Having Metal Particles Patents (Class 428/546)
  • Publication number: 20100266861
    Abstract: A method for producing a powder for a magnetic core, in which an alkoxide film formation step and a silicone resin film formation step are carried out to form an insulation film composed of an alkoxide film and a silicone resin film on the surface of a pure iron powder, wherein the alkoxide film formation step comprises immersing a pure iron powder in an alkoxide-containing solution which is prepared by mixing a Si alkoxide having at least one organic group having a polar group comprising at least one of N, P, S and O atoms and an Al alkoxide with a dehydrated organic solvent, and drying to remove the dehydrated organic solvent, thereby forming an alkoxide film comprising an Al—Si—O type composite oxide on the surface of the pure iron powder; and the silicone resin film formation step comprises immersing the pure iron powder having the alkoxide film formed thereon in a silicone resin-containing solution which is prepared by mixing a silicone resin with an organic solvent, and drying to remove the organic solv
    Type: Application
    Filed: October 30, 2008
    Publication date: October 21, 2010
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shin Tajima, Masaaki Tani, Daisuke Okamoto, Eisuke Hoshina, Hidefumi Kishimoto, Daisuke Ichigozaki
  • Patent number: 7815847
    Abstract: A process for mass production of three-dimensional articles made of intermetallic compounds based on titanium and aluminium by an electron beam melting technology. The articles are produced in successive sections from powders of the intermetallic compound with which the articles are to be produced. For each section, melting of the powders preceded by a preheating step is performed.
    Type: Grant
    Filed: July 7, 2007
    Date of Patent: October 19, 2010
    Assignees: Avio Investments S.p.A., Avioprop S.r.l.
    Inventors: Paolo Gennaro, Giovanni Paolo Zanon, Giuseppe Pasquero
  • Patent number: 7811545
    Abstract: The present invention is directed to a process for making nanoparticles of metals, metal alloys, metal oxides and multi-metallic oxides, which comprises the steps of reacting a metal salt dissolved in water with an alkali metal salt of C4-25 carboxylic acid dissolved in a first solvent selected from the group consisting of C5-10 aliphatic hydrocarbon and C6-10 aromatic hydrocarbon to form a metal carboxylate complex; and heating the metal carboxylate complex dissolved in a second solvent selected from the group consisting of C6-25 aromatic, C6-25 ether, C6-25 aliphatic hydrocarbon and C6-25 amine to produce the nanoparticles.
    Type: Grant
    Filed: November 23, 2005
    Date of Patent: October 12, 2010
    Assignee: Seoul National University Industry Foundation
    Inventors: Taeg-Hwan Hyeon, Jong-Nam Park
  • Publication number: 20100255998
    Abstract: A method for producing a Sn based alloy (15) comprising a metal matrix of a metal matrix material, wherein the metal matrix material comprises Sn, and inclusions of a compound material, further referred to as compound inclusions, wherein the compound material contains one element or a combination of elements of the group Ti, V, Zr, Hf, further referred to as dopant, and one or a plurality of other elements, in particular Sn, Cu and/or Nb. Particles of the metal matrix material, further referred to as matrix particles, are mixed with particles of the compound material, further referred to as compound particles, and the matrix particles and the compound particles are compacted during and/or after their mixing. A Sn based alloy containing finer compound inclusion of a dopant can be prepared, in order to produce Nb3Sn superconductor material with a superior current carrying capacity.
    Type: Application
    Filed: January 27, 2010
    Publication date: October 7, 2010
    Applicant: Bruker BioSpin AG
    Inventor: Florin Buta
  • Publication number: 20100247944
    Abstract: The invention relates to a metal matrix material made of a hydrogen-permeable metal 1 and a chemically stable metal 2 that is also hydrogen permeable, said matrix material having a structure comprised of a plurality of centers made of the metal 2 surrounded by the metal 1. The invention further relates to a method for the production of said matrix material, having the following steps: a. optionally pretreating the metal 1 and/or 2 b. coating metal 1 with a metal 2 to form a composite metal powder c. pressing the composite metal powder into the metal matrix material according to the invention in the form of a pressed body d. optionally deforming the pressed body thus obtained to form a molded body. The metal matrix material has a greater mechanical stability as compared to a conventionally coated metal film by virtue of a more homogeneous stress distribution during the change in volume of the metal phases as a result of hydrogen absorption and thermal expansion.
    Type: Application
    Filed: September 9, 2008
    Publication date: September 30, 2010
    Applicant: BAYER TECHNOLOGY SERVICES GMBH
    Inventors: Leslaw Mleczko, Juergen Kintrup, Ralph Weber, Andre Dammann, Rafael Warsitz, Aurel Wolf
  • Publication number: 20100215547
    Abstract: A chemical vapor sensor includes an polymer layer and a first stratum of electrically conductive particles partially embedded in the polymer layer. A second stratum of electrically conductive particles adheres to the first stratum of particles primarily through particle-to-particle attractive forces.
