Entirely Inorganic Patents (Class 428/552)
  • Patent number: 6422008
    Abstract: Methods and apparatus for reducing the TPM level of a diesel engine exhaust stream by providing a suitable oxidation catalyst into the exhaust train. The oxidation catalyst may be incorporated into a thermal insulative coating on the inner surface of the exhaust train, particularly the exhaust manifold and exhaust pipes prior to the turbocharger. Alternatively, when the exhaust train includes a turbocharger, the catalyst can be in a separate monolithic unit between the engine and the turbocharger. The system may also include an improved diesel oxidation catalyst unit having a metal monolithic substrate. The oxidation catalyst can also be incorporated into a thermal insulative coating inside the cylinders, particularly on non-rubbing surfaces such as The invention also includes the use of a protective mullite top coat on the thermal coating. A further embodiment is the use of a stainless steel bond coat to bind the thermal coating to a metallic substrate, particularly an aluminum substrate.
    Type: Grant
    Filed: April 16, 2001
    Date of Patent: July 23, 2002
    Assignee: Engelhard Corporation
    Inventors: Kenneth E. Voss, Timothy D. Wildman, Michael G. Norris, Gary W. Rice
  • Patent number: 6342306
    Abstract: A bearing material includes a backing metal and a porous sintered metal layer sintered onto a surface of the backing metal, particles of an inorganic substance being contained at grain boundaries of the porous sintered metal layer. The porous sintered metal layer contains tin, nickel, phosphorus, and copper, and the particles of the inorganic substance are those of at least one of graphite, boron nitride, graphite fluoride, calcium fluoride, aluminum oxide, silicon oxide, and silicon carbide.
    Type: Grant
    Filed: November 3, 1999
    Date of Patent: January 29, 2002
    Assignee: Oiles Corporation
    Inventors: Hideo Ozawa, Hiroshi Tsuji, Hirotsugu Tomita
  • Publication number: 20010033804
    Abstract: The present invention relates to an abrasive dressing tool used for mechanical and chemical planarization abrasion of the surface of the work pieces as can be used for semiconductor wafers or the like which require precise, planar and micro polishing, and a method for manufacturing the same dressing tool. Specifically, ultimately macro- and micro-scratches on wafers can be drastically reduced, the rate of inferior finished products or wafers can be decreased and abrasive life time of the tool can be prolonged, by sintering and brazing abrasive particles with a nickel based brazing metal on the abrasive tool, and then filling or covering the non-sintered parts and re-crystallized parts of sintered and brazed layers, apt to crack or fall-out from the surface, through electroplating process.
    Type: Application
    Filed: February 12, 2001
    Publication date: October 25, 2001
    Inventor: Jung Soo An
  • Patent number: 6299992
    Abstract: The present invention relates to method of making a cemented carbide insert, comprising a cemented carbide substrate and a coating. The substrate contains WC and cubic carbonitride phase in a binder phase based of Co and/or Ni and has a binder phase enriched surface zone essentially free of cubic phase. The binder phase enriched surface zone prevails over the edge. By sintering in an atmosphere essentially consisting of nitrogen the thickness of the binder phase enriched zone can be controlled.
    Type: Grant
    Filed: August 25, 1999
    Date of Patent: October 9, 2001
    Assignee: Sandvik AB
    Inventors: Per Lindskog, Per Gustafson
  • Patent number: 6299658
    Abstract: In a cemented carbide, at least one compound 3 including a carbide, a nitride or carbo-nitride of at least one component selected from IVa, Va and VIa group elements or a solid solution thereof exists in at least some WC crystal grains 1. Preferably the compound 3 is in the form of compound grains 3 comprising a carbide, a nitride or a carbo-nitride of Ti, Zr, Hf or W or a solid solution thereof, having an average grain diameter smaller than 0.3 &mgr;m. The compound grains make up at most 10% of the cross-sectional area of the WC crystal grains that contain the compound grains, while at least 10% of the total cross-sectional area of the cemented carbide is made up of such WC crystal grains that contain the compound grains.
