Nonparticulate Metal Component Patents (Class 428/553)
  • Patent number: 11926917
    Abstract: There is provided a composite plating material and a related technique thereof, the composite plating material including: a base material, and a composite plating layer on the base material, the composite plating layer comprising a composite material containing carbon particles and Sb in an Ag layer, with a carbon content of 6.0 mass % or more and a Sb content of 0.5 mass % or more.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: March 12, 2024
    Assignee: DOWA METALTECH CO., LTD.
    Inventors: Yukiya Kato, Hirotaka Kotani, Tatsuhiro Doi, Takao Tomiya, Hiroto Narieda
  • Patent number: 11827957
    Abstract: There are provided a heat exchanger having a flat tube and a fin bonded together, without causing melting of a coating material covering the fin, and a method of manufacturing thereof. A heat exchanger includes: a flat tube having a flat cross-sectional shape and covered with an anticorrosive layer; and a fin bonded to the flat tube with a bonding agent on a first surface of the anticorrosive layer interposed therebetween, and covered with a coating material, the first surface of the anticorrosive layer having been roughened, and the bonding agent being fixed to the roughened first surface.
    Type: Grant
    Filed: September 30, 2022
    Date of Patent: November 28, 2023
    Assignee: Mitsubishi Electric Corporation
    Inventor: Daisuke Ito
  • Patent number: 11697110
    Abstract: The invention provides a catalyst composition, including a mixture of catalytically active particles and a magnetic material, such as superparamagnetic iron oxide nanoparticles, capable of inductive heating in response to an applied alternating electromagnetic field. The catalytically active particles will typically include a base metal, platinum group metal, oxide of base metal or platinum group metal, or combination thereof, and will be adapted for use in various catalytic systems, such as diesel oxidation catalysts, catalyzed soot filters, lean NOx traps, selective catalytic reduction catalysts, ammonia oxidation catalysts, or three-way catalysts.
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: July 11, 2023
    Assignee: BASF CORPORATION
    Inventors: Xiaofan Yang, Matthew Tyler Caudle
  • Patent number: 11525067
    Abstract: A modification method of a surface of a substrate includes: applying a composition on a surface of a metal substrate, and heating a coating film formed by the applying, wherein the composition contains: a polymer having a first structural unit that includes an aromatic ring, and a second structural unit that includes an ethylenic double bond; a thermal acid generating agent; and a solvent, wherein the polymer has a functional group capable of bonding to a metal atom in the metal substrate.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: December 13, 2022
    Assignee: JSR CORPORATION
    Inventors: Hiroyuki Komatsu, Miki Tamada, Hitoshi Osaki, Tomoki Nagai
  • Patent number: 11512395
    Abstract: A method of manufacturing a laminate includes: forming a preprocessing coating on a surface of a substrate having insulating properties by accelerating the powdered material together with gas and spraying the powdered material in a solid phase onto the surface of the substrate, the powdered material including aluminum or an aluminum alloy as a main component; and forming a heat-treated coating having a surface with irregular asperities by heating a preprocessing laminate including the substrate and the preprocessing coating formed on the surface of the substrate.
    Type: Grant
    Filed: August 6, 2019
    Date of Patent: November 29, 2022
    Assignee: NHK Spring Co., Ltd.
    Inventor: Satoshi Hirano
  • Patent number: 11344951
    Abstract: An apparatus for forming 3D objects from metallic powder, includes a delivery mechanism adapted to emit a flow of metallic powder at sufficiently high velocity to enable it to form a solid mass on a substrate; and a positioning mechanism adapted to set or adjust the distance and/or angle between the delivery mechanism and the substrate as powder builds up on the substrate. A control system is adapted to receive measured geometry data representing the state of the object as it builds and to control adjustment of the positioning means in response to that data for accurate formation of the object.
    Type: Grant
    Filed: May 15, 2017
    Date of Patent: May 31, 2022
    Assignee: Effusiontech Pty Ltd
    Inventors: Steven Camilleri, Lyell Embery, Toby Jarrett, Byron Kennedy
  • Patent number: 11333198
    Abstract: A sliding member includes a back-metal layer and a sliding layer made of a copper alloy. The back-metal layer is made of a hypoeutectoid steel including 0.07 to 0.35 mass % of carbon, and has a structure including a ferrite phase and pearlite. The back-metal layer includes a pore existing region including a plurality of closed pores that are not open to a bonding surface when viewing a cross-section perpendicular to a sliding surface. The closed pores have an average size of 5 to 15 ?m. The pore existing region extends from the bonding surface toward an inner portion of the back-metal layer, and has a thickness of 10 to 60 ?m. A ratio V2/V1 of a total volume V2 of the closed pores to a volume V1 of the pore existing region is 0.05 to 0.1.
    Type: Grant
    Filed: September 16, 2020
    Date of Patent: May 17, 2022
    Assignee: DAIDO METAL COMPANY LTD.