    Type: Application
    Filed: February 18, 2010
    Publication date: August 26, 2010
    Inventor: Patrick Dolan
  • Patent number: 7780876
    Abstract: A colloidal solution of fine particles of metal or alloy having an average grain size of 10 nm or more is provided which is heat treated to cause coloration, or a metal colloidal pigment having inherent color, a conductive paste material or a conductive ink for printed substrate electronic parts or the like based on a colloid prepared by dispersing fine metal particles at high concentration in a liquid is provided.
    Type: Grant
    Filed: April 18, 2005
    Date of Patent: August 24, 2010
    Assignee: National Institute for Materials Science
    Inventor: Isao Nakatani
  • Patent number: 7776450
    Abstract: A thermal spraying powder contains 30 to 50% by mass of chromium carbide with the remainder being an alloy containing chromium, aluminum, yttrium, and at least one of cobalt and nickel. The thermal spraying powder has an average particle size of 20 to 60 ?m. The thermal spraying powder may contain 20% by mass or less of yttrium oxide in place of a part of the alloy. A thermal spray coating obtained by thermal spraying of the thermal spraying powder, particularly, a thermal spray coating obtained by high-velocity flame spraying of the thermal spraying powder is suitable for the purpose of a hearth roll.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: August 17, 2010
    Assignee: Fujimi Incorporated
    Inventors: Hiroaki Mizuno, Satoshi Tawada, Isao Aoki, Noriyuki Yasuo, Tatsuo Suidzu, Sho Hashimoto
  • Publication number: 20100190024
    Abstract: Disclosed are sintered copper-based materials and methods for forming the same having a larger grain size than materials formed through conventional methods. A metal powder having copper is compressed, pre-heated, and then sintered. Then, the density of the once sintered copper-based material is sized to increase density and subjected to a second sintering act. The sintered copper-based materials have a grain size of at least 50 ?m.
    Type: Application
    Filed: January 26, 2010
    Publication date: July 29, 2010
    Applicant: NetShape Technologies, Inc
    Inventors: William L. Edwards, JR., David L. Freeman, JR.
  • Patent number: 7763362
    Abstract: Disclosed are cohesive metallic structures, comprising sintered metallic nanoparticles, suitable for shielding against electromagnetic interference and radio frequency interference. Also disclosed are methods for forming such structures. Devices for shielding electromagnetic radiation and methods of shielding electromagnetic radiation using such devices are also provided.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: July 27, 2010
    Assignee: PChem Associates, Inc.
    Inventors: Gregory A Jablonski, Michael A Mastropietro, Christopher J. Wargo
  • Publication number: 20100178190
    Abstract: The invention provides an accurate powder metal component having a body with opposed surfaces at least one of which has at least one projection of smaller cross-sectional area than the main portion of the body of the component. The distance from the free end of the projection to the opposite end of the component defines one dimension of the component that must be relatively accurate, in one embodiment to slide against and form a seal that inhibits liquid flow against another component of an assembly. In the manufacturing method, the powdered metal component is made by compaction to form the body including a projection at the end, is sintered and thereafter is reduced in the dimension between the end of the projection and the opposite end of the component by coining the free end of the projection so as to reduce the dimension to within a tolerance of the nominal specified dimension.
    Type: Application
    Filed: September 5, 2008
    Publication date: July 15, 2010
    Inventors: Gustavo Osvaldo Colombo, Carlos E. Camelo, Ian W. Donaldson
  • Publication number: 20100170653
    Abstract: Systems and methods for converting a powder to a solid mass are disclosed. A furnace is provided to melt the powder and deliver a stream of resulting molten material to a bed of beads on a vibratory conveyor. Cooling gas flows through nozzles positioned above and along the conveyor to cool the beads and liquid. The liquid solidifies and forms a solid mass, incorporating beads from the bed. The conveyor can be periodically stopped to produce a plurality of discrete solid masses. Masses and unincorporated beads fall into a collection container. Unincorporated beads pass through a screening device and are returned to the bed of beads. A make-up bead system adds beads to the bed as needed to maintain a suitable bed depth. In some embodiments, the powder and beads consist essentially of silicon, and the solid masses formed are suitable for preparing silicon ingots.
