Entirely Inorganic Patents (Class 428/552)
  • Publication number: 20120009432
    Abstract: A coated article system includes a substrate and a surface coating on the substrate. The surface coating is formed by depositing individual particles of a composite metal powder with sufficient energy to cause the composite metal powder to bond with the substrate and form the surface coating. The composite metal powder includes a substantially homogeneous dispersion of molybdenum and molybdenum disulfide sub-particles that are fused together to form the individual particles of the composite metal powder.
    Type: Application
    Filed: July 9, 2010
    Publication date: January 12, 2012
    Applicant: Climax Engineered Materials, LLC
    Inventors: Carl V. Cox, Matthew C. Shaw, Yakov Epshteyn
  • Publication number: 20110195265
    Abstract: The present invention provides a hard multilayer film formed body which has an intermediate layer excellent in its adhesion to a base material and a DLC film which is a surface layer excellent in its wear resistance, prevents peeling from occurring between the DLC film and the intermediate layer, and is excellent in its wear resistance and a method for producing the same. A hard multilayer film formed body 1 consists of a multilayer film formed on a surface of a base material 2 consisting of a cemented carbide material or a ferrous material. The multilayer film has (1) a film, composed mainly of DLC, which is formed as a surface layer 5 of the multilayer film; (2) an intermediate layer 3, composed mainly of a metallic material, which is formed between the surface layer 5 and the base material 2; and (3) a stress relaxation layer 4, composed mainly of carbon, which is formed between the intermediate layer 3 and the surface layer 5.
    Type: Application
    Filed: October 29, 2009
    Publication date: August 11, 2011
    Inventors: Kouya Oohira, Naoko Ito, Yoji Sato, Hideyuki Tsutsui
  • Patent number: 7989525
    Abstract: An object of the present invention is to provide a pressure-sensitive adhesive composition which is excellent in antistatic property of a non-electrification-prevented adherend (subject to be protected) upon peeling, and has reduced stainability in an adherend and is excellent in adhesion reliance, and electrification preventing pressure-sensitive adhesive sheets using the same. There is provided a pressure-sensitive composition comprising an ionic liquid, and a (meth)acryl-based polymer containing, as a monomer component, 0.1 to 100% by weight of a (meth)acrylic acid alkylene oxide. There is provided a pressure-sensitive composition comprising an ionic liquid, and a polymer containing, as a monomer component, 0.5 to 30% by weight of a nitrogen-containing monomer and having a glass transition temperature Tg of no higher than 0° C. There is provided a pressure-sensitive composition comprising an ionic liquid, and a (meth)acryl-based polymer containing, as a monomer component, 0.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: August 2, 2011
    Assignee: Nitto Denko Corporation
    Inventors: Tatsumi Amano, Natsuki Kobayashi, Masahiko Ando
  • Publication number: 20110111327
    Abstract: Powders of respective metal elements (Mn, Co) constituting a transition metal oxide (MnCo2O4) having a spinel type crystal structure are used as a starting material of the coating film. A film of a paste containing the mixture of the powders is formed on the surface of the interconnector, and with this state, the paste is sintered to form the coating film. In the coating body, a chromia layer including Cr2O3, a first layer including elements of Mn, Co, Fe, Cr, and O, and a second layer including elements of Mn, Co, Fe, and O are provided in this order from the side close to the interconnector at the boundary between the coating film and the interconnector. With this structure, the coating film is difficult to be peeled even if the coating body is placed in a severe temperature change.
    Type: Application
    Filed: October 22, 2010
    Publication date: May 12, 2011
    Applicant: NGK Insulators, Ltd.
    Inventors: Makoto OHMORI, Takashi RYU, Toshiyuki NAKAMURA
  • Publication number: 20110076587
    Abstract: A method to use a novel structured metal-ceramic composite powder to improve the surface electrical conductivity of corrosion resistant metal substrates by thermal spraying the structured powder onto a surface of a metallic substrate is disclosed. The structured powder has a metal core and is wholly or partially surrounded by an electrically conductive ceramic material such as a metal nitride material. The metal cores may have the ceramic material formed on them prior to a thermal spraying process performed in an inert atmosphere, or the thermal spraying may be performed in a reactive atmosphere such that the ceramic coating forms on the cores during the thermal spraying process and/or after deposition. The metal cores will bond conductive ceramic material onto the surface of the substrate through the thermal spray process.
    Type: Application
    Filed: September 28, 2010
    Publication date: March 31, 2011
    Applicant: TREADSTONE TECHNOLOGIES, INC.
    Inventors: CONGHUA WANG, LIN ZHANG, GERALD A. GONTARZ, JR.