    Inventor: Ryo Hanai
  • Patent number: 11215227
    Abstract: A sliding member includes a back-metal layer including an Fe alloy and a sliding layer including a copper alloy including 0.5 to 12 mass % of Sn and the balance of Cu and inevitable impurities. A cross-sectional structure of the sliding layer includes first copper alloy grains in contact with a bonding surface and second copper alloy grains not in contact with the bonding surface. The first and second grains have an average grain size D1 and D2 respectively. D1 is 30 to 80 ?m; and D1/D2=0.1 to 0.3. In the cross-sectional structure, the second grains includes third grains that includes internal grains therein that are not in contact with a grain boundary of the third grains. A total area S1 of the third grains and a total area of the second copper alloy grains S2 satisfy: S0/S2=0.25 to 0.80.
    Type: Grant
    Filed: July 17, 2020
    Date of Patent: January 4, 2022
    Assignee: DAIDO METAL COMPANY LTD.
    Inventor: Masahiro Nakai
  • Patent number: 11193536
    Abstract: A sliding member includes a back-metal layer including an Fe alloy and a sliding layer including a copper alloy including 0.5 to 12 mass % of Sn and the balance of Cu and inevitable impurities. The sliding layer has a cross-sectional structure perpendicular to a sliding surface of the sliding layer. The cross-sectional structure includes first copper alloy grains that are in contact with a bonding surface of the back-metal layer and second copper alloy grains that are not in contact with the bonding surface. The first copper alloy grains has an average grain size D1 and the second copper alloy grains has an average grain size D2. D1 and D2 satisfy the following relations: D1 is 30 to 80 ?m; and D1/D2=0.1 to 0.3.
    Type: Grant
    Filed: July 17, 2020
    Date of Patent: December 7, 2021
    Assignee: DAIDO METAL COMPANY LTD.
    Inventor: Masahiro Nakai
  • Patent number: 11148195
    Abstract: A laminate includes a base substrate, and a coating layer formed on the base substrate. The coating layer includes a copper alloy portions derived from precipitation-hardening copper alloy particles and hard particle portions which are harder than the copper alloy portions, the hard particle portions are derived from hard particles, and the parts bond with each other via an interface. Each of the hard particle portions has a non-spherical shape. A sliding member includes the laminate in at least one sliding portion. A method for manufacturing a laminate includes a step of spraying a mixture in a non-molten state including precipitation-hardening copper alloy particles and hard particles having a non-spherical shape and being harder than the copper alloy particles onto a base substrate, to form a coating layer on the base substrate.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: October 19, 2021
    Assignees: NISSAN MOTOR CO., LTD., FUKUDA METAL FOIL & POWDER CO., LTD.
    Inventors: Yoshinori Izawa, Junichi Arai, Yutaka Mabuchi, Katsunori Otobe, Shinichi Nishimura
  • Patent number: 11125102
    Abstract: A method of manufacturing a gas turbine engine air seal comprising forming at least one MAX phase particle. The method includes coating the at least one MAX phase particle with a metallic shell. The method includes applying the at least one MAX phase metallic coated particle to a surface of a substrate of the air seal to form an abradable layer of a MAXMET composite abradable material from the at least on MAX phase metallic coated particle.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: September 21, 2021
    Assignee: Raytheon Technologies Corporation
    Inventors: Shahram Amini, Christopher W. Strock, Weina Li
  • Patent number: 11097344
    Abstract: A manufacturing apparatus 1 has a leveler 3 which, while pulling out a steel plate starting with one end thereof and while transporting it, corrects the waviness and the like of the steel plate, which serves as a backing plate 2 and is constituted by a continuous strip having a thickness of 0.3 to 2.0 mm and provided as a hoop material by being wound into a coil shape.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: August 24, 2021
    Assignee: OILES CORPORATION
    Inventors: Yasuhiro Shirasaka, Masato Ono
  • Patent number: 10835957
    Abstract: The metallurgical composition comprises a main particulate metallic material, for example iron or nickel, and at least one alloy element for hardening the main metallic material, which form a structural matrix; a particulate solid lubricant, such as graphite, hexagonal boron nitride or mixture thereof; and a particulate alloy element which is capable of forming, during the sintering of the composition conformed by compaction or by injection molding, a liquid phase, agglomerating the solid lubricant in discrete particles. The composition may comprise an alloy component to stabilize the alpha-iron matrix phase, during the sintering, in order to prevent the graphite solid lubricant from being solubilized in the iron. The invention further refers to the process for obtaining a self-lubricating sintered product.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: November 17, 2020
    Assignee: Embraco Industria De Compressores E Solucoes Em Refrigeracao Ltda.
