Having Metal Particles Patents (Class 428/546)
  • Patent number: 5695691
    Abstract: The present invention concerns finely divided particles of compounds that provide flame retardancy and/or smoke suppressant properties to fibers, textiles, polymeric articles, paper, paint, coating and insulation. More particularly, the present invention concerns colloidal-sized particles of hydrated salts, organic phosphates, metal borates, polyamides, solid halogenated flame retardants with a melting point greater than 250.degree. C., molybdenum compounds, metallocenes, antimony compounds, zinc compounds, bismuth compounds and other solid chemicals which act as flame retardants or smoke suppressants. The present invention also concerns various milling processes to reduce these materials to colloidal sizes and to disperse them in water, organic liquids and meltable solids.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: December 9, 1997
    Assignee: Anzon, Inc.
    Inventors: John McLaughlin, Philip S. Podwirny, John C. Morley
  • Patent number: 5679466
    Abstract: A particle dispersed glassy material includes ultrafine metal particles that are present in a high concentration. The particles are surrounded by a fixation component and, optionally, can be surrounded by a skeleton forming component. The glassy material is produced by firing a substrate having a film thereon that includes a polymer composite having the ultrafine particles uniformly dispersed therein, a fixation reagent and, optionally, a skeleton forming reagent under relatively mild conditions that do not damage the substrate. A method of making the glassy material includes the steps of making a film-forming composition that includes the polymer composite, the fixation reagent and, optionally, the skeleton forming reagent, applying the composition to a substrate, drying the applied composition to produce a film and firing the film to produce the glassy material.
    Type: Grant
    Filed: March 13, 1996
    Date of Patent: October 21, 1997
    Assignee: Mitsuboshi Belting, Ltd.
    Inventors: Toru Noguchi, Kazuo Goto, Sigehiko Hayashi, Masahito Kawahara, Susumu Murakami, Yoshio Yamaguchi, Shigehito Deki
  • Patent number: 5678168
    Abstract: A system of two thick film pastes containing gold, in which the first paste is deposited directly onto a substrate, and the second is deposited directly onto the first, contain Cr.sub.2 O.sub.3 and Bi.sub.2 O.sub.3, which enhance the adhesion to the substrate of the first deposited paste and the solderability of the second deposited paste.
    Type: Grant
    Filed: November 13, 1995
    Date of Patent: October 14, 1997
    Assignee: National Starch and Chemical Investment Holding Corporation
    Inventors: Orville W. Brown, David J. Nabatian
  • Patent number: 5618397
    Abstract: Metal silicide targets are provided for sputtering which have a density of at least 99%, no more than one coarse silicon phase 10 .mu.m or larger in size that appears, per square millimeter, on the sputter surface, and an oxygen content of at most 150 ppm. They are made by a method which comprises finely grinding a synthesized silicide powder, vacuum annealing the finely ground powder in a hot press die without the application of pressure, and thereafter compacting and sintering the compact to a density of at least 99% by hot pressing. Alternatively, the finely ground powder is vacuum annealed as a presintered body at a density ratio of 50 to 75%, and thereafter is compacted and sintered.
    Type: Grant
    Filed: April 17, 1995
    Date of Patent: April 8, 1997
    Assignee: Japan Energy Corporation
    Inventors: Osamu Kano, Yasuhiro Yamakoshi, Junichi Anan, Koichi Yasui
  • Patent number: 5594933
    Abstract: The invention relates to a magnetoresistance material, i.e. a conductive material that exhibits magnetoresistance, which is an inhomogeneous system consisting of a nonmagnetic matrix and ultrafine particles of a ferromagnetic material such as Co or Ni--Fe--Co dispersed in the nonmagnetic matrix. With the aim of reducing deterioration of the magnetoresistance effect, an alloy or mixture of at least two metal elements selected from Cu, Ag, Au and Pt is used as the material of the nonmagnetic matrix. Optionally, the nonmagnetic matrix may contain a limited quantity of a supplementary element selected from Al, Cr, In, Mn, Mo, Nb, Pd, Ta, Ti, W, V, Zr and Ir. A film of the magnetoresistance material can be formed on a substrate, and it is optional to interpose a buffer layer between the film and the substrate and/or cover the film with a protective layer.
    Type: Grant
    Filed: June 30, 1995
    Date of Patent: January 14, 1997
    Assignee: NEC Corporation
    Inventors: Kazuhiko Hayashi, Hidefumi Yamamoto, Junichi Fujikata, Kunihiko Ishihara
  • Patent number: 5589118
    Abstract: Iron-rich-material waste products, such as electric arc furnace dust, are formed with an organic binder into discrete shapes, such as briquettes. The shapes can then be used in iron and steel making processes and the iron and heavy metal values in the waste product recovered.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: December 31, 1996
    Assignee: Covol Technologies, Inc.