  • Patent number: 7914915
    Abstract: A highly charged ion modified device is provided that includes a first metal layer or layers deposited on a substrate and an insulator layer, deposited on the first metal layer, including a plurality of holes therein produced by irradiation thereof with highly charged ions. The metal of a further metal layer, deposited on the insulator layer, fills the plurality of holes in the insulator layer.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: March 29, 2011
    Assignee: The United States of America as represented by the Secretary of the Commerce, The National Institutes of Standards and Technology
    Inventors: Joshua M. Pomeroy, Holger Grube, Andrew Perrella, Fern Slew, legal representative
  • Publication number: 20110048017
    Abstract: A method is provided for high velocity air plasma spraying (APS) application of a protective coating system, such as a bond coat with or without an overlying ceramic thermal barrier coat, to a superalloy metal substrate. Application of MCrAlY alloy bond particles (where M is at least one of iron, cobalt, or nickel) onto the metal substrate is maintained at a particle velocity of at least 400 meters per second (m/s), for example within a range of 400 m/s to 700 m/s. The resulting bond coat on the metal substrate has a surface roughness of about 300 to about 500 ?inch Ra, and a density of at least 90% of theoretical density. The protective coating may include a ceramic thermal barrier coat applied over the bond coat by any suitable process.
    Type: Application
    Filed: August 27, 2009
    Publication date: March 3, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: JOSHUA LEE MARGOLIES, Yuk-Chiu LAU, DAVID VINCENT BUCCI
  • Publication number: 20110052931
    Abstract: The present disclosure is directed to cutting tools. The disclosed cutting tools may have a wear resistant coating on a substrate. The substrate may have hard particles cemented in a binder phase. The binder may have a near-surface concentration gradient of at least one platinum group element and/or rhenium. Processes for producing cutting tools are also disclosed.
    Type: Application
    Filed: August 25, 2009
    Publication date: March 3, 2011
    Applicant: TDY Industries, Inc.
    Inventors: Craig W. Morton, Dewitt Dortch, John Bost, David J. Wills
  • Publication number: 20110039119
    Abstract: The invention relates to a method for fixing on a metal workpiece a connecting element which permits the friction-increasing, play-free, reversible connection of workpieces to be joined, the connecting element comprising a metal foil which bears on its joining surfaces hard material particles, which are fixed on the metal foil by means of a metallic binder phase, characterized in that the connecting element is fixed on the metal workpiece securely for purposes of assembly and transportation by welding involving the formation of locally confined weld points.
    Type: Application
    Filed: July 15, 2008
    Publication date: February 17, 2011
    Applicant: ESK CERAMICS GMBH & CO. KG
    Inventors: Franz Berger, Daniel Burtsche, Jürgen Meyer, Sven Schreiner
  • Publication number: 20110008641
    Abstract: The present invention relates to essentially transparent glazings comprising a system of films deposited under vacuum by magnetron, and having antisun and/or low-emission properties, comprising as protective surface layer a layer based on titanium oxide and on at least one other metal oxide of high hardness from the group comprising: ZrO2, SiO2, Cr2O3. The glazings according to the invention are of a nature to withstand a heat treatment at 550° C. for 5 minutes without giving rise to the presence of optical effects, especially of coloration or iridescence. These glazings are termed toughenable.
    Type: Application
    Filed: March 20, 2009
    Publication date: January 13, 2011
    Applicant: AGC GLASS EUROPE
    Inventor: Gaetan Di Stefano
  • Publication number: 20100323213
    Abstract: A wear resistant multilayer overlay includes a first layer on at least a surface of an article, and a second layer metallurgically bonded to at least a portion of the first layer. The first layer includes a first continuous metallic matrix and at least one of first hard particles, blocky diamond particles, non-blocky diamond particles, TSP diamond, cubic boron nitride particles, and PCD compacts embedded in the first continuous metallic matrix, wherein the first hard particles are at least one of transition metal carbide particles and boron nitride particles. The second layer includes a second continuous metallic matrix and at least one of second hard particles, blocky diamond particles, non-blocky diamond particles, TSP diamond, cubic boron nitride particles, and PCD compacts, embedded in the second continuous metallic matrix, wherein the second hard particles are at least one of transition metal carbide particles and boron nitride particles. Related methods and articles of manufacture also are disclosed.
    Type: Application
    Filed: June 19, 2009
    Publication date: December 23, 2010
    Inventors: Trevor Aitchison, R. Allan Heflin
  • Publication number: 20100316883
    Abstract: A wear- and corrosion-resistance coating over a metal substrate having a first-layer carbide material, a second metal coating layer over the first metal coating layer, and a surface metal coating layer over the second metal coating layer; and thermal spray method for applying the coating.