    Inventors: Roberto Binder, Aloisio Nelmo Klein, Cristiano Binder, Gisele Hammes, Moises Luiz Parucker, Waldyr Ristow Junior
  • Patent number: 10738376
    Abstract: A hard coating includes a thin film layer which has a total thickness of 0.5-10 ?m and has an overall composition of Al1-a-bTiaMebN (0.2<a?0.6, 0<b?0.15), where Me is a nitride constituent element having a thermal expansion coefficient of greater than 2.7×10?6/° C. and less than 9.35×10?6/° C., wherein the thin film layer has a structure in which a nano-multilayered-structure of thin layers A, B and C, thin layer B being disposed between thin layer A and thin layer C, is repeatedly laminated at least once.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: August 11, 2020
    Assignee: KORLOY INC.
    Inventors: Je-Hun Park, Beom-Sik Kim, Seung-Su Ahn, Kyoung-il Kim, Dong-Youl Lee, Sun-Yong Ahn, Young-Heum Kim
  • Patent number: 10439189
    Abstract: A separator for a rechargeable lithium battery includes a polymer substrate, and a coating layer on at least one surface of the polymer substrate. The coating layer includes a ceramic, a binder, and a nanoclay having an interlayer spacing (d-spacing) of about 10 ? to about 50 ?.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: October 8, 2019
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Sujin Um, Jung Woo An, Jungyeon Won, Jungwook Cha
  • Patent number: 10352566
    Abstract: A liner panel for a combustor of a gas turbine engine includes a multiple of heat transfer augmentors. At least one of the multiple of heat transfer augmentors includes a hemi-spherical protuberance.
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: July 16, 2019
    Assignee: United Technologies Corporation
    Inventors: Christopher Drake, Stanislav Kostka, Jr., Frank J. Cunha
  • Patent number: 10260354
    Abstract: A turbine airfoil for a gas turbine engine includes a pressure sidewall extending along a spanwise direction, and from a leading edge of the airfoil towards the trailing edge of the airfoil. The turbine airfoil additionally includes a suction sidewall also extending along the spanwise direction, and from the leading edge towards the trailing edge. The pressure sidewall and suction sidewall define a cooling air cavity therebetween, and one or both of the pressure sidewall and suction sidewall define a trailing edge cooling channel extending from the cooling air cavity substantially to the trailing edge. Additionally, one or both of the pressure sidewall and suction sidewall include a plurality of pressure drop members extending partially into the trailing edge cooling channel for reducing an amount of cooling air flowing therethrough from the cooling air cavity.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: April 16, 2019
    Assignee: General Electric Company
    Inventor: Ronald Scott Bunker
  • Patent number: 10247271
    Abstract: A sintered friction material comprises a metallic matrix and granular constituents embedded in the matrix. The metallic matrix comprises a copper base alloy. The friction material is characterized in that the granular constituents comprise at least one sintered cemented carbide in a proportion of up to 9 weight percent, based on the total weight of the friction material. Furthermore, a friction body, in particular for clutches and brakes, that comprises a friction lining with at least one layer made of the sintered friction material, and a method for the production of a friction lining with the sintered friction material are described.
    Type: Grant
    Filed: June 16, 2017
    Date of Patent: April 2, 2019
    Assignee: HOERBIGER ANTRIEBSTECHNIK HOLDING GMBH
    Inventors: Zoltan Csanadi, Bruno Tourneret, Peter Echtler, Werner Fuerguth, Andreas Ohr, Andreas Schnabel
  • Patent number: 10166604
    Abstract: The metallurgical composition comprises a main particulate metallic material, for example iron or nickel, and at least one alloy element for hardening the main metallic material, which form a structural matrix; a particulate solid lubricant, such as graphite, hexagonal boron nitride or mixture thereof; and a particulate alloy element which is capable of forming, during the sintering of the composition conformed by compaction or by injection molding, a liquid phase, agglomerating the solid lubricant in discrete particles. The composition may comprise an alloy component to stabilize the alpha-iron matrix phase, during the sintering, in order to prevent the graphite solid lubricant from being solubilized in the iron. The invention further refers to the process for obtaining a self-lubricating sintered product.
    Type: Grant
    Filed: December 4, 2015
    Date of Patent: January 1, 2019
    Assignees: Whirlpool, S.A., Universidade Federal de Santa Catarina(UFSC), Lupatech S.A.
    Inventors: Roberto Binder, Aloisio Nelmo Klein, Cristiano Binder, Gisele Hammes, Moises Luiz Parucker, Waldyr Ristow Junior
  • Patent number: 9957847
    Abstract: A method for manufacturing a sliding tappet of a valve train of an internal combustion engine may include the steps of: providing a main body; applying a coating at least on a contact surface of the main body configured for contacting an associated cam. The coating may include tungsten carbide and cobalt, and the coating may be applied via high velocity oxygen fuel spraying. The method may further include the step of performing a surface finishing on the coating after the coating is applied.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: May 1, 2018
    Assignee: Mahle International GmbH
    Inventors: Christoph Beerens, Gerhard Bucher, Justus Himstedt, Kurt Maier, Harald R. Mueller, Reinhard Rose, Christoph Steinmetz
  • Patent number: 9932459
    Abstract: A resin composition is provided for a sliding member. The composition contains an amorphous resin, flake graphite, and a carbon fiber. The content of the flake graphite is 5 to 40 parts by mass relative to 100 parts by mass of the amorphous resin, and the content of the carbon fiber is 5 to 60 parts by mass relative to 100 parts by mass of the amorphous resin.