    Type: Application
    Filed: January 7, 2010
    Publication date: July 8, 2010
    Inventor: Robert J. Geertsen
  • Publication number: 20100167078
    Abstract: Disclosed are a method for fabricating nanopowders, nano ink containing the nanopowders and micro rods, and nanopowders containing nanoparticles, nano clusters or mixture thereof, milled from nano fiber composed of at least one kind of nanoparticles selected from a group consisting of metal, nonmetal, metal oxide, metal compound, nonmetal compound and composite metal oxide, nano ink containing the nanopowders and microrods, the method comprising spinning a spinning solution containing at least one kind of precursor capable of composing at least one kind selected from a group consisting of metal, nonmetal, metal oxide, metal compound, nonmetal compound and composite metal oxide, crystallizing or amorphizing the spun precursor to produce nano fiber containing at least one kind of nanoparticles selected from a group consisting of metal, nonmetal, metal oxide, metal compound, nonmetal compound and composite metal oxide, and milling the nano fiber to fabricate nanopowders containing nanoparticles, nano clusters or
    Type: Application
    Filed: December 23, 2009
    Publication date: July 1, 2010
    Inventors: Il Doo KIM, Seung hun CHOI
  • Publication number: 20100167079
    Abstract: The present invention provides a jetting process for the production of flakes with uniform size distribution to be used in pigments comprising the steps of ejecting molten metal from a jet head and collecting droplets of metal on a solid collecting substrate or collecting droplets of metal in or on a collecting substrate.
    Type: Application
    Filed: August 12, 2005
    Publication date: July 1, 2010
    Inventor: Ian Robert Wheeler
  • Patent number: 7745708
    Abstract: Peptide amphiphile compounds, compositions and methods for self-assembly or nanofibrous network formation under neutral or physiological conditions.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: June 29, 2010
    Assignee: Northwestern University
    Inventors: Samuel I. Stupp, Jeffrey D. Hartgerink, Elia Beniash
  • Publication number: 20100150826
    Abstract: The present invention relates to hydrogen generating microporous metals, methods for preparing microporous metals, and methods for producing hydrogen from water using the metals and systems of the invention. In particular, microporous metals selected from the group comprising aluminum (Al), magnesium (Mg), silicon (Si), Iron (Fe) and zinc (Zn), capable of producing hydrogen upon reaction of the metal with water having a neutral pH are provided. Methods for preparing microporous metals comprising the steps of selecting a metal that is sufficiently electropositive (i.e. water reactive); and introducing microporosity in the selected metal by means of mechanical deformation, or metallurgical techniques, in order to generate the microporous metal are also provided, as is a method for producing hydrogen comprising reacting a microporous metal powder with water at a pH of between 4 and 10.
    Type: Application
    Filed: August 9, 2006
    Publication date: June 17, 2010
    Applicant: THE UNIVERSITY OF BRITISH COLUMBIA
    Inventors: Tomasz Troczynski, Edith Czech
  • Publication number: 20100151266
    Abstract: The present invention relates to a method of producing a cemented carbide body comprising providing: (1) a grain refiner compound comprising a grain refiner and carbon and/or nitrogen, and, (2) a grain growth promoter, on at least one portion of the surface of a compact of a WC-based starting material comprising one or more hard-phase components and a binder, and then sintering the compact. The invention also relates to a cemented carbide body comprising a WC-based hard phase and a binder phase, wherein at least one part of an intermediate surface zone has a lower average binder content than a part further into the body, and at least one part of an upper surface zone has in average a larger average WC grain size than the intermediate surface zone. The cemented carbide body can be used as a cutting tool insert for metal machining, an insert for a mining tool, or a coldforming tool.
    Type: Application
    Filed: November 11, 2009
    Publication date: June 17, 2010
    Applicant: Sandvik Intellectual Property AB
    Inventor: Ioannis ARVANITIDIS
  • Publication number: 20100136358
    Abstract: The invention provides monodisperse ultra-fine metallic particles having a low degree of agglomeration and a high degree of crystallinity and oxidation resistance, and methods for forming such particles. The invention provides a method of controlling the size and size distribution of ultra-fine metal particles by regulating the pH of a polyol-type process. The methods of the invention make it possible to increase the metal loading in a polyol-type process without increasing particle size, enabling the production of ultra-fine metallic particles in high yield.
    Type: Application
    Filed: April 27, 2007
    Publication date: June 3, 2010
    Inventors: Daniel V. Goia, Daniel Andreescu, Brendan P. Farrell
  • Publication number: 20100126981
    Abstract: An electrically conductive coating composition is provided for use on aircraft and other substrate surfaces to prevent the formation of ice or to melt ice. The conductive coating composition may include a nanomaterial such as carbon nanotubes dispersed in a solvent which may be applied to a substrate surface to form a thin film which is resistively heatable. The conductive coating may also comprise a nanomaterial formed from carbon nanotubes or fullerenes grafted to a polymer containing an active functional group which renders a substrate surface icephobic and is also resistively heatable.