    Type: Application
    Filed: May 28, 2010
    Publication date: December 16, 2010
    Applicant: DELORO STELLITE HOLDINGS CORPORATION
    Inventors: David A. Lee, Heidi Lynette de Villiers-Lovelock, Danie Jacobus Dewet, James B. C. Wu
  • Publication number: 20100285326
    Abstract: The disclosure is directed to a process for producing separable iron and titanium oxides from an ore containing titanium oxide and ferric oxide, comprising: (a) forming agglomerates comprising carbon-based materials and the ore, the quantity of carbon of the agglomerates being sufficient for, at an elevated temperature, reducing ferric oxide to ferrous oxide and forming a ferrous oxide-rich molten slag, (b) introducing the agglomerates onto a carbon bed of a moving hearth furnace; (c) heating the agglomerates in the moving hearth furnace to a temperature sufficient for reducing and melting the agglomerates to produce a ferrous oxide-rich molten slag; (d) metallizing the ferrous oxide of the molten slag by reaction of the ferrous oxide and the carbon of the carbon bed at a furnace temperature sufficient for maintaining the slag in a molten state; and (e) solidifying the slag after metallization of the ferrous oxide to form a matrix of titanium oxide-rich slag having a plurality of metallic iron granules distri
    Type: Application
    Filed: July 19, 2010
    Publication date: November 11, 2010
    Applicant: E. I. DU PONT DE NEMOURS AND COMPANY
    Inventors: JOHN JAMES BARNES, Stephen Erwin Lyke, Dat Nguyen, Mitsutaka Hino, Akira Uragami, Isao Kobayashi, Thomas Peter Battle, Joseph M. Shekiro, JR.
  • Publication number: 20100233500
    Abstract: A cold-forming steel article which comprises an alloy that comprises carbon, manganese, silicon, chromium, molybdenum, vanadium, tungsten and optionally, niobium in certain concentrations, as well as up to about 0.4 wt. % of accompanying elements, remainder iron and contaminants. The article is formed by atomization of a melt and hot isostatic pressing of the resultant powder. The article exhibits a hardness of at least about 60 HRC and a toughness in terms of impact strength of higher than about 50 J. This abstract is neither intended to define the invention disclosed in this specification nor intended to limit the scope of the invention in any way.
    Type: Application
    Filed: March 5, 2010
    Publication date: September 16, 2010
    Applicant: BOEHLER EDELSTAHL GMBH & CO KG
    Inventors: Gerhard JESNER, Devrim CALISKANOGLU
  • Patent number: 7795334
    Abstract: An object of the present invention is to provide a pressure-sensitive adhesive composition which is excellent in antistatic property of a non-electrification-prevented adherend (subject to be protected) upon peeling, and has reduced stainability in an adherend and is excellent in adhesion reliance, and electrification preventing pressure-sensitive adhesive sheets using the same. There is provided a pressure-sensitive composition comprising an ionic liquid, and a (meth)acryl-based polymer containing, as a monomer component, 0.1 to 100% by weight of a (meth)acrylic acid alkylene oxide. There is provided a pressure-sensitive composition comprising an ionic liquid, and a polymer containing, as a monomer component, 0.5 to 30% by weight of a nitrogen-containing monomer and having a glass transition temperature Tg of no higher than 0° C. There is provided a pressure-sensitive composition comprising an ionic liquid, and a (meth)acryl-based polymer containing, as a monomer component, 0.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: September 14, 2010
    Assignee: Nitto Denko Corporation
    Inventors: Tatsumi Amano, Natsuki Kobayashi, Masahiko Ando
  • Publication number: 20100227187
    Abstract: A novel solution route has been developed that after heat-treatment to 500-600° C. under inert atmosphere, yields highly porous composites of nano-sized metal (Ni) particle inclusions in ceramics (Al2O3). Metal loadings could be made from <1% to >95% Ni. The metal inclusion sizes in the Ni—Al2O3 system with the 10 atom % Ni sample were 4-7 nm, while for the 75 atom % Ni sample they were 5-8 nm. It was shown that the 10 atom % Ni sample could be used as a catalyst for the conversion of CO2 and CH4 in the temperature range 550-700° C., while higher temperatures led to growth of the Ni particles and carbon poisoning over time. The solution routes could also be deposited as thin dense films containing <10 nm Ni particles. Such films with high Ni-particle loadings deposited on aluminium substrates have shown very good solar heat absorber proficiency and provide good substrates for carbon tube growth.