    Type: Grant
    Filed: September 29, 2014
    Date of Patent: April 3, 2018
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Hidehiro Kotaka, Hirokazu Matsui, Mitsuo Maeda
  • Patent number: 9908202
    Abstract: This application discloses a multilayer aluminum material comprising an aluminum alloy core and aluminum alloy cladding, wherein the aluminum alloy cladding contains 0.1-1.0 wt % Cu, 0.1-0.5 wt % Fe, 0.1-1.0 wt % Mn, 3-15 wt % Si, 0.005-0.15 wt % Ti and >3-?7 wt % Zn, remainder Al. The aluminum alloy cladding can also optionally contain one or more of 0.001-0.3 wt % Mg, 0.001-0.01 wt % Ni or 0.001-0.05 wt % of at least one of Sr, Ca or Na. A process for producing the material is also described. The material can be produced in sheet form and is suitable for brazing application. The metal forms fabricated from the multilayer aluminum material by a process comprising brazing steps are also described.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: March 6, 2018
    Assignee: Novelis Inc.
    Inventor: Pierre Henri Marois
  • Patent number: 9869390
    Abstract: The invention relates to a novel wear-protection layer for piston rings of internal combustion engines and a method for applying a wear-protection layer of this type during production of a piston ring. The protective layer is characterized inter alia by reduced wear and high resistance to scuffing.
    Type: Grant
    Filed: September 9, 2013
    Date of Patent: January 16, 2018
    Assignee: Federal-Mogul Burscheid GmbH
    Inventors: Marcus Kennedy, Michael Zinnabold
  • Patent number: 9844923
    Abstract: The invention relates to compositions and methods for coating a zirconium alloy cladding of a fuel element for a nuclear water reactor. The composition includes a master alloy including one or more alloying elements selected from chromium, silicon and aluminum, a chemical activator and an inert filler. The alloying element(s) is deposited or are co-deposited on the cladding using a pack cementation process. When the coated zirconium alloy cladding is exposed to and contacted with water in a nuclear reactor, a protective oxide layer can form on the coated surface of the cladding.
    Type: Grant
    Filed: August 14, 2015
    Date of Patent: December 19, 2017
    Assignee: Westinghouse Electric Company LLC
    Inventors: Peng Xu, Lu Cai
  • Patent number: 9587645
    Abstract: A fan blade of a gas turbine engine, and a method of producing same, is disclosed which is composed of a core substrate and a nanocrystalline metal coating provided on at least a portion of the airfoil of the fan blade. The method includes the steps of providing a fan blade core having an airfoil and then applying a nanocrystalline metal coating over at least a portion of the fan blade core.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: March 7, 2017
    Assignee: PRATT & WHITNEY CANADA CORP.
    Inventors: George Guglielmin, Joe Lanzino, Enzo Macchia, Barry Barnett, Andreas Eleftheriou, Thomas McDonough
  • Patent number: 9429035
    Abstract: The invention refers to a process for the formation of a thermal barrier coating on a substrate, comprising the steps of: a) applying a bond coat on the substrate; b) subjecting the bond coat to a low activity aluminizing process, thus obtaining, above the bond coat, a temporary intermediate diffusion layer; c) applying, on the temporary intermediate diffusion layer, aluminum powder in suspension with a solvent or aqueous base, said aluminum powder having size distribution from 15 to 150 ?m; d) performing a thermal treatment in a vacuum at a pressure from 10?3 to 10?5 bars, at a temperature from 800° C. to 1050° C. and with an active phase having duration in the range of 60 minutes to 4 hours, thus obtaining above the bond coat an enriched intermediate diffusion layer; and e) applying a definitive barrier layer on said enriched intermediate diffusion layer.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: August 30, 2016
    Assignee: GE AVIO S.R.L
    Inventors: Maurizio Della Femina, Marco Rossi, Raffaele Casillo, Carlo Silvestro
  • Patent number: 9322085
    Abstract: A high-strength brass alloy for sliding members, consists of, by mass %, 17 to 28% of Zn, 5 to 10% of Al, 4 to 10% of Mn, 1 to 5% of Fe, 0.1 to 3% of Ni, 0.5 to 3% of Si, and the balance of Cu and inevitable impurities. The high-strength brass alloy has a structure that includes a matrix of a single phase structure of the ? phase and includes at least one of Fe—Mn—Si intermetallic compounds in the form of aciculae, spheres, or petals dispersed in the ? phase.
