for manufacturing the capacitive touch screen includes forming a plurality of first electrode patterns made of conductive polymer on the upper surface of a first substrate by an inkjet method, thereby making it possible to finely and precisely form the electrode patterns having a complex shape. Further, the present invention can make a process for manufacturing a capacitive touch screen simple and spray only the necessary amount of conductive polymer at an accurate position, such that waste materials can be prevented and the thickness of the electrode pattern is easily controlled to form the electrode pattern having a uniform thickness.
    Type: Application
    Filed: June 25, 2010
    Publication date: October 20, 2011
    Inventors: Sang Hwa KIM, Jong Young Lee
  • Publication number: 20110236564
    Abstract: Provided is a preparation method of a metal oxide doped monolith carbon aerogel for a high capacitance capacitor, the including: preparing a monolith carbon aerogel by performing a thermal decomposition of a moist gel dried in condition of a atmospheric pressure and a room temperature in a nitrogen atmosphere; impregnating the monolith carbon aerogel into alcohol where a metal precursor is dissolved; and calcinating the monolith carbon aerogel where the metal precursor is impregnated in an atmospheric atmosphere. By impregnating the metal oxide into the monolith carbon aerogel, a limit of capacitance may be enhanced using a pseudo capacitance effect by an interfacial oxidation reduction reaction.
    Type: Application
    Filed: October 12, 2010
    Publication date: September 29, 2011
    Applicant: SAMHWA CAPACITOR CO., LTD.
    Inventors: Young Joo OH, Jung Rag YOON, In Kyu SONG, Jong Heop YI, Yoon Jae LEE, Ji Chul JUNG
  • Publication number: 20110229759
    Abstract: Ion storage electrodes formed by coating an underlying substrate with a nanofibrillar film of structured conjugate polymer nanofibers and methods of forming such electrodes are described herein. The electrical properties of the electrodes may be customized by modifying the structure of the polymer nanofibers, the thickness of the nanofiber film, and the pore size of the nanofiber films.
    Type: Application
    Filed: December 14, 2010
    Publication date: September 22, 2011
    Applicants: California Institute of Technology, Regents of the University of California
    Inventors: Rachid Yazami, Cedric M. Weiss, Richard Kaner, Julio D'Arcy
  • Publication number: 20110223320
    Abstract: A method of forming a material over a substrate includes performing at least one iteration of the following temporally separated ALD-type sequence. First, an outermost surface of a substrate is contacted with a first precursor to chemisorb a first species onto the outermost surface from the first precursor. Second, the outermost surface is contacted with a second precursor to chemisorb a second species different from the first species onto the outermost surface from the second precursor. The first and second precursors include ligands and different central atoms. At least one of the first and second precursors includes at least two different composition ligands. The two different composition ligands are polyatomic or a lone halogen. Third, the chemisorbed first species and the chemisorbed second species are contacted with a reactant which reacts with the first species and with the second species to form a reaction product new outermost surface of the substrate.
    Type: Application
    Filed: March 9, 2010
    Publication date: September 15, 2011
    Inventors: Zhe Song, Chris M. Carlson
  • Patent number: 8012532
    Abstract: There is disclosed a method of forming crystalline tantalum pentoxide on a ruthenium-containing material having an oxygen-containing surface wherein the oxygen-containing surface is contacted with a treating composition, such as water, to remove at least some oxygen. Crystalline tantalum pentoxide is formed on at least a portion of the surface having reduced oxygen content.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: September 6, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Vishwanath Bhat, Rishikesh Krishnan, Dan Gealy
  • Publication number: 20110177235
    Abstract: Disclosed is a composition for ferroelectric thin film formation which is used in the formation of a ferroelectric thin film of one material selected from the group consisting of PLZT, PZT, and PT. The composition for ferroelectric thin film formation is a liquid composition for the formation of a thin film of a mixed composite metal oxide formed of a mixture of a composite metal oxide (A) represented by general formula (1): (PbxLay)(ZrzTi(1-z))O3 [wherein 0.9<x<1.3, 0?y<0.1, and 0?z<0.9 are satisfied] with a composite oxide (B) or a carboxylic acid (B) represented by general formula (2): CnH2n+1COOH [wherein 3?n?7 is satisfied]. The composite oxide (B) contains one or at least two elements selected from the group consisting of P (phosphorus), Si, Ce, and Bi and one or at least two elements selected from the group consisting of Sn, Sm, Nd, and Y (yttrium).