    Inventors: George W. Ford, Jr., Richard C. Lambert, Russell G. Madsen
  • Patent number: 5590392
    Abstract: A corrosion-resistant material for the construction of a member destined to contact molten metal comprises a matrix of a refractory metal and a powder of the oxide of at least one metallic element selected from the group consisting of the same metallic element as the molten metal and metallic elements having lower levels of free energy for the formation of an oxide than the molten metal, the powder of the oxide being dispersed and disposed in the matrix. The refractory metal is W, Mo, Ta, Nb, or Re. The metal oxide is selected from the rare earth metal oxides, namely the oxides of the same metallic elements as the molten metals, and the oxides of Ti, Cr, and Zr.
    Type: Grant
    Filed: February 22, 1995
    Date of Patent: December 31, 1996
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yutaka Ishiwata, Yoshiyasu Itoh
  • Patent number: 5590393
    Abstract: The invention relates to a neutron-absorbing material and to its production process.This material comprises a homogeneous, boron carbide matrix 1 in which are dispersed e.g. pseudospherical, 150 to 500 .mu.m , calibrated clusters 3 of boride such as HfB.sub.2, in order to prevent the propagation of cracks F in the material and improve its thermal shock resistance.
    Type: Grant
    Filed: February 7, 1995
    Date of Patent: December 31, 1996
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Guy M. Decroix, Dominique Gosset, Bernard Kryger
  • Patent number: 5585195
    Abstract: A metal insert at least partially embedded in a molded resin mass comprises a metal insert blank, and a substantial amount of nickel or nickel alloy granulations produced over a surface of the metal insert blank, and the size of the granulations is at most 1.0 .mu.m. The metal insert blank is treated by a first electrolytic plating process such that a substantial quantity of copper nuclei spreaded over the surface, and the copper nuclei are grown up as the nickel or nickel alloy granulations by a second electrolytic-plating process. The first electrolytic-plating process is controlled such that an average thickness of plating is from about 0.5 to about 1.0 .mu.m, and the second electrolytic-plating process is controlled such that an average thickness of plating is from about 0.5 to about 1.5 .mu.m.
    Type: Grant
    Filed: July 12, 1993
    Date of Patent: December 17, 1996
    Assignee: Shinko Electric Industries Company, Limited
    Inventor: Toshihiko Shimada
  • Patent number: 5581799
    Abstract: A brazeable aluminum material is composed of an aluminum core and a brazing agent layer consisting of a brazing agent thermally sprayed onto and covering a surface of the core. A number of unmolten minute particles of the brazing agent are present in the brazing agent layer, which contains at least an aluminum-silicon alloy and/or a mixture of aluminum and silicon. Characteristic features of a method of producing the brazeable aluminum material are the steps of: preparing a powder composed of minute particles; and thermally spraying the powder onto the aluminum core in such a state that only a surface of each minute particle is molten, with a pith of the particle remaining unmolten. The powder is an Al-Si alloy and/or a mixture of Al powder and Si powder.
    Type: Grant
    Filed: May 15, 1995
    Date of Patent: December 3, 1996
    Assignee: Showa Aluminum Corporation
    Inventors: Takashi Terada, Masahiro Kojima, Taizo Morita, Katsuyuki Arakawa, Ichiro Iwai, Masakazu Furuta
  • Patent number: 5580665
    Abstract: An article essentially consisting of one or more of Ti-Al intermetallic compounds is fabricated so as to have a volume ratio of voids no more than 3.5%, by preparing a mixture of materials selected from a group consisting of Ti, Ti alloys, Al, Al alloys, and Ti-Al compounds, having a composition suitable for forming a desired Ti-Al intermetallic compound, and heating said mixture so that said mixture may be sintered. Typically, the temperature and pressure for the heating or sintering process is appropriately selected so that the desired porosity may be obtained. The mechanical strength of an article according to the present invention is not only improved but is highly predictable, or, in other word, highly reliable. The fabrication costs can be reduced because the fabrication process involves only relatively low temperatures when pressing and heating the work at the same time.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: December 3, 1996
    Assignee: NHK Spring Co., Ltd.
    Inventors: Kohei Taguchi, Michihiko Ayada, Hideo Shingu
  • Patent number: 5580666
    Abstract: A multi-phase cemented ceramic article, method of making same, and the material thereof is disclosed which is useful for machining and forming of metals, including ferrous metals, titanium, aluminum and other metals. The article and its material preferably includes novel microstructures including platelets, a range of grain sizes which yields superior hardness and other characteristics, and a lower tungsten concentration within the binder phase than has been seen in the prior art. The preferred composition includes ultrafine WC, an ultrafine solid solution of (Ti, Ta, W)C, and a cobalt binder. Platelets are formed in-situ, eliminating the need to add them during manufacture for improving toughness.