    Type: Application
    Filed: May 21, 2010
    Publication date: September 9, 2010
    Applicant: SUNSTRIP AB
    Inventors: GUNNAR WESTIN, Annika Pohl, Asa Ekstrand
  • Publication number: 20100196296
    Abstract: A metallic effect pigment comprising at least three layers: A) a layer A which comprises at least one metal MA and has an average oxygen content OA, based on the total amount of MA and OA in the layer A, B) a layer B comprising at least one metal MB and having an average oxygen content OB of 0 to 77 atom %, more particularly of 0 to 58 atom %, based on the total amount of MB and OB in the layer B, C) a layer C which comprises at least one metal MC and has an average oxygen content OC, based on the total amount of MC and OC in the layer C, the average oxygen content OAC in layers A and C being determined in accordance with the formula (I) O AC = 1 2 ? ( O A M A + O A + O C M C + O C ) ( I ) and being situated within a range from 2 to 77 atom %, more particularly from 25 to 58 atom %. The disclosure further relates to processes for preparing this effect pigment and also to its use.
    Type: Application
    Filed: July 24, 2008
    Publication date: August 5, 2010
    Inventors: Bernhard Geissler, Wolfgang Herzing, Jasmin Bleisteiner, Martin Fischer, Ralph Schneider
  • Publication number: 20100040898
    Abstract: A thin film for a reflection film or a semi-transparent reflection film, which has a compound phase comprising at least one selected from the group consisting of a nitride, an oxide, a complex oxide, a nitroxide, a carbide, a sulfide, a chloride, a silicide, a fluoride, a boride, a hydride, a phosphide, a selenide and a telluride of gallium, palladium or copper, dispersed in a matrix formed of silver or a silver alloy. The compound phase in the thin film may include at least one compound selected from the group consisting of nitride, oxide, complex oxide, nitroxide, carbide, sulfide, chloride, silicide, fluoride, boride, hydride, phosphide, selenide and telluride of silver. The thin film of the present invention minimizes the deterioration of the reflectance even after a long period of use, and can prolong the life of various devices which use the thin film as a reflection film, such as an optical recording medium and a display.
    Type: Application
    Filed: November 17, 2006
    Publication date: February 18, 2010
    Inventors: Tomokazu Obata, Hiroshi Yanagihara
  • Patent number: 7648760
    Abstract: In a method of manufacturing a microstructure, an aluminum member having an aluminum substrate and a micropore-bearing anodized layer present on a surface of the aluminum substrate is subjected at least to, in order, a pore-ordering treatment which involves performing one or more cycles of a step that includes a first film dissolution treatment for dissolving 0.001 to 20 wt % of a material constituting the anodized layer and an anodizing treatment which follows the first film dissolution treatment; and a second film dissolution treatment for dissolving the anodized layer, thereby obtaining the microstructure having micropores formed on a surface thereof. This method enables a microstructure having an ordered array of pits to be obtained in a short period of time.
    Type: Grant
    Filed: February 5, 2007
    Date of Patent: January 19, 2010
    Assignee: FUJIFILM Corporation
    Inventors: Yusuke Hatanaka, Tadabumi Tomita, Yoshinori Hotta, Akio Uesugi
  • Publication number: 20100006335
    Abstract: In a multilayer ceramic substrate manufactured by a non-shrinking process, a bonding strength of an external conductive film formed on a primary surface of the multilayer ceramic substrate is increased. After a laminate of a multilayer ceramic substrate is formed from first ceramic layers and second shrinkage suppressing ceramic layers, and an underlayer is formed along one primary surface of the multilayer ceramic substrate, an external conductive film is formed on the underlayer. A non-sintering ceramic material powder in a non-sintered state is included in both the external conductive film and the underlayer, and this non-sintering ceramic material powder is fixed due to diffusion of a glass component from the first ceramic layers.
    Type: Application
    Filed: August 27, 2009
    Publication date: January 14, 2010
    Applicant: Murata Manufacturing Co., Ltd.
    Inventors: Masato NOMIYA, Satoshi ASAKURA, Tatsuya UEDA, Akira BABA
  • Patent number: 7588833
    Abstract: There is disclosed a fine grained cutting tool insert consisting of a cemented carbide substrate and a coating. The cemented carbide substrate comprises WC, binder phase, and vanadium containing cubic carbide phase with a binder phase enriched surface zone essentially free of cubic carbide phase.
    Type: Grant
    Filed: June 26, 2006
    Date of Patent: September 15, 2009
    Assignees: Sandvik Intellectual Property AB, Seco Tools AB
    Inventors: Nobom Gretta Hashe, Susanne Norgren, Bo Jansson, Alexandra Kusoffsky, Hans-Olof Andrén, Johannes Henoch Neethling
  • Publication number: 20090226751
    Abstract: The present invention relates to an iron-base powder for a powder core, wherein when cross-sections of at least 50 iron-base powders are observed and a crystal grain size distribution containing at least a maximum crystal grain size is determined by measuring a crystal grain size of each iron-base powder, 70% or more of the measured crystal grains are a crystal grain having a crystal grain size of 50 ?m or more. According to the iron-base powder of the invention, a coercivity of the powder core can be made small and a hysteresis loss can be reduced.