    Type: Application
    Filed: May 28, 2009
    Publication date: July 21, 2011
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Jun Fujii, Hideaki Sakurai, Takashi Noguchi, Nobuyuki Soyama
  • Patent number: 7981464
    Abstract: Electronic devices prepared from nanoscale powders are described. Methods for utilizing nanoscale powders and related nanotechnology to prepare capacitors, inductors, resistors, thermistors, varistors, filters, arrays, interconnects, optical components, batteries, fuel cells, sensors and other products are discussed.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: July 19, 2011
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Tapesh Yadav, Hongxing Hu
  • Publication number: 20110164345
    Abstract: The present invention provides a metal-insulator-metal capacitor, which includes: a substrate, a copper-based bottom electrode overlying the substrate, wherein the copper based bottom electrode is doped with rhenium nitride or ruthenium nitride, a top electrode overlying the copper based bottom electrode, and a capacitor insulator between and adjoining the copper based bottom electrode and the top electrode.
    Type: Application
    Filed: May 13, 2010
    Publication date: July 7, 2011
    Applicant: NATIONAL TAIWAN UNIVERSITY OF SCIENCE & TECHNOLOGY
    Inventors: Jinn P. Chu, Cheng-Hui Wu, Chon-Hsin Lin
  • Publication number: 20110165321
    Abstract: A specific embodiment of the present invention is a process for continuously producing a porous solid film of spacer-modified nano graphene platelets for supercapacitor electrode applications. This process comprises: (a) dissolving a precursor material in a solvent to form a precursor solution and dispersing multiple nano graphene platelets into the solution to form a suspension; (b) continuously delivering and forming the suspension into a layer of solid film composed of precursor material-coated graphene platelets overlapping one another, and removing the solvent from the solid film (e.g., analogous to a paper-making, mat-making, or web-making procedure); (c) continuously converting the precursor material into nodules bonded to surfaces of graphene platelets to form a porous solid film composed of spacer-modified graphene platelets; and (d) continuously collecting the porous solid film on a collector (e.g., a winding roller).
    Type: Application
    Filed: January 7, 2010
    Publication date: July 7, 2011
    Inventors: Aruna Zhamu, Zenning Yu, Chen-guang Liu, Bor Z. Jang
  • Publication number: 20110159680
    Abstract: In a method of forming an aluminum oxide layer, an aluminum source gas and a dilution gas can be supplied into a chamber through a common gas supply nozzle so that the aluminum source gas may be adsorbed on a substrate in the chamber. A first purge gas can be supplied into the chamber to purge the physically adsorbed aluminum source gas from the substrate. An oxygen source gas may be supplied into the chamber to form an aluminum oxide layer on the substrate. A second purge gas may be supplied into the chamber to purge a reaction residue and the physically adsorbed remaining gas from the substrate. The operations can be performed repeatedly to form an aluminum oxide layer having a desired thickness.
    Type: Application
    Filed: December 21, 2010
    Publication date: June 30, 2011
    Inventors: Dong-Chul YOO, Byong-Ju KIM, Han-Mei CHOI, Ki-Hyun HWANG
  • Publication number: 20110155963
    Abstract: Water-soluble electrically conductive polymers and a composition comprising such polymers are provided. Also, an electrically conductive layer or film formed from the composition, and articles comprising the electrically conductive layer or film are provided. The electrically conductive polymers according to the present disclosure have one or more hydrophilic side chains. Hydrophilic side chains are covalently bonded to the conductive polymers, which allow the polymer to be stable at high temperature. Thus, the stability of electrical conductivity is prolonged. Depending on the concentration of hydrophilic side chains, the conductivity may be changed. The hydrophilic side chains provide a successful way to fabricate a ductile film exhibiting tunable conductivity. Furthermore, high levels of surface-resistance uniformity can be achieved in the field of coating technology that uses eco-friendly water-based solvents to uniformly and quickly coat the conductive polymer on to plastic film surfaces.