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: April 26, 2016
    Assignee: OILES CORPORATION
    Inventors: Shinya Nishimura, Tomoyuki Yamane, Takeshi Kondo
  • Patent number: 9243313
    Abstract: The metallurgical composition includes a main particulate metallic material, for example iron or nickel, and at least one alloy element for hardening the main metallic material, which form a structural matrix; a particulate solid lubricant, such as graphite, hexagonal boron nitride or mixture thereof; and a particulate alloy element which is capable of forming, during the sintering of the composition conformed by compaction or by injection molding, a liquid phase, agglomerating the solid lubricant in discrete particles. The composition may include an alloy component to stabilize the alpha-iron matrix phase, during the sintering, in order to prevent the graphite solid lubricant from being solubilized in the iron. The invention further refers to a self-lubricating sintered product, obtained from the composition, and to the process for obtaining said product.
    Type: Grant
    Filed: September 9, 2009
    Date of Patent: January 26, 2016
    Assignees: Whirlpool S.A., Universidade Federal De Santa Catarina (UFSC), Lupatech S.A.
    Inventors: Roberto Binder, Aloisio Nelmo Klein, Cristiano Binder, Gisele Hammes, Moises Luiz Parucker, Waldyr Ristow Junior
  • Patent number: 9187377
    Abstract: The present invention relates to a process of forming ceramic articles that contain a high percentage of recycled alumina silicate in their composition. The fabrication process includes a fusing of the base material forming a reticulated network that is in-filled with a melted additive composition. The base material gives the article dimensional stability and strength while the additive composition gives the article water resistance and toughness. In this invention, an additive powder with an engineered melting temperature is added to the recycled base material. The mixture is heated until the recycled aluminosilicate reaches the optimal fusing temperature. Heating is continued until the additive begins to melt filling the voids between the fused aluminosilicates particles. The article is then rapidly cooled to quench the fusing without cracking.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: November 17, 2015
    Assignee: Vecor IP Holdings Limited
    Inventor: Sandor Koszo
  • Patent number: 9120705
    Abstract: A refractory ceramic composite having a fibrous ceramic core and a solid ceramic coating is provided. An intermediate for making refractory composite ceramics is also provided. The intermediate includes a reaction product of a refractory metal and a carbon based felt, wherein a quantity of the refractory metal present is stoichiometrically non-equivalent to a quantity of carbon present during the formation of the reaction product so that the reaction product comprises a ceramic based felt having free, unreacted refractory metal thereon.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: September 1, 2015
    Assignee: United Technologies Corporation
    Inventor: Wayde R. Schmidt
  • Patent number: 9103035
    Abstract: A coating system and processes by which the coating system can be deposited on a surface region of a component to be resistant to erosion, and particularly resistant to erosion caused by high moisture content environments. The coating system includes a diffusion barrier layer, an intermediate layer overlying the diffusion barrier layer, and an outermost layer overlying the intermediate layer. The diffusion barrier layer is capable of inhibiting diffusion of damaging elements therethrough. The intermediate layer is an erosion-resistant material, having a hardness that is greater than the diffusion barrier layer, and being deposited by a near-net-shape laser deposition process. The outermost layer is erosion-resistant material, having a hardness that is greater that the hardness of the intermediate layer. The intermediate layer has a thickness of greater than the diffusion barrier layer and the outermost layer.
    Type: Grant
    Filed: April 10, 2013
    Date of Patent: August 11, 2015
    Assignee: General Electric Company
    Inventors: Swami Ganesh, Jeffrey Michael Breznak
  • Patent number: 9028972
    Abstract: A copper foil for a printed wiring board, the copper foil being characterized by having, on at least one surface thereof, a roughed layer of the copper foil in which an average diameter at a particle root (D1) corresponding to a distance of 10% of a particle length from the root, is 0.2 ?m to 1.0 ?m, and a ratio of the particle length (L1) to the average diameter at the particle root (D1) is 15 or less when L1/D1. A copper foil for a printed wiring board, wherein a sum of area covered by holes on an uneven and roughened surface of a resin is 20% or more at a surface of the resin formed by laminating the resin and a copper foil for a printed wiring having a roughened layer and then removing the copper layer by etching. An object of the present invention is to develop a copper foil for a semiconductor package board in which the aforementioned phenomenon of circuit erosion is avoided without deteriorating other properties of the copper foil.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: May 12, 2015
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Michiya Kohiki, Terumasa Moriyama
  • Publication number: 20150114199
    Abstract: Methods of thermo-mechanically processing a preform composed of tool steel and tools to modify a workpiece. The preform has a region containing austenite. The method comprises establishing the region at a process temperature between a martensitic start temperature and a stable austenitic temperature. While at the process temperature, the region is deformed to change an outer dimension and to modify the microstructure to a depth of 1 millimeter or more. The tool comprises a member composed of tool steel. The member includes a first region that extends from the outer surface to a depth of greater than 1 millimeter and a second region. The first region includes a plurality of grains having an average misorientation angle greater than about 34°, an average grain size that is at least 10% smaller than the second region, and has a different grain orientation than the second region.