    Type: Application
    Filed: September 11, 2007
    Publication date: September 10, 2009
    Applicants: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd.), Hitachi Powdered Metals Co., Ltd.
    Inventors: Hiroyuki Mitani, Nobuaki Akagi, Hirofumi Houjou, Chio Ishihara, Makoto Iwakiri, Sohei Yamada, Yasukuni Mochimizo
  • Publication number: 20090114454
    Abstract: Thermally-stable polycrystalline diamond materials of this invention comprise a first phase including a plurality of bonded together diamond crystals, and a second phase including a reaction product formed between a binder/catalyst material and a material reactive with the binder/catalyst material. The reaction product is disposed within interstitial regions of the polycrystalline diamond material that exists between the bonded diamond crystals. The first and second phases are formed during a single high pressure/high temperature process condition. The reaction product has a coefficient of thermal expansion that is relatively closer to that of the bonded together diamond crystals than that of the binder/catalyst material, thereby providing an improved degree of thermal stability to the polycrystalline diamond material.
    Type: Application
    Filed: December 31, 2008
    Publication date: May 7, 2009
    Applicant: Smith International, Inc.
    Inventors: John Daniel Belnap, Stewart N. Middlemiss, Anthony Griffo, Thomas W. Oldham, Kumar T. Kembaiyan
  • Patent number: 7473287
    Abstract: Thermally-stable polycrystalline diamond materials of this invention comprise a first phase including a plurality of bonded together diamond crystals, and a second phase including a reaction product formed between a binder/catalyst material and a material reactive with the binder/catalyst material. The reaction product is disposed within interstitial regions of the polycrystalline diamond material that exists between the bonded diamond crystals. The first and second phases are formed during a single high pressure/high temperature process condition. The reaction product has a coefficient of thermal expansion that is relatively closer to that of the bonded together diamond crystals than that of the binder/catalyst material, thereby providing an improved degree of thermal stability to the polycrystalline diamond material.
    Type: Grant
    Filed: December 6, 2004
    Date of Patent: January 6, 2009
    Assignee: Smith International Inc.
    Inventors: John Daniel Belnap, Stewart N. Middlemiss, Anthony Griffo, Thomas W. Oldham, Kumar T. Kembaiyan
  • Publication number: 20080311429
    Abstract: The disclosure provides a magnetic film which includes a titania nanosheet which is formed on a transparent substrate and contains a layered titanium oxide in which at least one magnetic element is substituted for a Ti lattice position, the titanium oxide being expressed by a formula: Ti2-xMxO4 where M is at least one kind of transition metal elements chosen from among V, Cr, Mn, Fe, Co, Ni, and Cu, and 0<x<2, a dispersant surrounding the nanosheet, and a water-soluble organic compound.
    Type: Application
    Filed: June 9, 2008
    Publication date: December 18, 2008
    Inventors: Tadao KATSURAGAWA, Takayoshi Sasaki, Minoru Osada
  • Patent number: 7455905
    Abstract: The present invention concerns a high purity, annealed iron powder suitable for the preparation of soft magnetic composites. The powder is distinguished in that the content of inevitable impurities is less than 0.30% by weight, the oxygen content is less than 0.05% by weight, and the specific surface area as measured by the BET method is less than 60 m2/kg.
    Type: Grant
    Filed: September 8, 2004
    Date of Patent: November 25, 2008
    Assignee: Höganäs AB
    Inventors: Zhou Ye, Ola Andersson
  • Patent number: 7422697
    Abstract: A composite sintered magnetic material comprises a kind of metal powder at least one selected from the group consisting of Fe, Fe—Si type, Fe—Ni type, Fe—Ni—Mo type, and Fe—Si—Al type, and a ferrite layer formed from a kind of ferrite powder at least one selected from the group consisting of Ni—Zn type, Mn—Zn type, and Mg—Zn type, wherein a diffusion layer is formed by sintering between both of these to integrates the both.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: September 9, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Takeshi Takahashi, Nobuya Matsutani, Kazuaki Onishi
  • Publication number: 20080206585
    Abstract: Composite materials comprising a hard ceramic phase and an infiltration alloy are disclosed. The hard ceramic phase may comprise a carbide such as tungsten carbide and/or cast carbide. The infiltration alloy is a heat treatable Cu-based alloy comprising Ni and Mn. The infiltration alloy may be substantially free of Sn and Zn. The composite material is heat treated in order to improve its mechanical properties. For example, the composition of the Cu—Ni—Mn infiltration alloy may be selected such that its hardness, wear resistance, toughness and/or transverse rupture strength are improved after the composite material is solutionized, cooled and thermally aged.