    Type: Application
    Filed: December 30, 2009
    Publication date: June 30, 2011
    Applicant: KOREA UNIVERSITY RESEARCH AND BUSINESS FOUNDATION
    Inventor: Dong Hoon CHOI
  • Publication number: 20110141661
    Abstract: A capacitor includes a plurality of electrode substrates, with each of the plurality of electrode substrates having a coated portion and an uncoated portion. The coated portion is coated with a coating material that includes a high surface area activated carbon material, a water soluble binder selected from the group consisting of: poly vinyl alcohol, poly acrylic acid, polymethacrylic acid, polyethylene oxide, polyacrylamide, poly-N-isopropylearylamide, poly-N,N-dimethylacrylamide, polyethyleneimine, polyoxyethylene, polyvinylsulfonic acid, poly (2-methoxyethoxyethoxyethylene), butadiene-acrylonitrile, and combinations thereof, and a water soluble thickener. A separator is inserted between adjacent substrates of the plurality of electrode substrates. The capacitor further includes an electrolyte. A method of manufacturing the capacitor is also provided.
    Type: Application
    Filed: August 6, 2010
    Publication date: June 16, 2011
    Applicant: INTERNATIONAL BATTERY, INC.
    Inventors: Milburn Ebenezer Jacob Muthu, Henry Meehan, David Paolazzi, Shanthi Korutla, David K. Whitmer
  • Publication number: 20110128668
    Abstract: An electrode of a semiconductor device includes a TiCN layer and a TiN layer. A method for fabricating an electrode of a semiconductor device includes preparing a substrate, forming a TiCN layer, and forming a TiN layer.
    Type: Application
    Filed: June 28, 2010
    Publication date: June 2, 2011
    Inventors: Kwan-Woo DO, Kee-Jeung Lee, Kyung-Woong Park, Jeong-Yeop Lee
  • Publication number: 20110129615
    Abstract: Apparatuses and processes for maskless deposition of electronic and biological materials. The process is capable of direct deposition of features with linewidths varying from the micron range up to a fraction of a millimeter, and may be used to deposit features on substrates with damage thresholds near 100° C. Deposition and subsequent processing may be carried out under ambient conditions, eliminating the need for a vacuum atmosphere. The process may also be performed in an inert gas environment. Deposition of and subsequent laser post processing produces linewidths as low as 1 micron, with sub-micron edge definition. The apparatus nozzle has a large working distance—the orifice to substrate distance may be several millimeters—and direct write onto non-planar surfaces is possible.
    Type: Application
    Filed: December 22, 2010
    Publication date: June 2, 2011
    Applicant: OPTOMEC, INC. FKA OPTOMEC DESIGN COMPANY
    Inventors: Michael J. Renn, Bruce H. King, Marcelino Essien, Gregory J. Marquez, Manampathy G. Giridharan, Jyh-Cherng Sheu
  • Publication number: 20110128667
    Abstract: In a semiconductor device including a carbon-containing electrode and a method for fabricating the same, an electrode has a high work function due to a carbon-containing TiN layer contained therein. It is possible to provide a dielectric layer having a high permittivity and thus to reduce the leakage current by forming an electrode having a high work function. Also, sufficient capacitance of a capacitor can be secured by employing an electrode having a high work function and a dielectric layer having a high permittivity.
    Type: Application
    Filed: December 29, 2009
    Publication date: June 2, 2011
    Inventors: Kwan-Woo Do, Kee-Jeung Lee, Young-Dae Kim, Mi-Hyoung Lee, Jeong-Yeop Lee
  • Publication number: 20110128666
    Abstract: The invention concerns a method for making a porous substrate-electrode complex (6) with load rate not less than 80% for a supercapacitor including at least the following steps: preparing a mixture containing at least one polymer (1), at least one liquid pore-forming plasticizer (3), and at least one active filler (2); extruding the mixture in paste form; depositing the paste on the substrate and laminating same; and treating the resulting complex to eliminate all or part of the plasticizer (3) and generate porosity in the electrode. The invention also concerns an electrode paste and a collector-electrode complex.