    Type: Application
    Filed: December 29, 2014
    Publication date: April 30, 2015
    Inventors: Christon L. Shepard, Shrinidhi Chandrasekharan, Ronald R. Laparre, David L. Turpin, Alan L. Shaffer
  • Publication number: 20150111057
    Abstract: Provided is a container-use surface treated steel sheet which is manufactured without using chromium and exhibits excellent working adhesion with a coated organic resin, a method of manufacturing the container-use surface treated steel sheet, an organic resin coated surface treated steel sheet. The container-use surface treated steel sheet is a surface treated steel sheet where nickel plating is applied to at least one-side surface of surfaces of a steel sheet by coating, wherein nickel plating has a fine particle shape formed by fine particles which has particle density of 2 to 500 pieces/?m2 and having an average particle size of 0.05 to 0.7 ?m. The container-use surface treated steel sheet is also characterized in that a coating weight of the nickel plating of the container-use surface treated steel sheet is 0.1 to 12 g/m2, metal tin is contained in coating of the nickel plating, and an amount of metal tin is 0.05 to 0.1 g/m2.
    Type: Application
    Filed: May 24, 2013
    Publication date: April 23, 2015
    Applicant: TOYO KOHAN CO., LTD.
    Inventors: Shinichi Taya, Hiroshi Doi, Etsuro Tsutsumi, Kota Sadaki, Masahiro Kai
  • Publication number: 20150101787
    Abstract: Method for producing AIMn strip or sheet for making components by brazing and products obtained by said method, in particular fin materials of thin gauge used in heat exchangers. Rolling slabs are produced from a melt with <0.3% Si, ?0.5% Fe, ?0.3% Cu, 1.0-2.0% Mn, ?0.5% Mg, ?4.0% Zn, ?0.5% Ni, ?0.3% each of group IVb, Vb, or Vib elements, and unavoidable impurity elements, as well as aluminium that, prior to hot rolling, are preheated at <550° C. to control the number and size of dispersoid particles, hot rolled into a hot strip, cold rolled into a strip with total reduction of at least 90%, and heat treated to obtain a 0.2% proof stress value that is 50-90% of its proof stress value in the as cold rolled condition and in a range between 100 and 200 MPa. The strip may alternatively be produced by twin-roll strip casting.
    Type: Application
    Filed: May 23, 2013
    Publication date: April 16, 2015
    Applicant: Gränges Sweden AB
    Inventor: Anders Oskarsson
  • Publication number: 20150079417
    Abstract: The corrosion and also the erosion properties of a layer system can be improved by using deposition-hardened particles.
    Type: Application
    Filed: March 27, 2013
    Publication date: March 19, 2015
    Inventors: Jochen Barnikel, Andrei Ghicov, Friedhelm Schmitz
  • Publication number: 20150072164
    Abstract: A photochemical process for decorating hydrophobic surfaces with nanoparticles includes the steps of providing a metal precursor having hydrophobic parts adapted to interact with assistance of a photosensitizer; and forming a reactive adduct photosensitizer/precursor-metal/surface, preparing the surface to grow metal nanoparticles in situ having sizes and shapes governed by the morphology of the surface. The formed nanoparticles are sufficiently isolated, not aggregated and not interconnected, and do not create a film but maintain the chemical properties of substrate and metal. Surfaces so selectively decorated have hydrophobic properties even with hydrophilic substrates. Substrates with multiple chemical functionalities are thereby obtained, which can selectively bind different molecules or biomolecules onto the substrate and the surface of the metal nanoparticles surface. A process according to the invention also allows decorating surfaces with two or more metallic species.
    Type: Application
    Filed: September 5, 2014
    Publication date: March 12, 2015
    Inventors: Salvatore Petralia, Giorgio Ventimiglia
  • Publication number: 20150056465
    Abstract: A process for producing a titanium load-bearing structure, which comprises cold-gas dynamic spraying of titanium particles on to a suitably shaped support member, and a titanium load bearing structure so-produced.
    Type: Application
    Filed: March 26, 2013
    Publication date: February 26, 2015
    Applicant: Commonwealth Scientific and Industrial Research Organisation
    Inventors: Saden Zahiri, Mahnaz Jahedi, Jeffrey Lang, Tiimothy Fox, Richard Fox
  • Publication number: 20150044493
    Abstract: Provided are: a method of anchoring Sn powder that allows a Sn coating layer exhibiting excellent adhesion property and excellent heat cycle property to be adhered to and deposited on a surface of an aluminum substrate by means of a cold spray process, which is low in device cost and is high in productivity; and an electrically-conductive aluminum member produced by the method. The method of anchoring Sn powder onto an aluminum substrate is a method of anchoring Sn powder onto a surface of an aluminum substrate including depositing and anchoring Sn powder to form a Sn coating layer on the surface of the aluminum substrate by means of a cold spray process, the method including spraying the Sn powder onto the aluminum substrate under spray conditions of an operating gas temperature of 60° C. or less, an operating gas pressure of 0.30 MPa or more, and a spray distance between a spray gun nozzle and the aluminum substrate of from 5 to 30 mm.