    Type: Application
    Filed: February 22, 2007
    Publication date: August 28, 2008
    Inventors: Xin Deng, Harold E. Kelley
  • Publication number: 20080193789
    Abstract: The invention relates to the use of surface-modified particles in electroplating technology, to a method for their production and to said particles.
    Type: Application
    Filed: September 16, 2005
    Publication date: August 14, 2008
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventor: Jan Steinbach
  • Patent number: 7368079
    Abstract: A method for forming an ultra hard material layer is provided. The method includes disposing a metallic liner inside the periphery of a refractory metal enclosure, introducing ultra hard material feed stock into the enclosure, and sintering using HPHT processing and cooling to form the ultra hard material layer, substantially free of peripheral cracking, chipping and fracturing.
    Type: Grant
    Filed: December 9, 2003
    Date of Patent: May 6, 2008
    Assignee: Smith International, Inc.
    Inventors: Xian Yao, David DenBoer, Scott Horman
  • Patent number: 6991860
    Abstract: Interference pigment flakes and foils are provided which have color shifting properties. The pigment flakes can have a symmetrical coating structure on opposing sides of a reflector layer, can have an asymmetrical coating structure with all of the layers on one side of the reflector layer, or can be formed with encapsulating coatings around a core reflector layer. The coating structure of the flakes and foils includes a reflector layer, a dielectric layer on the reflector layer, and a titanium-containing absorber layer on the dielectric layer. The pigment flakes and foils exhibit a discrete color shift so as to have a first color at a first angle of incident light or viewing and a second color different from the first color at a second angle of incident light or viewing. The pigment flakes can be interspersed into liquid media such as paints or inks to produce colorant compositions for subsequent application to objects or papers.
    Type: Grant
    Filed: April 14, 2003
    Date of Patent: January 31, 2006
    Assignee: JDS Uniphase Corporation
    Inventors: Roger W. Phillips, Charlotte R. LeGallee, Paul T. Kohlmann, Vladimir Raksha, Alberto Argoitia
  • Patent number: 6933056
    Abstract: An exhaust manifold (10) of the present invention comprises a liner (12) that includes inner surface (14) defining manifold passages and an outer surface (16). The exhaust manifold (10) includes a shell (18) of a homogeneous and continuous material disposed over the outer surface (16) of the liner (12). The shell (18) and liner (12) of the exhaust manifold (10) include first (60) and second (72) composition formed from ferrous and non-ferrous metal powders (62), ceramic powder (64), and a binder (74) added thereto to form the manifold (10). The invention discloses a method of making the exhaust manifold (80). Accordingly, the exhaust manifold (10) of the subject invention has a reduced weight and dissipates heat energy contained in the exhaust thereby increasing the efficiency of the catalytic converter (42).
    Type: Grant
    Filed: November 14, 2002
    Date of Patent: August 23, 2005
    Assignee: Mathson Industries
    Inventor: Boney A. Mathew
  • Patent number: 6908688
    Abstract: A multiple-region hardmetal tool piece. The tool piece includes a hardmetal body including a hard particle component and a binder; an additional body, the additional body including a hardmetal body having a hard particle component and a binder; a metal body or a ceramic body; a substantially discontinuous gradient-free boundary layer between the hardmetal body and the additional body; and a mating surface between the hardmetal body and the additional body. In the preferred embodiment, the hard particle components are a carbide, such as tungsten carbide. In the preferred embodiment, the mating surface includes a male portion on one of the bodies and a corresponding female portion on the other of the bodies. The mating surface is symmetrical or asymmetrical and, in the preferred embodiment, the mating surface is axially symmetrical, such as a dimple. The mating surface may further including both micro and macro mating features.
    Type: Grant
    Filed: August 4, 2000
    Date of Patent: June 21, 2005
    Assignee: Kennametal Inc.
    Inventors: Shivanand Majagi, Robert W. Britzke, Daniel W. Nelson
  • Publication number: 20040265615
    Abstract: Gold powders and methods for producing gold powders. The powders preferably have a small particle size, narrow size distribution and a spherical morphology. The method includes forming the particles by a spray pyrolysis technique. The invention also includes novel devices and products formed from the gold powders.
    Type: Application
    Filed: July 16, 2004
    Publication date: December 30, 2004
    Inventors: Toivo T. Kodas, Mark J. Hampden-Smith, James Caruso, Daniel J. Skamser, Quint H. Powell, Clive D. Chandler
  • Patent number: 6830823
    Abstract: Gold powders and methods for producing gold powders. The powders preferably have a small particle size, narrow size distribution and a spherical morphology. The method includes forming the particles by a spray pyrolysis technique. The invention also includes novel devices and products formed from the gold powders.