    Type: Application
    Filed: January 30, 2006
    Publication date: June 2, 2011
    Inventors: Hélène Drevet, Isabelle Rey, Michel Peillet, Frédèric Abribat
  • Publication number: 20110117361
    Abstract: Solvents for macromolecules generally believed to be insoluble in their pristine form are identified by generation of a ‘solvent resonance’ in the relationship between solvent quality (deduced by Rayleigh scattering) and an intrinsic property of solvents. A local extreme of the solvent resonance identifies the ideal intrinsic property of an ideal solvent which may then be used to select a particular solvent or solvent combination. A solvent for graphene is used in the production of transparent conductive electrodes.
    Type: Application
    Filed: January 7, 2009
    Publication date: May 19, 2011
    Inventors: James Hamilton, Philip V. Streich
  • Publication number: 20110109590
    Abstract: The present invention relates to a capacitive touch sensor and, more particulaly, to a capacitive touch sensor integrated with window panel. The capacitive touch sensor integrated with window panel according to the present invention a transparent window panel substrate; a non-conductive opaque decorative layer formed on a surface of the substrate along the edges of the substrate to define a transparent window area (W) on the substrate; a transparent electrode pattern layer formed over the window area (W) of the substrate and the decorative; and a conductive wiring pattern layer formed at an edge of the transparent electrode pattern layer. The conductive wire pattern layer is disposed in such a manner that it is concealed by the opaque decorative layer. As the touch sensor of the present invention is integrated with the window panel, no additional substrate (PET) on which transparent electrodes are patterned is not required and the thickness of the touch sensor is can be reduced.
    Type: Application
    Filed: March 30, 2009
    Publication date: May 12, 2011
    Inventor: Jae Bum Park
  • Publication number: 20110108950
    Abstract: A capacitor includes a first electrode. The first electrode includes a bottom conductive plane and a plurality of first vertical conductive structures. The bottom conductive plane is disposed over a substrate. The capacitor includes a second electrode. The second electrode includes a top conductive plane and a plurality of second vertical conductive structures. The capacitor includes an insulating structure between the first electrode and the second electrode. The first vertical conductive structures and the second vertical conductive structures are interlaced with each other thereby providing higher capacitance density.
    Type: Application
    Filed: June 29, 2010
    Publication date: May 12, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chewn-Pu JOU, Chen HO-HSIANG, Fred KUO, Tse-Hul LU
  • Publication number: 20110102968
    Abstract: In a multilayer structure and a method of forming the same, a conductive layer including a metal nitride and a dielectric layer positioned on a surface of the conductive layer and having a high dielectric constant. The metal nitride comprises one of niobium, vanadium and compositions thereof. Thus, the EOT and leakage current of the multilayer structure may be sufficiently improved.
    Type: Application
    Filed: July 16, 2010
    Publication date: May 5, 2011
    Inventors: Jae-Hyoung CHOI, Youn-Soo Kim, Jung-Hyeon Kim, Wan-Don Kim, Jae-Soon Lim, Sang-Yeol Kang
  • Publication number: 20110100793
    Abstract: The invention relates to an electrostatic actuation micro-switch of capacitor type composed of two plates, the first of which is a flexible membrane and the second of which comprises at least one control electrode, the two plates being separated by a thickness of vacuum or gas and at least one layer of at least one electrical insulating material situated on the control electrode characterized in that it furthermore comprises a charge drain consisting of oriented conducting nanotubes on the surface of the said electrode, the said drain being overlaid with the said layer of electrical insulating material. The subject of the invention is also a method for fabricating the micro-switch according to the invention.