    Type: Application
    Filed: March 19, 2013
    Publication date: February 12, 2015
    Applicant: NIPPON LIGHT METAL COMPANY, LTD
    Inventors: Ryo Yoshida, Hisashi Hori, Yosuke Nishikawa, Sayuri Shimizu
  • Publication number: 20140370324
    Abstract: A cermet coating includes a hard phase and a binder phase that binds the hard phase, wherein the hard phase includes a carbide phase composed of at least one type of WC and CrC; and the binder phase includes at least one type of metal phase selected from Co, Ni, NiCr, and CoCr, has a structure of a metal polycrystalline body, and is bonded directly to a metal substrate.
    Type: Application
    Filed: March 12, 2013
    Publication date: December 18, 2014
    Applicant: National Institute for Materials Science
    Inventors: Makoto Watanabe, Seiji Kuroda, Masayuki Komatsu
  • Publication number: 20140342173
    Abstract: In one aspect, composite articles are described comprising multifunctional coatings. A composite article described herein, in some embodiments, comprises a substrate and a coating adhered to the substrate, the coating comprising an inner layer and an outer layer, the inner layer comprising a presintered metal or alloy and the outer layer comprising particles disposed in a metal or alloy matrix.
    Type: Application
    Filed: July 14, 2014
    Publication date: November 20, 2014
    Applicant: Kennametal Inc.
    Inventors: Qingjun ZHENG, Piyamanee Komolwit, Yixiong Liu, Jim Faust, Jonathan Bitler, Srinivasarao Boddapati
  • Publication number: 20140322555
    Abstract: Disclosed is a process for producing a high-temperature protective coating for metallic components, in particular components of turbomachines which are subjected to thermal loading. The process comprises producing a slip from MCrAlY powder, in which M is at least one metal, and from a Cr powder, applying the slip to the component to be coated and subsequently alitizing the component provided with the slip.
    Type: Application
    Filed: April 23, 2014
    Publication date: October 30, 2014
    Applicant: MTU Aero Engines AG
    Inventor: Heinrich WALTER
  • Patent number: 8871355
    Abstract: Composites that include a metal injection molded component bonded to a support substrate and methods for forming the composites are described. Methods include forming a metal injection molded green part that includes microstructures on a surface of the green part. The metal injection molded component is located adjacent to a support substrate with the microstructure ends contacting the support substrate at a contact surface. During sintering the metal injection molded component is bonded to the support substrate at the ends of the microstructures. The presence of the microstructures can allow for relative motion between the metal injection molded component and the support substrate during sintering. The large bonding surface area provided by the multiple points of contact between the ends of the microstructures and the support substrate can provide excellent bonding force between the metal injection molded component and the support substrate.
    Type: Grant
    Filed: October 10, 2011
    Date of Patent: October 28, 2014
    Assignee: Clemson University
    Inventors: Laine Mears, Thomas Martens
  • Patent number: 8871354
    Abstract: Provided is a copper-based sliding material including a steel back-metal layer and a Cu alloy layer. The Cu alloy layer contains, by mass %, 10 to 30% of Bi, 0.5 to 5% of an inorganic compound, and the balance being Cu and inevitable impurities. The Cu alloy layer may further contain 0.5 to 5% of Sn and/or at least one element selected from the group consisting of Ni, Fe, P and Ag in a total amount of 0.1 to 10%. The inorganic compound has an average particle size of 1 to 5 ?m and a specific gravity of 70 to 130% relative to the specific gravity of Bi. Bi phase is formed in the Cu alloy layer in an average particle size of 2 to 15 ?m, and the Bi phase is dispersed in the Cu alloy layer and isotropic.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: October 28, 2014
    Assignee: Daido Metal Company Ltd.
    Inventors: Takuo Imai, Kouji Zusi, Kentaro Tujimoto
  • Patent number: 8846206
    Abstract: An intermediate component includes a first wall member, a leachable material layer, and a precursor wall member. The first wall member has an outer surface and first connecting structure. The leachable material layer is provided on the first wall member outer surface. The precursor wall member is formed adjacent to the leachable material layer from a metal powder mixed with a binder material, and includes second connecting structure.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: September 30, 2014
    Assignee: Siemens Energy, Inc.