    Type: Grant
    Filed: October 27, 2000
    Date of Patent: December 14, 2004
    Assignee: Superior MicroPowders LLC
    Inventors: Toivo T. Kodas, Mark J. Hampden-Smith, James Caruso, Daniel J. Skamser, Quint H. Powell, Clive D. Chandler
  • Patent number: 6830822
    Abstract: A pigment with modified properties because of the powder size being below 100 nanometers. Blue, yellow and brown pigments are illustrated. Nanoscale coated, un-coated, whisker inorganic fillers are included. Stoichiometric and non-stoichiometric composition are disclosed. The pigment nanopowders taught comprise one or more elements from the group actinium, aluminum, antimony, arsenic, barium, beryllium, bismuth, cadmium, calcium, cerium, cesium, cobalt, copper, chalcogenide, dysprosium, erbium, europium, gadolinium, gallium, gold, hafnium, hydrogen, indium, iridium, iron, lanthanum, lithium, magnesium, manganese, mendelevium, mercury, molybdenum, neodymium, neptunium, nickel, niobium, nitrogen, oxygen, osmium, palladium, platinum, potassium, praseodymium, promethium, protactinium, rhenium, rubidium, scandium, silver, sodium, strontium, tantalum, terbium, thallium, thorium, tin, titanium, tungsten, vanadium, ytterbium, yttrium, zinc, and zirconium.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: December 14, 2004
    Assignee: NanoProducts Corporation
    Inventor: Tapesh Yadav
  • Patent number: 6828037
    Abstract: The invention provides a hydrogen permeable structure, which can effectively prevent peeling-off of a hydrogen permeable film and hence has higher durability, and a method of manufacturing the structure. The hydrogen permeable structure has a hydrogen permeable film formed on the surface of or inside a porous support, having a thickness of not more than 2 &mgr;m, and containing palladium (Pd). The hydrogen permeable film is formed on the surface of or inside the porous support by supplying a Pd-containing solution and a reducing feed material from opposite sides of the porous support.
    Type: Grant
    Filed: June 16, 2003
    Date of Patent: December 7, 2004
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takashi Uemura, Kentaro Yoshida, Nobuyuki Okuda, Takeshi Hikata
  • Publication number: 20040084112
    Abstract: Ferromagnetic particles with a high-temperature and thermally stable insulating coating are described. The ferromagnetic particles are first coated with a thin layer of a high permeability metal (nickel) by an electroless plating process. The deposited metal layer is then oxidized by controlling the time and temperature while heating the coated particles in an oxygen atmosphere. This process develops a thin and uniform layer of metal oxide on the ferromagnetic particles. The controlled oxidation of the coating helps encapsulate the particles with a thermally stable and electrically non-conducting layer. These particles can then be compacted and then annealed above 500 degrees Celsius to relieve the stresses introduced in the shaping, thereby obtaining articles with a high permeability and low magnetic loss.
    Type: Application
    Filed: November 5, 2002
    Publication date: May 6, 2004
    Applicant: General Electric Company
    Inventors: Amitabh Verma, Luana Emiliana Iorio, K. Anand, Srinidhi Sampath, Kanchan Kumari, Geetha Karavoor
  • Patent number: 6670049
    Abstract: An environmental coating is applied to the surface of a titanium-base alloy substrate to protect the surface from oxidation, corrosion, erosion, and other damage. The coating is a mixture of a metal and a ceramic, each selected to contribute to the protective function. The proportions of the metal and the ceramic in the coating are selected such that the coefficient of thermal expansion of the coating is about the same as the coefficient of thermal expansion of the substrate.
    Type: Grant
    Filed: May 5, 1995
    Date of Patent: December 30, 2003
    Assignee: General Electric Company
    Inventors: Jon C. Schaeffer, Russell L. McCarron, Dennis M. Gray
  • Patent number: 6667112
    Abstract: Dental restorations are fabricated using metal powder. Preferably, the metal powder is a high fusing metal and preferably, the metal powder comprises a non-oxidizing metal. The metal powder is applied to a die and is covered with a covering material such as a refractory die material preferably in the form of a flowable paste. A second covering material may be sprinkled or dusted onto the paste. The model is then dried prior to firing. After drying, the model is sintered to provide a high strength metal restoration. After sintering, the outer shell can be broken off easily with one's hand to expose the sintered coping.
    Type: Grant
    Filed: July 24, 2001
    Date of Patent: December 23, 2003
    Assignee: Pentron Laboratory Technologies, LLC
    Inventors: Arun Prasad, Gregg Daskalon
  • Publication number: 20030203191
    Abstract: A moisture-tolerant structural panel comprising a gypsum board comprising a set gypsum core sandwiched between and faced with mats of glass fibers, wherein a free surface of one of said mats is coated with a combination of a mineral pigment, an inorganic adhesive binder and a polymer latex adhesive binder applied to said surface as an aqueous coating composition, said aqueous coating composition upon drying and setting, covering said mat to the extent that substantially none of the fibers of said mat protrude from said coating.