    Type: Application
    Filed: November 2, 2010
    Publication date: May 5, 2011
    Applicant: THALES
    Inventors: Afshin ZIAEI, Matthieu LE BAILLIF
  • Patent number: 7935380
    Abstract: The present invention provides a method of producing an electrode for an electric double layer capacitor, which yields the electrode with an electrode layer having a higher density by calendering treatment. A method of producing an electrode for a capacitor, which comprises at least a current collector and an electrode layer on the current collector, the method comprising the steps of: applying an electrode layer coating material which comprises at least a carbon material, a binder and a solvent, onto the current collector to form an electrode coating layer; drying the electrode coating layer on the current collector to set the amount of the solvent remaining in the electrode coating layer within a range of 5 to 35% by weight of the layer; and subjecting the electrode coating layer after the drying to calendering treatment to yield an electrode layer.
    Type: Grant
    Filed: December 21, 2004
    Date of Patent: May 3, 2011
    Assignee: TDK Corporation
    Inventors: Kiyonori Hinoki, Kazuo Katai, Yousuke Miyaki, Hideki Tanaka
  • Publication number: 20110097478
    Abstract: A novel lead zirconium titanate (PZT) material having unique properties and application for PZT thin film capacitors and ferroelectric capacitor structures, e.g., FeRAMs, employing such thin film material. The PZT material is scalable, being dimensionally scalable, pulse length scalable and/or E-field scalable in character, and is useful for ferroelectric capacitors over a wide range of thicknesses, e.g., from about 20 nanometers to about 150 nanometers, and a range of lateral dimensions extending to as low as 0.15 ?m. Corresponding capacitor areas (i.e., lateral scaling) in a preferred embodiment are in the range of from about 104 to about 10?2 ?m2. The scalable PZT material of the invention may be formed by liquid delivery MOCVD, without PZT film modification techniques such as acceptor doping or use of film modifiers (e.g., Nb, Ta, La, Sr, Ca and the like).
    Type: Application
    Filed: December 23, 2010
    Publication date: April 28, 2011
    Applicant: Advanced Technology Materials, Inc.
    Inventors: Peter C. Van Buskirk, Jeffrey F. Roeder, Steven M. Bilodeau, Michael W. Russell, Stephen T. Johnston, Daniel J. Vestyck, Thomas H. Baum
  • Publication number: 20110090619
    Abstract: Multilayer ceramic chip capacitors which satisfy COG requirements and which are compatible with reducing atmosphere sintering conditions so that non-noble metals such as nickel and nickel alloys thereof may be used for internal and external electrodes are made in accordance with the invention. The capacitors exhibit desirable dielectric properties (high capacitance, low dissipation factor, high insulation resistance), excellent performance on highly accelerated life testing, and very good resistance to dielectric breakdown. The dielectric layers comprise a strontium zirconate matrix doped with other metal oxides such as TiO2, MgO, B2O3, CaO, Al2O3, SiO2, and SrO in various combinations.
    Type: Application
    Filed: November 15, 2010
    Publication date: April 21, 2011
    Applicant: FERRO CORPORATION
    Inventors: Walter J. Symes, JR., Mohammed H. Megherhi, Elisabeth W. J. Römer, Mike S. H. Chu, Willibrordus J. L. M. J. Coppens
  • Publication number: 20110090617
    Abstract: A method of fabricating a capacitor electrode. A stack structure is formed on a substrate, and the stack structure includes a first conductive layer, a first sacrificial layer, and a second sacrificial layer. The stack structure includes a first sidewall and a second sidewall facing the first sidewall. A conductive sidewall is formed on the first sidewall and the second sidewall to electrically connect the first conductive layer to the second conductive layer. Finally, the first and the second sacrificial layers are removed.
    Type: Application
    Filed: January 13, 2010
    Publication date: April 21, 2011
    Inventors: Shin-Bin Huang, Chung-Lin Huang
  • Publication number: 20110076567
    Abstract: A method for forming a lithium-ion type battery including the steps of forming, over an at least locally conductive substrate, an insulating layer having a through opening; successively and conformally depositing a stack comprising a cathode collector layer, a cathode layer, an electrolyte layer, and an anode layer, this stack having a thickness smaller than the thickness of the insulating layer; forming, over the structure, an anode collector layer filling the space remaining in the opening; and planarizing the structure to expose the upper surface of the insulating layer.