    Type: Grant
    Filed: January 20, 1995
    Date of Patent: December 3, 1996
    Assignee: The Dow Chemical Company
    Inventors: Ellen M. Dubensky, Stephen D. Dunmead, Daniel F. Carroll
  • Patent number: 5577263
    Abstract: A method for producing a composite element by causing a stream of gaseous rhenium hexafluoride to flow onto a carbon substrate in a chemical vapor deposition reaction. A flow of hydrogen gas causes a reduction of the rhenium hexafluoride to rhenium metal to thereby deposit a uniform layer of rhenium metal onto the surface of the carbon substrate. A fine grain rhenium coating on carbon is produced having an average particle diameter of from about 0.1 to about 25 micrometers. The elements may be used alone or several of them may be bonded together into various articles. Such elements and articles are useful as light weight, high temperature strength, corrosive gas resistant structural elements.
    Type: Grant
    Filed: March 22, 1995
    Date of Patent: November 19, 1996
    Assignee: AlliedSignal Inc.
    Inventor: Gary A. West
  • Patent number: 5573607
    Abstract: A metal matrix composite of aluminum, magnesium or titanium, and their alloys, containing particles of a silicon boride composition. A preferred form of the boride is silicon hexaboride. A small amount of carbon can be present in the silicon boride composition as Si--B--C. The particles can be pre-blended with particles of the metal prior to melting, or can be added after the melting of the metal. Because of the similar specific gravity of silicon boron compounds and aluminum, very little stirring is required to achieve a homogeneous mixture in the melt. This substantially reduces formation of oxide and hydrogen inclusions. Improved machinability is achieved through utilization of rounded particles. The composite has improved strength, stiffness and reduced thermal coefficient of expansion, thus making the composite composition more useful in industry.
    Type: Grant
    Filed: May 6, 1995
    Date of Patent: November 12, 1996
    Assignee: Millennium Materials, Inc.
    Inventor: Samuel C. Weaver
  • Patent number: 5564066
    Abstract: To manufacture a reflector formed by a reflective metallic layer on a metallic matrix composite support, a metallic layer having a reflective surface whose shape is at least approximately identical to the required geometrical shape is disposed on a mold surface having a geometrical shape complementary to the required geometrical shape of the reflector. Fibers to constitute the composite support are draped on the metallic layer. They are metallized by the metallic or intermetallic material to form the metallic matrix. This layer and the metallized fibers are subjected to temperature and pressure conditions adapted to press the reflective surface strongly against the mold surface and to cause diffusion welding of the layer with the metallized fibers and of the metallized fibers with themselves so as to integrate the layer to the composite support during consolidation of the latter.
    Type: Grant
    Filed: May 25, 1995
    Date of Patent: October 8, 1996
    Assignee: Societe Nationale Industrielle et Aerospatiale
    Inventor: Henri Abiven
  • Patent number: 5551997
    Abstract: Disclosed is a practical aluminum based alloy containing 1 to 99 weight percent beryllium, and improved methods of semi-solid processing of aluminum alloys containing beryllium. The present methods avoid molten beryllium, agitation of molten aluminum-beryllium alloys and the need for introducing shear forces by utilizing atomized or ground particles of beryllium mixed with solid, particulate or liquidus aluminum.
    Type: Grant
    Filed: March 31, 1994
    Date of Patent: September 3, 1996
    Assignee: Brush Wellman, Inc.
    Inventors: James M. Marder, Warren J. Haws
  • Patent number: 5549975
    Abstract: A coated tool consisting of a cermet body and a refining layer thereon. The refining layer is a wear resistant layer of (Ti, Me) N, wherein Me is at least one metal which forms a stable oxide at a temperature above 700.degree. C.
    Type: Grant
    Filed: July 20, 1994
    Date of Patent: August 27, 1996
    Assignee: Balzers Aktiengesellschaft
    Inventors: Hans Schulz, Josef Maushart
  • Patent number: 5549951
    Abstract: Ultrafine whiskery or columnar ceramic particles, a method for producing the ultrafine particles, and a sintered article obtained by sintering the ultrafine ceramic particles are disclosed. The ultrafine ceramic particles are produced by thermally melting a matrix alloy of a composition of Al--M.sup.1, wherein M.sup.1 stands for at least one metallic element selected from the group consisting of Cr, Co, and Fe, or Al--M.sup.1 --M.sup.2, wherein M.sup.2 stands for at least one metallic element selected from the group consisting of Au, Cu, Dy, Er, Ga, Ge, Gd, Hf, Ho, Lu, Mn, Mo, Nb, Nd, Ni, Pr, Re, Sb, Sc, Si, Sn, Ta, Tb, Ti, Tm, V, W, Y, Zn, or Zr, in a nitriding atmosphere containing nitrogen and causing the vaporized raw material to react with the nitrogen in the atmosphere.