    Inventors: Allister W. James, Douglas J. Arrell
  • Publication number: 20140263853
    Abstract: A method of repairing a component comprises identifying a non-compliant surface of the component, wherein the non-compliant surface is not within an allowable tolerance, cold spraying a powder comprising a metal onto the non-compliant surface, and forming a coating comprising the metal over the non-compliant surface, wherein an outer surface of the coating is within an allowable tolerance. In an embodiment, the method of repairing an outer component further comprises machining the outer surface of the coating. In an embodiment, the component is a shaft, a rotor mast, an input quill, or a bearing. In an embodiment, the component contains electronic equipment during the cold spraying, and wherein the cold spraying does not damage the electronic equipment. In an embodiment, the component is repaired without subjecting the component to a hydrogen embrittlement bake.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: BELL HELICOPTER TEXTRON INC.
    Inventors: Kenneth Myron Jackson, Walter West Riley
  • Publication number: 20140248505
    Abstract: Laminated composite (10) comprising at least one electronic substrate (11) and an arrangement of layers (20, 30) made up of at least a first layer (20) of a first metal and/or a first metal alloy and of a second layer (30) of a second metal and/or a second metal alloy adjacent to this first layer (20), wherein the melting temperatures of the first and second layers are different, and wherein, after a thermal treatment of the arrangement of layers (20, 30), a region with at least one intermetallic phase (40) is formed between the first layer and the second layer, wherein the first layer (20) or the second layer (30) is formed by a reaction solder which consists of a mixture of a basic solder with an AgX, CuX or NiX alloy, wherein the component X of the AgX, CuX or NiX alloy is selected from the group consisting of B, Mg, Al, Si, Ca, Se, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Y, Zr, Nb, Mo, Ag, In, Sn, Sb, Ba, Hf, Ta, W, Au, Bi, La, Ce, Pr, Nd, Gd, Dy, Sm, Er, Tb, Eu, Ho, Tm, Yb and Lu and wherein the melti
    Type: Application
    Filed: September 21, 2012
    Publication date: September 4, 2014
    Inventors: Thomas Kalich, Christiane Frueh, Franz Wetzl, Bernd Hohenberger, Rainer Holz, Andreas Fix, Michael Guyenot, Andrea Feiock, Michael Guenther, Martin Rittner
  • Publication number: 20140234650
    Abstract: According to the invention, there are disclosed a power metallurgy composite cam sheet and a fabrication method thereof. The power metallurgy composite cam sheet is constructed by combining a power metallurgy cam be composited on a surface of a matrix. The fabrication method of the power metallurgy composite cam sheet includes sinter welding, braze welding, argon arc welding, laser welding, hot pressing and other methods. The powder metallurgy composite cam sheet fabricated by the invention has merits of stable size, good impact toughness, good abrasion resistance, low cost and so on, so that it can replace an integral cam sheet that is currently fabricated by forging, drawing, power metallurgy or other process. It is suitable for the case where a hollow camshaft is prepared by mechanical assembly, hydraulic forming, welding or other process, so that the usage requirements of an assembled camshaft can be met.
    Type: Application
    Filed: September 28, 2012
    Publication date: August 21, 2014
    Inventors: Linshan Wang, Limin Wang, Xuebing Liang, Xiaojiang Dong, Lei Wang
  • Publication number: 20140234649
    Abstract: The invention relates to a layered composite (10), in particular for connecting electronic components as joining partners, comprising at least one substrate film (11) and a layer assembly (12) applied to the substrate film. The layer assembly comprises at least one sinterable layer (13), which is applied to the substrate film (11) and which contains at least one metal powder, and a solder layer (14) applied to the sinterable layer (13). The invention further relates to a method for forming a layered composite, to a circuit assembly containing a layered composite (10) according to the invention, and to the use of a layered composite (10) in a joining method for electronic components.
    Type: Application
    Filed: September 21, 2012
    Publication date: August 21, 2014
    Inventors: Thomas Kalich, Frank Wetzl, Bernd Hohenberger, Rainer Holz, Christiane Frueh, Andreas Fix, Michael Guyenot, Andrea Feiock, Martin Rittner, Michael Guenther
  • Patent number: 8790789
    Abstract: Disclosed herein is an erosion and corrosion resistant coating comprising a metallic binder, a plurality of hard particles, and a plurality of sacrificial particles. Also disclosed is a method of improving erosion and corrosion resistance of a metal component comprising disposing on a surface of the metal component the foregoing erosion and corrosion resistant coating comprising, and a metal component comprising a metal component surface and the foregoing erosion and corrosion resistant coating comprising a first surface and a second surface opposite the first surface, wherein the first surface is disposed on the metal component surface.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: July 29, 2014
    Assignee: General Electric Company
    Inventors: Thodla Ramgopal, Krishnamurthy Anand, David Vincent Bucci, Nitin Jayaprakash, Jane Marie Lipkin, Tamara Jean Muth, Surinder Singh Pabla, Vinod Kumar Pareek, Guru Prasad Sundararajan