    Type: Application
    Filed: February 21, 2003
    Publication date: October 30, 2003
    Applicant: Georgia-Pacific Gypsum Corporation
    Inventors: Brian G. Randall, Gary A. Ricards
  • Patent number: 6635348
    Abstract: Provided is an aerosol method, and accompanying apparatus, for preparing powdered products of a variety of materials involving the use of an ultrasonic aerosol generator (106) including a plurality of ultrasonic transducers (120) underlying and ultrasonically energizing a reservoir of liquid feed (102) which forms droplets of the aerosol. Carrier gas (104) is delivered to different portions of the reservoir by a plurality of gas delivery ports (136) delivering gas from a gas delivery system. The aerosol is pyrolyzed to form particles, which are then cooled and collected. The invention also provides powders made by the method and devices made using the powders.
    Type: Grant
    Filed: September 22, 2000
    Date of Patent: October 21, 2003
    Assignee: Superior MicroPowders LLC
    Inventors: Mark J. Hampden-Smith, Toivo T. Kodas, Quint H. Powell, Daniel J. Skamser, James Caruso, Clive D. Chandler
  • Patent number: 6610413
    Abstract: A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.
    Type: Grant
    Filed: August 30, 2002
    Date of Patent: August 26, 2003
    Assignee: UT-Battelle, LLC
    Inventors: Amit Goyal, Robert K. Williams, Donald M. Kroeger
  • Patent number: 6610414
    Abstract: A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.
    Type: Grant
    Filed: October 28, 2002
    Date of Patent: August 26, 2003
    Assignee: UT-Battelle, LLC
    Inventors: Amit Goyal, Robert K. Williams, Donald M. Kroeger
  • Patent number: 6607839
    Abstract: A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.
    Type: Grant
    Filed: October 28, 2002
    Date of Patent: August 19, 2003
    Assignee: UT-Battelle, LLC
    Inventors: Amit Goyal, Robert K. Williams, Donald M. Kroeger
  • Patent number: 6607838
    Abstract: A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.
    Type: Grant
    Filed: October 28, 2002
    Date of Patent: August 19, 2003
    Inventors: Amit Goyal, Robert K. Williams, Donald M. Kroeger
  • Patent number: 6569529
    Abstract: Interference pigment flakes and foils are provided which have color shifting properties. The pigment flakes can have a symmetrical coating structure on opposing sides of a reflector layer, can have an asymmetrical coating structure with all of the layers on one side of the reflector layer, or can be formed with encapsulating coatings around a core reflector layer. The coating structure of the flakes and foils includes a reflector layer, a dielectric layer on the reflector layer, and a titanium-containing absorber layer on the dielectric layer. The pigment flakes and foils exhibit a discrete color shift so as to have a first color at a first angle of incident light or viewing and a second color different from the first color at a second angle of incident light or viewing. The pigment flakes can be interspersed into liquid media such as paints or inks to produce colorant compositions for subsequent application to objects or papers.
    Type: Grant
    Filed: October 10, 2000
    Date of Patent: May 27, 2003
    Assignee: Flex Product, Inc.
    Inventors: Roger W. Phillips, Charlotte R. LeGallee, Paul T. Kohlmann, Vladimir Raksha, Alberto Argoitia
  • Publication number: 20030003316
    Abstract: A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.
    Type: Application
    Filed: August 30, 2002
    Publication date: January 2, 2003
    Inventors: Amit Goyal, Robert K. Williams, Donald M. Kroeger
  • Publication number: 20020155312
    Abstract: A coated body that has a substrate of tungsten, carbon, and cobalt, and wherein the substrate presents a surface. Eta phase is present at the surface of the substrate. Fibrous tungsten carbide grains are present at the surface of the substrate. The surface of the substrate has a surface roughness, Ra, of greater than about 12 microinches. A coating layer is on the surface of the substrate.
    Type: Application
    Filed: March 22, 2002
    Publication date: October 24, 2002
    Inventors: Alfred S. Gates, Aharon Inspektor
  • Publication number: 20020145826
    Abstract: A method is provided for the preparation of nanoscale particle arrays having highly uniform crystals of metal, semiconductor or insulator materials grown in nanopores in the surface of a substrate, wherein the method uses pulse-reverse electrodeposition of metals with a rectangular or square waveform in order to generate high homogeneity of crystals and high in-plane or out-of-plane anisotropy in a controlled manner, enabling the creation of a variety of devices, including but not limited to high density storage media.
    Type: Application
    Filed: April 9, 2001
    Publication date: October 10, 2002
    Applicant: University of Alabama
    Inventors: Giovanni Zangari, Ming Sun, Robert M. Metzger