    Type: Grant
    Filed: September 7, 1994
    Date of Patent: August 27, 1996
    Assignees: YKK Corporation, Tsuyoshi Masumoto, Akihisa Inoue, Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Tadashi Yamaguchi, Katsutoshi Nosaki, Inoue Akihisa, Tsuyoshi Masumoto
  • Patent number: 5545487
    Abstract: The Al-Si sintered alloy having good mechanical strength and elongation and is especially excellent in wear resistance, and a method for producing the same. The sintered alloy consists of 2.4-23.5% Si, 2-5% Cu, 0.2-1.5% Mg, 0.01-1% of transition metals and the balance of aluminum and unavoidable impurities, and has a dapple grain structure of an Al-solid solution phase and an Al-Si alloy phase containing dispersed pro-eutectic Si crystals having a maximum diameter of 5-60 .mu.m either in the whole body or in the surface contact portion, and the area ratio of the Al-solid solution phase in the grain structure is in the range of 20-80%.
    Type: Grant
    Filed: February 9, 1995
    Date of Patent: August 13, 1996
    Assignees: Hitachi Powdered Metals Co., Ltd., Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Zenzo Ishijima, Jun-ichi Ichikawa, Shuji Sasaki, Hideo Shikata, Hideo Urata, Shoji Kawase, Jun-ichi Ueda
  • Patent number: 5534353
    Abstract: A composite sintered material of a mixed-phase structure comprising fine particles of hard compound compactly and uniformly dispersed in grains of matrix of titanium or titanium alloy. The material is outstanding in abrasion resistance, strength, toughness, etc., and also has high resistance to corrosion by molten nonferrous metals and is therefore reduced in the likelihood of dissolving out into the melt.The sintered material is produced by uniformly mixing together a metal powder for forming the matrix of the desired sintered material and a powder for forming particles of hard compound to be dispersed, molding the powder mixture into a block under pressure, atomizing the block while melting the block and sintering the resulting powder.
    Type: Grant
    Filed: February 1, 1994
    Date of Patent: July 9, 1996
    Assignee: Kubota Corporation
    Inventors: Takahiro Kaba, Takashi Nishi, Tsuyoshi Mitsuhashi
  • Patent number: 5525428
    Abstract: This invention relates to a substrate for semiconductor apparatus loading a semiconductor chip in an integrated circuit apparatus and is characterized in that a sintered compact containing copper of 2 to 30 wt. % in tungsten and/or molybdenum is used as the substrate having the heat radiation capable of efficiently radiating heat developed from the loaded semiconductor chip and thermal expansion coefficient similar to those of semiconductor chip and other enclosure material except for the substrate.
    Type: Grant
    Filed: January 4, 1995
    Date of Patent: June 11, 1996
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Mituo Osada, Yoshinari Amano, Nobuo Ogasa, Akira Ohtsuka
  • Patent number: 5521015
    Abstract: A metal matrix composite component e.g. a brake disc, is provided with a protective coating to prevent displacement of the reinforcing filler in the matrix when the component is placed under load. Preferably the protective coating is metal, alloy, composite, refractory or ceramic applied e.g. by electro-plating.
    Type: Grant
    Filed: December 5, 1994
    Date of Patent: May 28, 1996
    Inventor: Martin J. M. Murphy
  • Patent number: 5518822
    Abstract: A TiCN-based cermet cutting insert superior in toughness with improved wear resistance includes a binding phase and at least two hard dispersion phases. One of the hard dispersion phases includes one of a duplex and triplex structure having a core structure containing at least one of titanium carbonitride and a carbonitride solid solution of Ti and one of a V, Cr, Ti, Nb, Zr, W and Mo (hereinafter referred to as a (Ti,M)CN. The other hard dispersion phase includes a single structure wherein the core structure is composed of at least one of (Ti,M)CN or (Ti,M)CN and TiCN.
    Type: Grant
    Filed: October 12, 1994
    Date of Patent: May 21, 1996
    Assignee: Mitsubishi Materials Corporation
    Inventors: Kiyohiro Teruuchi, Katsuhiko Yano, Niro Odani
  • Patent number: 5514479
    Abstract: Disclosed herein is process method and articles of plated coating having functions ranging from wear resistance, lubricity, corrosion resistance, and further incorporating therein particulate matter having light emitting properties. Having this codeposited light emitting particles within the functional layer provides a signal for the determination of the presence of the coating and its stage of deterioration.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: May 7, 1996
    Inventor: Nathan Feldstein
  • Patent number: 5508114
    Abstract: A method of manufacturing a lead-provided porous metal sheet comprises the steps of: forming a porous metal material having a metal layer on a surface of a framework of a porous base material comprising a foamed sheet and the like, by plating the porous base material and/or applying fine metal powders thereto; passing the porous metal material through a pair of rolls having a plurality of projections formed thereon to compress the porous metal material against the projections and reduce or eliminate pores so as to form one or more recesses extending; and forming solid metal portions by applying fine metal powders to the entire recesses.
    Type: Grant
    Filed: December 9, 1994
    Date of Patent: April 16, 1996
    Assignee: Katayama Special Industries, Inc.