    Type: Application
    Filed: August 1, 2007
    Publication date: May 27, 2010
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Amy M. Heintz, Anne-Claire Christiaen, Bhima Rao Vijayendran, Joel D. Elhard, Ramanathan S. Lalgudi, Wayne B. Robbins, Abhishek Gupta, Jeffrey Cafmeyer
  • Patent number: 7718707
    Abstract: A set of nanoparticles is disclosed. Each nanoparticle of the set of nanoparticles is comprised of a set of Group IV atoms arranged in a substantially spherical configuration. Each nanoparticle of the set of nanoparticles further having a sphericity of between about 1.0 and about 2.0; a diameter of between about 4 nm and about 100 nm; and a sintering temperature less than a melting temperature of the set of Group IV atoms.
    Type: Grant
    Filed: August 21, 2007
    Date of Patent: May 18, 2010
    Assignee: Innovalight, Inc.
    Inventors: Maxim Kelman, Xuegeng Li, Pingrong Yu, Karel Vanheusden, David Jurbergs
  • Patent number: 7700246
    Abstract: A conductive photolithographic film and method of forming a device using the conductive photolithographic film. The method includes depositing a conductive photolithographic film on a top surface of a substrate; and patterning the conductive photolithographic film to create a desired circuit pattern using a lithographic process. The conductive photolithographic film comprising about 50% to about 60% of a mixture of epoxy acrylate, a thermal curing agent, and a conductive polymer; about 20% to about 30% of a lithographic reactive component; about 10% to about 15% of a photo-active material; and about 3% to about 5% of additives that enhance conductivity of the conductive photolithographic polymer.
    Type: Grant
    Filed: July 25, 2007
    Date of Patent: April 20, 2010
    Assignee: Intel Corporation
    Inventors: Rebecca Shia, Jack Tsung-Yu Chen
  • Publication number: 20100075170
    Abstract: A polycrystalline mesoscale component is provided that has an overall length L divided into multiple segments with a second segment extending from a first segment at a nonlinear angle. The first segment has a first segment height H1 and a first segment thickness T1, while the second segment has a second segment height H2 and a second segment thickness T1, with the lesser of H1 and H2 defining a minimum segment height Hmin and the lesser of T1 and T2 defining a minimum segment thickness Tmin. The resultant component has a ratio of L:Hmin:Tmin of 20-80:1:0.5-10 where Hmin is between 5 and 500 microns. In specific instances, the nonlinear angle is acute, the multiple segments are rectilinear in cross section, and a segment thickness has an edge resolution of between 0.1 and 2 microns. A process for forming a polycrystalline mesoscale component is provided that includes filling a mold cavity formed in a photoresist with a mold fill.
    Type: Application
    Filed: August 3, 2009
    Publication date: March 25, 2010
    Applicant: The Penn State Research Foundation
    Inventors: James H. Adair, Mary Frecker, Christopher Muhlstein, Eric Mockensturm, Randy S. Haluck, Abraham Mathew, Milton Aguirre, Rebecca Kirkpatrick, Chumpol Yuangyai
  • Publication number: 20100075169
    Abstract: A method for producing a weight comprising following steps: (a) grinding a barium sulfate ore into powder, (b) mixing the barium sulfate ore powder with dihydrolipoyl and solidifying agent, (c) extruding the mixture, and (d) die-casting the extruded mixture into a weight of a predetermined shape.
    Type: Application
    Filed: September 23, 2008
    Publication date: March 25, 2010
    Inventor: Xiaoyao Qiang
  • Publication number: 20100068547
    Abstract: A small diameter, elongated steel article, comprising fully consolidated, prealloyed metal powder is disclosed. The consolidated metal powder has a microstructure that has a substantially uniform distribution of fine grains having a grain size of not larger than about 9 when determined in accordance with ASTM Standard Specification E 112. The microstructure of the consolidated metal powder is further characterized by having a plurality of substantially spheroidal carbides uniformly distributed throughout the consolidated metal powder that are not greater than about 6 microns in major dimension and a plurality of sulfides uniformly distributed throughout the consolidated metal powder wherein the sulfides are not greater than about 2 microns in major dimension. A process for making the elongated steel article is also disclosed.