    Type: Application
    Filed: September 8, 2010
    Publication date: March 31, 2011
    Applicant: STMicroelectronics (Tours) SAS
    Inventor: Pierre Bouillon
  • Publication number: 20110070493
    Abstract: A current collector and an electric double layer capacitor including a current collector. The current collector has a conductive layer with an electrode-facing surface and an opposing second surface, each surface having an area, and a textured coating formed over and in contact with at least a majority of the electrode-facing surface.
    Type: Application
    Filed: September 24, 2009
    Publication date: March 24, 2011
    Inventors: Kishor Purushottam Gadkaree, Felipe Miguel Joos, James Robert Lim, Kamjula Pattabhirami Reddy, John Earl Tosch
  • Publication number: 20110051319
    Abstract: An oxidizer liquid containing an oxidizer, a surfactant substance, and an additive comprising a dopant anion and a cation derived from a basic substance is applied onto a base member. Then, this is exposed to a vapor of a precursor monomer of a conducting polymer. After that, the monomer of the conducting polymer is chemically polymerized on the base member.
    Type: Application
    Filed: August 26, 2010
    Publication date: March 3, 2011
    Applicant: SANYO ELECTRIC CO., LTD.
    Inventors: Kaori ISHIKAWA, Gaku HARADA
  • Publication number: 20110049673
    Abstract: Techniques for incorporating nanotechnology into decoupling capacitor designs are provided. In one aspect, a decoupling capacitor is provided. The decoupling capacitor comprises a first electrode; an intermediate layer adjacent to the first electrode having a plurality of nanochannels therein; a conformal dielectric layer formed over the intermediate layer and lining the nanochannels; and a second electrode at least a portion of which is formed from an array of nanopillars that fill the nanochannels in the intermediate layer. Methods for fabricating the decoupling capacitor are also provided, as are semiconductor devices incorporating the decoupling capacitor design.
    Type: Application
    Filed: August 26, 2009
    Publication date: March 3, 2011
    Applicant: International Business Machines Corporation
    Inventors: Satya N. Chakravarti, Dechao Guo, Huiming Bu, Keith Kwon Hon Wong
  • Patent number: 7897197
    Abstract: Disclosed are sintered bodies that include: (a) 30 to 100 mol % of NbOx, wherein 0.5<x<1.5; and (b) 0 to 70 mol % of MgO. The sintered bodies may be used as inert apparatuses in the production of niobium suboxide powder or niobium suboxide anodes, or as chemically resistant components in chemical apparatuses.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: March 1, 2011
    Assignee: H. C. Starck GmbH
    Inventors: Christoph Schnitter, Gerhard Wötting
  • Publication number: 20110038095
    Abstract: A conductive composition comprises a ? conjugated conductive polymer, a polyanion, and a hydroxy group-containing aromatic compound containing two or more hydroxy groups. An antistatic coating material comprises the conductive composition and a solvent. An antistatic coating is produced by applying the antistatic coating material. A capacitor comprises an anode composed of a porous valve metal body; a dielectric layer formed by oxidizing a surface of the anode; and a cathode formed on the dielectric layer, wherein the cathode has a solid electrolyte layer comprising the conductive composition.
    Type: Application
    Filed: October 21, 2010
    Publication date: February 17, 2011
    Applicant: SHIN-ETSU POLYMER CO., LTD.
    Inventors: Kazuyoshi Yoshida, Tailu Ning, Yasushi Masahiro, Rika Abe, Yutaka Higuchi
  • Publication number: 20110032659
    Abstract: A high density capacitor and low density capacitor simultaneously formed on a single wafer and a method of manufacture is provided. The method includes depositing a bottom plate on a dielectric material; depositing a low-k dielectric on the bottom plate; depositing a high-k dielectric on the low-k dielectric and the bottom plate; depositing a top plate on the high-k dielectric; and etching a portion of the bottom plate and the high-k dielectric to form a first metal-insulator-metal (MIM) capacitor having a dielectric stack with a first thickness and a second MIM capacitor having a dielectric stack with a second thickness different than the first thickness.
    Type: Application
    Filed: August 5, 2009
    Publication date: February 10, 2011
    Applicant: International Business Machines Corporation
    Inventors: James S. Dunn, Zhong-Xiang He, Anthony K. Stamper