    Inventor: Hirofumi Sugikawa
  • Patent number: 5498483
    Abstract: A wear-resistant sintered ferrous alloy for use as a valve seat, the alloy comprising an iron-based matrix having a sorbite or pearlite structure consisting of 0.5 to 1.5% by weight of C, 0.5 to 3% by weight of Ni, 0.5 to 2% by weight of Mo, 0.1 to 8% by weight of Co, 0.05 to 1% by weight of Mn, and the balance of Fe, with unavoidable impurities, and having a Vickers hardness of from 300 to 450; hard particles A consisting of 1.5 to 2.5% by weight of C, 38 to 45% by weight of Cr, 18 to 30% by weight of W, 5 to 15% by weight of Co, 0.5 to 3% by weight of Mo, 0.03 to 0.5% by weight of Ti, and the balance of Fe, with unavoidable impurities, and having an average particle diameter of from 30 to 80.mu.m; and hard particles B consisting of 60 to 70% by weight of Mo, 0.5 to 2% by weight of Si, and the balance of Fe, with unavoidable impurities, and having an average particle diameter of from 30 to 80 .mu.
    Type: Grant
    Filed: April 28, 1995
    Date of Patent: March 12, 1996
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kozo Ito, Yoshishige Takano
  • Patent number: 5496650
    Abstract: Process of imparting conductivity to a three-dimensional net-shaped porous sheet can be performed efficiently before carrying out electroplating process. Fine metallic powders are applied to the porous sheet made of a foamed sheet, a nonwoven sheet, a mesh sheet or a plurality of sheets layered one on the other, so that a conductive metallic layer is formed on the porous sheet. Then, an electroplated layer is formed on the surface of the conductive metallic layer. The conductive metallic layer remains when the porous sheet burned out. Consequently, a metallic layer of the conductive metallic layer and the electroplated layer forms the metallic framework of the metallic porous sheet.
    Type: Grant
    Filed: September 13, 1994
    Date of Patent: March 5, 1996
    Assignee: Katayama Special Industries, Ltd.
    Inventor: Hirofumi Sugikawa
  • Patent number: 5492771
    Abstract: An improved method of making a monolayer abrasive tool using a relatively low melting point, soft filler metal alloy braze which possesses sufficiently high yield strength combined with a relatively high ductility and low elastic modulus to produce an exceptional bond between a monolayer of superabrasive particles and the tool substrate. The steps of the brazing process include applying a layer of the filler metal alloy including a an active metal in either pre-alloyed or as a mixture with the metal alloy and a monolayer of superabrasive crystals over the filler metal layer. This assembly is heated in a mon-oxidizing atmosphere such as a vacuum to melt the alloy and braze bond the superabrasive particles to the tool substrate. The alloy bond formed possess the properties of a ductility of at least 20 percent elongation, an elastic modulus of less than 15.times.10.sup.6 or less, and a yield strength preferably at least about 45,000 to 50,000 psi.
    Type: Grant
    Filed: September 7, 1994
    Date of Patent: February 20, 1996
    Assignee: Abrasive Technology, Inc.
    Inventors: James T. Lowder, Roy F. Wielonski, Kosta L. George
  • Patent number: 5489487
    Abstract: A multi-layer bearing consists of a backing steel plate, a layer of Cu--Pb bearing alloy comprising, by weight, 1 to 20% of Ni and containing Pb-phase grains dispersed in the matrix, and an overlay of Pb alloy containing In. In in the overlay is diffused into the Pb-phase grains in the bearing alloy layer and forms a diffusion layer of high corrosion resistance in which In coexists with the Pb-phase grains, in an area of 30 to 200 .mu.m from the interface to the overlay. Even if the overlay is worn and the Cu--Pb bearing alloy layer is exposed, high corrosion resistance will be maintained.
    Type: Grant
    Filed: October 5, 1994
    Date of Patent: February 6, 1996
    Assignee: Daido Metal Company Ltd.
    Inventors: Tadashi Tanaka, Masaaki Sakamoto, Koichi Yamamoto, Tsukimitsu Higuchi
  • Patent number: 5486427
    Abstract: The present invention provides a method for providing an array of metal microbeads on a substrate, preferably in a regular pattern of very fine, uniform size microspheres or microbeads at precise spacing or scale previously unachievable. The method of the present invention comprises the steps of providing a metal layer on a substrate that is partitioned into metal regions; heating the metal layer to a temperature sufficient to melt the metal and to permit beading of the layer into discrete microbeads.
    Type: Grant
    Filed: August 19, 1994
    Date of Patent: January 23, 1996
    Assignee: Minnesota Mining and Manufacturing Company
    Inventors: David C. Koskenmaki, Clyde D. Calhoun
  • Patent number: 5484662
    Abstract: A solid lubricant coating system for use with a metal interface subject to high temperatures and wet lubrication, comprising agglomerates of particles of (i) solid lubricant particles selected from the group consisting of graphite, boron nitride, molybdenum disulfide, lithium fluoride, NaF, WS.sub.2, and calcium fluoride; and (ii) steel particles fused together and bounding said solid lubricant particles at least at certain intersections, certain portions of said steel particles being air-hardened to a high hardness upon exposure of the coating to the interface at high temperatures.