    Type: Application
    Filed: September 11, 2009
    Publication date: March 18, 2010
    Inventors: Olivier Schiess, Pierre Marechal, Gregory J. Del Corso
  • Publication number: 20100068548
    Abstract: A photo-absorbing layer for use in an electronic device; the layer including metal alloy nanoparticles copper, indium and/or gallium made preferably from a vapor condensation process or other suitable process, the layer also including elemental selenium and/or sulfur heated at temperatures sufficient to permit reaction between the nanoparticles and the selenium and/or sulfur to form a substantially fused layer. The reaction may result in the formation of a chalcopyrite material. The layer has been shown to be an efficient solar energy absorber for use in photovoltaic cells.
    Type: Application
    Filed: November 24, 2009
    Publication date: March 18, 2010
    Applicant: QUANTUMSPHERE, INC.
    Inventors: R. Douglas Carpenter, Kevin D. Maloney
  • Publication number: 20100055487
    Abstract: Disclosed is a process for the reprocessing or production of a sputter target or an X-ray anode wherein a gas flow forms a gas/powder mixture with a powder of a material chosen from the group consisting of niobium, tantalum, tungsten, molybdenum, titanium, zirconium, mixtures of two or more thereof and alloys thereof with at least two thereof or with other metals, the powder has a particle size of 0.5 to 150 ?m, wherein a supersonic speed is imparted to the gas flow and the jet of supersonic speed is directed on to the surface of the object to be reprocessed or produced.
    Type: Application
    Filed: April 28, 2006
    Publication date: March 4, 2010
    Applicant: H.C. STARCK GMBH
    Inventors: Stefan Zimmermann, Uwe Papp, Heinrich Kreye, Tobias Schmidt
  • Publication number: 20100047610
    Abstract: In a food processing line, the equipment which is likely to fragment on breakage contains magnetically susceptible particles which are separated from the food by a magnetic separation stage. When the equipment is a starch carrying tray, the moulding mix contains 5-50% of magnetic filler, such as magnetite. Reinforcement with glass fibre and jute fibre modifies the compositions for moulding the trays. Moulding mixes based on polypropylene and thermosetting resins are described. A processing line using starch trays has a conveyor for food items and a conveyor for the starch in which the food items are moulded. Both have magnetic separators.
    Type: Application
    Filed: October 29, 2009
    Publication date: February 25, 2010
    Inventors: Donald Bruce MAY, Sharon MAY
  • Patent number: 7666519
    Abstract: A high temperature sliding alloy has a matrix 1 of a Ni-base alloy or a heat resistant Fe-base alloy, and contains, by mass, 1 to 35% hard particles consisting of a Co-base intermetallic compound dispersed therein, wherein 0.1 to 10% Ag is dispersed in the matrix. Ag is a soft metal, forms an ultrathin film on a sliding surface caused by sliding with a mating member, and presents a lubricating effect. When Ag forms the ultrafine film and spreads on the sliding surface, it works little as a frictional force against the mating member due to its low shear resistance, and accordingly can achieve a low coefficient of friction.
    Type: Grant
    Filed: April 25, 2006
    Date of Patent: February 23, 2010
    Assignee: Daido Metal Company Ltd.
    Inventor: Kouki Ozaki
  • Publication number: 20100035087
    Abstract: The present invention relates to ferromagnetic metal particles having an average major axis diameter (L) of 10 to 100 nm which satisfy a relationship between the average major axis diameter (L) and a particle SFD represented by the following formula: Particle SFD?0.0001 L2?0.0217 L+1.75; a process for producing the ferromagnetic metal particles; and a magnetic recording medium using the ferromagnetic metal particles.
    Type: Application
    Filed: August 5, 2009
    Publication date: February 11, 2010
    Applicant: TODA KOGYO CORPORATION
    Inventors: Hiroko Morii, Keisuke Iwasaki, Seiji Ishitani, Mineko Ohsugi, Shinji Horie, Toshiharu Harada, Takehiro Matsuo, Yosuke Yamamoto, Kazuyuki Hayashi
  • Publication number: 20100035077
    Abstract: A method of forming a powder metal forging, including the steps of: forming a preform including a sintered powder metal composition; inserting the preform in a die set having a bottom die and a top die, the die set defining a forge form therewithin, the die set being in a closed position wherein the top die is contacting the bottom die; and compressing the preform in the forge form using an upper punch and a lower punch, the compressing step resulting in a formed part. The closed die set minimizes or eliminates flash in the formed part, particularly in the contoured surfaces, which allows the forging to be through hardened by direct quenching after the forging operation, without the need to remove hardened flash from these surfaces.
    Type: Application
    Filed: February 8, 2008
    Publication date: February 11, 2010
    Inventors: Alfred J. Chiesa, David E. Lenhart, JR.
  • Patent number: 7641983
    Abstract: Medical devices, such as endoprostheses, and methods of making the devices are disclosed. In some embodiments, a medical device includes a composite having a metallic matrix and a plurality of particles in the matrix, the particles and the matrix having different compositions.