    Type: Grant
    Filed: May 6, 1994
    Date of Patent: January 16, 1996
    Assignee: Ford Motor Company
    Inventor: V. Durga N. Rao
  • Patent number: 5482531
    Abstract: A powder-metallurgy-produced, essentially titanium-free, nickel-containing maraging steel article such as for use in the manufacture of die casting die components and other hot work tooling components. The article preferably contains an intentional addition of niobium. The article may be produced as a hot-isostatically-compacted, solution annealed, fully dense mass of prealloyed particles, or alternately, as a hot-isostatically-compacted, plastically deformed and solution annealed, fully dense mass of prealloyed particles.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: January 9, 1996
    Assignee: Crucible Materials Corporation
    Inventors: Kenneth E. Pinnow, Carl J. Dorsch
  • Patent number: 5482530
    Abstract: The invention relates to cobalt metal powders as a binder metal for the production of diamond and/or hard-metal tools and/or wear-resistant coatings and to composite sintered articles produced therefrom.
    Type: Grant
    Filed: December 2, 1994
    Date of Patent: January 9, 1996
    Assignee: H,C. Starck GmbH & Co. KG
    Inventor: Matthias Hohne
  • Patent number: 5482782
    Abstract: A sliding-contact material comprising a backing steel plate optionally plated with Cu, and a layer of sintered copper alloy formed on one of the surfaces of the backing steel plate, wherein the layer of sintered copper alloy consists essentially of 4 to 20 wt % Sn, 1 to 10 wt % Ni, 0.05 to 1 wt % B, and balance of Cu and incidented impurities, and does not practically include P, and the sintered copper alloy has a Vickers hardness not less than Hv 100.
    Type: Grant
    Filed: November 29, 1994
    Date of Patent: January 9, 1996
    Assignee: Daido Metal Company Ltd.
    Inventors: Tadashi Tanaka, Masaaki Sakamoto, Koichi Yamamoto, Tsukimitsu Higuchi, Kouki Ozaki
  • Patent number: 5480472
    Abstract: A method for forming an electrical contact material comprises the steps of melting a mixture of Cu and Cr into a molten alloy, atomizing the molten alloy into fine particles to obtain alloyed particles. Cr particles in the alloyed powder disintegrate to less than 5 .mu.m in mean particle diameter. The alloyed powder is sintered thereafter and a mean particle diameter of chromium in the sintered article is fined in a range of 2 to 20 .mu.m. An electrical contact material is composed of a copper matrix and chromium particles having a mean particle diameter of 2 to 20 .mu.m. The chromium particles are homogeneously dispersed in the copper matrix.
    Type: Grant
    Filed: July 30, 1991
    Date of Patent: January 2, 1996
    Assignee: Kabushiki Kaisha Meidensha
    Inventors: Yasushi Noda, Nobuyuki Yoshioka, Nobutaka Suzuki, Toshimasa Fukai, Tetsuo Yoshihara, Koichi Koshiro
  • Patent number: 5480728
    Abstract: A conductive contact for use with metal oxide superconductors is described. The conductive contact comprises a metal contact which is attached by a diffusion bonding means to a superconductive metal oxide substrate. In a preferred embodiment, diffusion bonding means comprises a metal paint which includes metal particles and an organic binder which is heated to pyrolized the organic binder and form metallic diffusion bonds to the metal contact and metal oxide substrate. The invention also comprises a method for forming the conductive contact which includes selecting the superconducting metal oxide substrate, coating the substrate with a metal paint, placing the metal contact in touching contact with the metal paint and heating the combination of materials described above to pyrolized the organic binder and coalesce the metal particles.
    Type: Grant
    Filed: January 3, 1994
    Date of Patent: January 2, 1996
    Assignee: General Electric Company
    Inventor: John E. Tkaczyk
  • Patent number: 5472793
    Abstract: A composite spray coating comprises an iron base material, a spray coating film applied thereon and a diffusion layer of aluminum or aluminum-zinc alloy, and is used for hot-dip galvanization.
    Type: Grant
    Filed: December 12, 1994
    Date of Patent: December 5, 1995
    Assignee: Tocalo Co., Ltd.
    Inventors: Yoshio Harada, Kazumi Tani, Yoshihumi Kobayashi
  • Patent number: 5472661
    Abstract: Method of distributing and retaining insoluble additive particles uniformly throughout a mass of moldable metal particles. The additive particles are suspended in a solution of a polymeric binder and spray-coated onto the metal particles. When the solvent evaporates, the additives remain glued to the metal particles by the binder.
    Type: Grant
    Filed: December 16, 1994
    Date of Patent: December 5, 1995
    Assignee: General Motors Corporation
    Inventor: David E. Gay
  • Patent number: 5468566
    Abstract: An article and method of manufacture of (Bi, Pb)-Sr-Ca-Cu-O superconductor. The superconductor is manufactured by preparing a first powdered mixture of bismuth oxide, lead oxide, strontium carbonate, calcium carbonate and copper oxide. A second powdered mixture is then prepared of strontium carbonate, calcium carbonate and copper oxide. The mixtures are calcined separately with the two mixtures then combined. The resulting combined mixture is then subjected to a powder in tube deformation and thermal processing to produce a substantially phase pure (Bi, Pb)-Sr-Ca-Cu-O superconductor.
    Type: Grant
    Filed: September 13, 1994
    Date of Patent: November 21, 1995
    Assignee: University of Chicago
    Inventors: Stephen E. Dorris, Roger B. Poeppel, Barton C. Prorok, Michael T. Lanagan, Victor A. Maroni
  • Patent number: 5462809
    Abstract: A single layer film is deposited onto a substrate at room temperature from two sources, one source being a magnetic material, the other being a non-magnetic or weakly-magnetic material. The film is annealed for predetermined time in order to induce phase separation between the magnetic clusters and the non-magnetic matrix, and to form stable clusters of a size such that each magnetic particle, or cluster, comprises a single domain and has no dimensions greater than the mean free path within the particle.
    Type: Grant
    Filed: January 10, 1994
    Date of Patent: October 31, 1995
    Assignee: The Regents of the University of California
    Inventor: Ami Berkowitz
  • Patent number: 5460893
    Abstract: A TiCN-based cermet cutting insert superior in toughness with improved wear resistance includes a binding phase and at least two of four hard dispersion phases. One of the two hard dispersion phases includes at least one of a duplex or triplex phase structure with a core of a composite carbonitride solid solution and a single-phase structure of a composite carbonitride solid solution. The other hard dispersion phase includes one of a hard dispersion phase of titanium carbonitride and a hard dispersion phase which includes a single-phase structure of titanium carbonitride.
    Type: Grant
    Filed: March 8, 1994
    Date of Patent: October 24, 1995
    Assignee: Mitsubishi Materials Corporation
    Inventors: Kiyohiro Teruuchi, Katsuhiko Yano, Niro Odani
  • Patent number: 5455117
    Abstract: An electromagnetic wave reflection-preventing material having a structure formed by successively laminating (A) an electromagnetic have reflecting metallic material layer, if needed, (B) a substrate layer, (C) a resin layer containing a powder of at least one selected from ferrite, carbon, metal powder and an electrically conductive metallic oxide, and, if needed, a good dielectric material, if needed, (D) a supporting film layer, and (E) a pattern coating layer prepared in the form of a geometrical pattern, containing a metal powder and having a volume resistivity of 10.sup.-3 to 10.sup.10 .OMEGA..multidot.
    Type: Grant
    Filed: October 25, 1993
    Date of Patent: October 3, 1995
    Assignee: Kansai Paint Co., Ltd.
    Inventors: Toshiaki Nagano, Hideo Kogure, Naozumi Iwasawa, Tetsu Maki
  • Patent number: 5455116
    Abstract: An electromagnetic wave reflection-preventing material having a structure formed by successively laminating (A) an electromagnetic wave reflecting material layer, if needed, (B) a supporting layer, (C) a resin layer, if needed, (D) a supporting layer, and (E) a metallic pattern layer prepared by arranging at least one of a pattern unit comprising a geometrical pattern formed by use of a continuous metallic band, or comprising a multi-figured structure formed by combining a plurality of band-shaped metallic figures so as not to contact with each other; and an electromagnetic wave reflection-preventing method by use of the electromagnetic wave reflection-preventing material.
    Type: Grant
    Filed: October 25, 1993
    Date of Patent: October 3, 1995
    Assignee: Kansai Paint Co., Ltd.
    Inventors: Toshiaki Nagano, Hideo Kogure, Tetsu Maki, Naozumi Iwasawa
  • Patent number: 5455118
    Abstract: The present invention describes a plated component and plating method in which the plating adheres to the reinforcement particles on the surface of a composite component. This allows the component to be processed above 400.degree. C. without blistering. The plating method allows brazing, such as gold/tin and gold/germanium brazing, maintains hermeticity, and prevents corrosion over a sustained period of time. By utilizing an activator such as palladium, which can produce catalytic sites on which electroless nickel can be deposited, a component with a surface of exposed reinforcement particles can be plated to form a uniform surface without voids. It has been found that by using a combination of nickel-boron and a palladium activator, that Al/SiC composites can be plated with good adhesion when exposed to temperatures above 400.degree. C.
    Type: Grant
    Filed: February 1, 1994
    Date of Patent: October 3, 1995
    Assignee: PCC Composites, Inc.
    Inventor: Arnold J. Cook
  • Patent number: 5453328
    Abstract: An electromagnetic wave reflection-preventing material having a structure formed by a process which comprises successively laminating (A) a pattern layer formed in the form of a geometrical pattern having a volume resistivity of 10.sup.3 .OMEGA. .