    Type: Grant
    Filed: April 4, 2005
    Date of Patent: January 5, 2010
    Assignee: Boston Scientific SciMed, Inc.
    Inventor: Jonathan S. Stinson
  • Publication number: 20090305073
    Abstract: A platinum-free and palladium-free conductive adhesive includes silver particles, additive metal particles and a binder. Components of the additive metal particles are selected from the group consisting of tungsten, niobium, tantalum and molybdenum etc., and do not contain platinum and palladium. The binder adheres the silver particles and the additive metal particles together. A specific weight percentage of the additive metal particles in a mixture of the silver particles and the additive metal particles ranges from 1 to 70. The presence of the additive metal particles can suppress silver migration. An electrode formed by the conductive adhesive is also disclosed.
    Type: Application
    Filed: September 4, 2008
    Publication date: December 10, 2009
    Inventors: Wei-Hsing Tuan, Shao-Ju Shih, Shu- Ting Kuo
  • Publication number: 20090291317
    Abstract: A laminated electronic component includes outer terminal electrodes including lower plating films including metal particles having an average size of 0.5 ?m or less, the lower plating films being formed by directly plating an outer surface of an electronic component body such that the lower plating films are electrically connected to exposed portions of inner conductors. The outer terminal electrodes may further include upper plating films formed on the lower plating films, the upper plating films being defined by one or more layers. Metal particles defining the upper plating films may have an average size of 0.5 ?m or less. The metal particles defining the lower plating films may be Cu particles.
    Type: Application
    Filed: May 15, 2009
    Publication date: November 26, 2009
    Applicant: Murata Manufacturing Co., Ltd.
    Inventors: Kenichi KAWASAKI, Shunsuke TAKEUCHI, Akihiro MOTOKI, Makoto OGAWA, Toshiyuki IWANAGA
  • Patent number: 7601324
    Abstract: The method for synthesizing metal oxide nanopowder produces powders of nanoparticle size from metals having relatively low boiling temperatures, such as zinc, tellurium, bismuth, and strontium by vapor-phase oxidation using a conventional 2.45 GHz microwave oven. The energy that initiates the combustion comes from the microwave through a susceptor tube that absorbs radiant microwave energy and transfers it to the metal, which evaporates to small particles inside the susceptor tube and then combusts in air to form nanosize powder. The susceptor is made of silicon carbide composite material.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: October 13, 2009
    Assignee: King Fahd University of Petroleum and Minerals
    Inventor: Saleh I. Al-Quraishi
  • Publication number: 20090239091
    Abstract: A method for printing a metal paste includes the step of arranging, to locate a through hole of a metal mask having the through hole on an electrode, a metal mask on a substrate and forming a gap portion communicating with the through hole in an interface between the substrate and the metal mask. According to this method, in filling of a metal paste, a flux oozing on a surface of the metal paste can be moved to the gap portion. In other words, a deaeration path for residual air in the metal paste clogged by the flux can be secured by removing the flux. In this manner, in the through hole, the remaining air in the metal paste can be removed, and a filling rate of the metal paste can be increased.
    Type: Application
    Filed: February 27, 2009
    Publication date: September 24, 2009
    Applicant: NEC ELECTRONICS CORPORATION
    Inventor: Masaaki Abe
  • Publication number: 20090202855
    Abstract: A bearing material including a Cu—Sn—Bi alloy layer and method of construction thereof is provided. The alloy layer has a porosity ranging from about 2% to about 10%. A majority of the porosity has pores separate and out of direct communication with one another such that the pores are not interconnected with one another. The alloy layer can be sintered to a metal backing layer, and can be shaped as desired for an intended bearing application.
    Type: Application
    Filed: January 8, 2009
    Publication date: August 13, 2009
    Inventors: David M. Saxton, Eric Konieczny, Robert Sturk
  • Publication number: 20090162685
    Abstract: Provided is a rolled copper or copper alloy foil having a roughened surface formed of fine copper particles, obtained by subjecting a rolled copper or copper alloy foil to roughening plating with a plating bath containing copper sulfate (Cu equivalent of 1 to 50 g/L), 1 to 150 g/L of sulfuric acid, and one or more additives selected among sodium octyl sulfate, sodium decyl sulfate, and sodium dodecyl sulfate under the conditions of a temperature of 20 to 50° C. and a current density of 10 to 100 A/dm2. The provided rolled copper or copper alloy foil subject to roughening is reduced in craters which are obvious defects unique to rolled copper or copper alloy foils having a roughened surface, has high strength, adhesive strength with the resin layer, acid resistance and anti-tin plating solution properties, high peel strength, favorable etching properties and gloss level, and also suits for use in producing a flexible printed wiring board capable of bearing a fine wiring pattern.