    Type: Grant
    Filed: January 21, 1994
    Date of Patent: September 26, 1995
    Assignee: Kansai Paint Co., Ltd.
    Inventors: Toshiaki Nagano, Hideo Kogure, Naozumi Iwasawa, Tetsu Maki
  • Patent number: 5447801
    Abstract: A target for magneto-optical recording media having a microstructure having a matrix phase of a eutectic structure of a rare earth metal and an iron-group metal, particles I made of a pure iron-group metal or an alloy thereof and having an average diameter of 200 .mu.m or less and particles II made of a corrosion resistance-improving metal and an iron-group metal and having an average diameter of 200 .mu.m or less is produced by mixing rapidly-quenched powder A made of the rare earth metal and the iron-group metal and having a eutectic structure with powder B made of a pure iron-group metal or an alloy thereof and having an average diameter of 200 .mu.m or less, and powder C made of the corrosion resistance-improving metal and the iron-group metal and having an average diameter of 200 .mu.m or less, and pressure-sintering the resulting mixed powder at a temperature lower than a liquid phase-appearing temperature.
    Type: Grant
    Filed: December 9, 1993
    Date of Patent: September 5, 1995
    Assignee: Hitachi Metals, Ltd.
    Inventors: Kaoru Masuda, Shunichiro Matsumoto
  • Patent number: 5447774
    Abstract: There is disclosed a composite slide member which suppresses the exposure of a porous metal layer even when the amount of cutting from a surface of the slide member increases, thereby enhancing an anti-seizing property without adversely affecting a rear resistance. The composite slide member includes a back plate, and a slide layer including a porous metal layer with a porosity of 50% to 80% and a composite synthetic resin composition impregnated and coated in pores of the porous metal layer. The porous metal layer is joined to a surface of the back plate. The porous metal layer is formed by sintering metal powder without applying pressure thereto, and an apparent density of the metal powder is 20% to 40% of its theoretical density. The porous metal and the composite synthetic resin are dispersed on a sliding surface of the slide layer in a substantially mixed condition.
    Type: Grant
    Filed: January 13, 1993
    Date of Patent: September 5, 1995
    Assignee: Daido Metal Company, Ltd.
    Inventors: Tadashi Tanaka, Hidehiko Tamura, Shigemasa Hakakoshi, Takahiro Niwa
  • Patent number: 5447800
    Abstract: A martensitic hot work tool steel die block for use in the manufacture of die casting die components and other hot work tooling components and a method for manufacturing the same. The article has a hardness within the range of 35 to 50 HRC and a minimum transverse Charpy V-notch impact toughness of 5 foot pounds when heat treated to a hardness of 44 to 46 HRC and when tested at both 72.degree. F. and 600.degree. F. The article is a hot worked, heat treated and fully dense consolidated mass of prealloyed particles of the composition, in weight percent, 0.32 to 0.45 carbon, 0.20 to 2.00 manganese, 0.05 to 0.30 sulfur, up to 0.03 phosphorous, 0.80 to 1.20 silicon, 4.75 to 5.70 chromium, 1.10 to 1.75 molybdenum, 0.80 to 1.20 vanadium, and balance iron. The alloy may be any conventional wrought AISI hot work tool steel or wrought maraging or precipitation-hardening steel having 0.05 to 0.30 percent sulfur, and having sulfide particles which exhibit a maximum size of 50 microns in their longest dimension.
    Type: Grant
    Filed: September 27, 1993
    Date of Patent: September 5, 1995
    Assignee: Crucible Materials Corporation
    Inventors: Carl J. Dorsch, Kenneth E. Pinnow, William Stasko
  • Patent number: 5445895
    Abstract: A powder-metallaurgically produced material or extruded semi-finished product for electric contacts of silver or a silver-based metal material with 0.5 to 10 wt. % carbon and 0 to 2 wt. % of an additional metal. The material contains powdered carbon in combination with carbon fibers in the mass ratio of 10:1 to 1:10, whereby the diameter of the powder particles is on average smaller than half the length of the fibers.
    Type: Grant
    Filed: February 14, 1994
    Date of Patent: August 29, 1995
    Assignee: Doduco GmbH & Co. Dr. Eugen Durrwachter
    Inventors: Volker Behrens, Carl L. Meyer, Karl Saeger, Thomas Honig, Roland Michal
  • Patent number: 5443917
    Abstract: A densified ceramic or cermet armor material comprises greater than fifty percent by weight titanium nitride or greater than eight percent by weight of a mixture of titanium nitride and aluminum nitride to impart low compressive strength to said armor material and may additionally comprise components suitable for densification with said titanium nitride or titanium nitride-aluminum nitride mixture where the resulting armor material has high density and low porosity with a Young's modulus greater than 200 GPa and a compressive strength of less than 5.5 GPa.
    Type: Grant
    Filed: May 24, 1991
    Date of Patent: August 22, 1995
    Assignee: GTE Products Corporation
    Inventor: Christopher A. Tarry