    Type: Application
    Filed: June 11, 2007
    Publication date: June 25, 2009
    Applicant: NIPPON MINING & METALS CO., LTD.
    Inventors: Yousuke Kobayashi, Atsushi Miki, Keisuke Yamanishi
  • Publication number: 20090136776
    Abstract: A split case die is used to press powder, wherein the die parts are moveable in a direction non-parallel to the direction of the pressing axis. The part produced by such a split case die has an external surface with parting line marks oriented in a direction non-perpendicular to the pressing axis.
    Type: Application
    Filed: November 27, 2007
    Publication date: May 28, 2009
    Applicant: Kennametal Inc.
    Inventors: Richard J. Gubanich, Edward M. Dinco, Kent P. Mizgalski
  • Patent number: 7534287
    Abstract: The present invention is directed to porous composite materials comprised of a porous base material and a powdered nanoparticle material. The porous base material has the powdered nanoparticle material penetrating a portion of the porous base material; the powdered nanoparticle material within the porous base material may be sintered or interbonded by interfusion to form a porous sintered nanoparticle material within the pores and or on the surfaces of the porous base material. Preferably this porous composite material comprises nanometer sized pores throughout the sintered nanoparticle material. The present invention is also directed to methods of making such composite materials and using them for high surface area catalysts, sensors, in packed bed contaminant removal devices, and as contamination removal membranes for fluids.
    Type: Grant
    Filed: December 10, 2007
    Date of Patent: May 19, 2009
    Assignee: Entegris, Inc.
    Inventors: Robert Zeller, Christopher Vroman
  • Patent number: 7521128
    Abstract: Methods for the use of nanocrystalline or amorphous metals or alloys as coatings with industrial processes are provided. Three, specific, such methods have been detailed. One of the preferred embodiments provides a method for the high volume electrodeposition of many components with a nanocrystalline or amorphous metal or alloy, and the components produced thereby. Another preferred embodiment provides a method for application of a nanocrystalline or amorphous coatings in a continuous electrodeposition process and the product produced thereby. Another of the preferred embodiments of the present invention provides a method for reworking and/or rebuilding components and the components produced thereby.
    Type: Grant
    Filed: May 18, 2006
    Date of Patent: April 21, 2009
    Assignee: Xtalic Corporation
    Inventors: Christopher Schuh, Alan Lund
  • Publication number: 20090098402
    Abstract: Disclosed are a nanocrater catalyst in metal nanoparticles with a nanocrater form of hole structure in center of the catalyst which is useful for manufacturing nano-sized materials and/or articles with desired structure and characteristics, a preparation method thereof including a plasma etching and chemical etching process (“PTCE process”), and nano-sized materials and/or articles manufactured by using the nanocrater catalyst in metal nanoparticles.
    Type: Application
    Filed: December 12, 2007
    Publication date: April 16, 2009
    Inventors: Jeung-Ku Kang, Augustine Saji, Jung-Woo Lee, Weon-Ho Shin, Kyu-Sung Han, Jung-Hoon Choi
  • Publication number: 20090047538
    Abstract: A method for production of a bead single crystal includes heating at least one wire using electron beam heating to form the bead single crystal. The bead single crystal is advantageously produced by the electron beam heating of the at least one wire in vacuo. Bead single crystals comprising Ag, Al, Cr, Cu, Ir, Mo, Nb, Ni, Pd, Pt, Re, Rh, Ru, Ta, W or metal alloys, in particular, Ag/Au, Pt/Rh or Pt/Re alloys are advantageously produced by the method. The bead single crystals are preferably used in surface research, thin layer technology and electrochemistry.
    Type: Application
    Filed: July 5, 2006
    Publication date: February 19, 2009
    Inventors: Bert Voigtlaender, Udo Linke, Helmut Stollwerk
  • Publication number: 20090038362
    Abstract: A refractory metal plate is provided. The plate has a center, a thickness, an edge, a top surface and a bottom surface, and has a crystallographic texture (as characterized by through thickness gradient, banding severity; and variation across the plate, for each of the texture components 100//ND and 111//ND, which is substantially uniform throughout the plate.
    Type: Application
    Filed: August 5, 2008
    Publication date: February 12, 2009
    Inventors: Peter R. Jepson, Dincer Bozkaya
  • Publication number: 20090042050
    Abstract: The invention refers to a method and an apparatus for fabricating a tridimensional solid object by sintering inorganic particles of controlled size distribution. The particles are directed onto a target area in a powdery stream in the shape of a conical surface which is coaxial to a simultaneous heating flux while an at least bidimensional relative movement is maintained between the target area, the powdery stream and the heating flux. As a result the particles sinterization occurs in a single operation directly onto the target area. The resulting tridimensional solid objects are also claimed.
    Type: Application
    Filed: November 18, 2004
    Publication date: February 12, 2009
    Inventors: Paolo Matteazzi, Hinrich Becker
  • Publication number: 20090023007
    Abstract: An object of the present invention is to provide highly crystalline silver powder which is characterized in fine particles, showing high dispersibility, it's particle size distribution is not excessively sharp but relatively broad and crystallites are large; and a method for producing the same. In order to achieve the object, a method for producing highly crystalline silver powder is characterized in that mixing a first aqueous solution and a second aqueous solution, wherein the first aqueous solution contains silver nitrate, a dispersing agent and nitric acid, and the second solution contains ascorbic acid. For dispersing agent, polyvinylpyrrolidone or gelatin is preferred. Highly crystalline silver powder produced by the above-described method is preferred to be a crystallite diameter of 300 ? or more, an average particle diameter D50 in the range from 0.5 ?m to 10 ?m, and a thermal shrinkage rate for the length direction after heating at 700° C. in the range from ?3% to 3%.
    Type: Application
    Filed: February 4, 2005
    Publication date: January 22, 2009
    Applicant: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Taku Fujimoto, Takuya Sasaki, Katsuhiko Yoshimaru, Hiroyuki Shimamura
  • Publication number: 20090018010
    Abstract: The invention is related to a boride of a metal of transition group four of the periodic table of the elements, wherein at least 40 wt. % of the particles have a grain size of more than 106 ?m, determined by sieve analysis according to ASTM B 214, and these particles consist of grown, monocrystalline grains. The invention also relates to a cermet, wettable powder and a surface coating which contain the boride. The invention further relates to a process to prepare the boride. The invention additionally relates to a process to prepare a cermet or a wettable powder.
    Type: Application
    Filed: December 7, 2006
    Publication date: January 15, 2009
    Applicant: H.C. Starck GmbH & Co. KG
    Inventors: Frank Schrumpf, Wolfgang Kiliani, Stefan Frassle, Thomas Schmidt
  • Patent number: 7459219
    Abstract: An item made of wear resistant material, the item, in certain aspects, made by a method including forming a mass of wear resistant material, the wear resistant material comprising at least one element from the group consisting of arsenic, antimony, cerium and bismuth, wherein the at least one element is present by weight as between 0.01% to 0.0001% of a total weight of the wear resistant material, wherein the wear resistant material includes by weight percent chromium 29.10-30.00%; nickel 5.00-6.00%; titanium 1.00-2.10%; boron 3.00-3.90%; silicon 1.00-2.10%; manganese 1.10-2.00%; iron-balance.
    Type: Grant
    Filed: April 1, 2005
    Date of Patent: December 2, 2008
    Inventors: Jimmie Brooks Bolton, Billi Marie Rogers
  • Publication number: 20080292897
    Abstract: A wear-resistant component of a carbon seal includes a surface and a coating applied onto the surface. The coating is a chromium carbide-nickel chromium composition constituting between about 75% and about 85% by weight chromium carbide and between about 15% and about 25% by weight nickel chromium. The chromium carbide-nickel chromium composition is applied onto the surface by high velocity oxy-fuel spraying (HVOF).
    Type: Application
    Filed: May 22, 2007
    Publication date: November 27, 2008
    Applicant: United Technologies Corporation
    Inventors: Eli N. Ross, Paul H. Zajchowski
  • Patent number: 7455905
    Abstract: The present invention concerns a high purity, annealed iron powder suitable for the preparation of soft magnetic composites. The powder is distinguished in that the content of inevitable impurities is less than 0.30% by weight, the oxygen content is less than 0.05% by weight, and the specific surface area as measured by the BET method is less than 60 m2/kg.
    Type: Grant
    Filed: September 8, 2004
    Date of Patent: November 25, 2008
    Assignee: Höganäs AB
    Inventors: Zhou Ye, Ola Andersson
  • Publication number: 20080274900
    Abstract: A method of manufacturing a sintered body, which is a method of manufacturing a sintered body containing Mg and B, comprises the arrangement and heat treatment steps of arranging Mg powder (3a, 3b) and B powder (2) without mixing the Mg powder and the B powder with each other and heat-treating the Mg powder (3a, 3b) and the B powder (2) after the arrangement step. The temperature in the heat treatment step is at least 651° C. and not more than 1107° C. Thus, the critical current density can be improved.
    Type: Application
    Filed: October 25, 2005
    Publication date: November 6, 2008
    Inventors: Jun-ichi Shimoyama, Takeshi Kato