    Type: Grant
    Filed: July 23, 1998
    Date of Patent: October 9, 2001
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Hideki Moriguchi, Akihiko Ikegaya
  • Patent number: 6275130
    Abstract: An object of the present invention is to provide an Fe—B—R permanent magnet that exhibits stabilized high magnetic properties, wear resistance, electrical insulating performance, and corrosion resistance and shows minimized deterioration from the initial magnetic properties when exposed for an extended time to atmospheric conditions of a temperature of 80° C. and relative humidity of 90%, by providing a coating film having outstanding adhesion with the Fe—B—R permanent magnet and improved wear resistance and corrosion resistance. After cleaning the surface of the permanent magnet body by ion sputtering or the like, an Al or Ti coating film is formed on the surface of that magnet body by a vapor film-forming method such as ion plating, and then an aluminum oxide coating film is formed by a vapor film-forming method such as ion plating while introducing either simple O2 gas or a rare gas containing O2.
    Type: Grant
    Filed: March 20, 2000
    Date of Patent: August 14, 2001
    Assignee: Sumitomo Special Metals Co., Ltd.
    Inventors: Kohshi Yoshimura, Takeshi Nishiuchi, Fumiaki Kikui
  • Patent number: 6228453
    Abstract: The present invention generally relates to mechanisms for preventing undesirable oxidation (i.e., oxidation protection mechanisms) in composite bodies. The oxidation protection mechanisms include getterer materials which are added to the composite body which gather or scavenge undesirable oxidants which may enter the composite body. The getterer materials may be placed into at least a portion of the composite body such that any undesirable oxidant approaching, for example, a fiber reinforcement, would be scavenged by (e.g., reacted with) the getterer. The getterer materials) may form at least one compound which acts as a passivation layer, and/or is able to move by bulk transport (e.g., by viscous flow as a glassy material) to a crack, and sealing the crack, thereby further enhancing the oxidation protection of the composite body.
    Type: Grant
    Filed: October 27, 1997
    Date of Patent: May 8, 2001
    Assignees: Lanxide Technology Company, LP, AlliedSignal Composites Inc.
    Inventors: Ali Syed Fareed, John Edward Garnier, Gerhard Hans Schiroky, Christopher Robin Kennedy, Birol Sonuparlak
  • Patent number: 6217992
    Abstract: A cutting insert which comprises a rake face and a flank face wherein there is a cutting edge at the juncture of the rake face and the flank face. The cutting insert has a coating and a substrate wherein the coating is adherently bonded to the substrate. The substrate is a tungsten carbide-based cemented carbide wherein there is a zone of non-stratified cobalt enrichment beginning near and extending inwardly from a peripheral surface of the substrate. The bulk substrate has a porosity of greater than C00 and less than or equal to C04.
    Type: Grant
    Filed: May 21, 1999
    Date of Patent: April 17, 2001
    Assignee: Kennametal PC Inc.
    Inventor: George P. Grab
  • Patent number: 6187071
    Abstract: A bond for a single layer metal bond abrasive tool can be easily chemically and electrochemically stripped from the metal core of a recovered used tool to facilitate reuse of the core. Relative to conventionally bonded tools, the speed of stripping the novel bond is quick, and the stripped core has a smooth, clean surface which needs only minimal mechanical repair prior to reuse. In one aspect, the novel bond is a quaternary bond composition consisting essentially of copper, tin, titanium and silver. The powder components can be used dry or mixed with a fugitive liquid binder as a paste. The novel bond can be brazed at lower temperature than copper/tin/titanium bonds prepared otherwise. The bond composition forms a good melt at braze temperature that flows smoothly, evenly over a tool preform and provides consistent quality bonding of abrasive from tool to tool.
    Type: Grant
    Filed: January 14, 1999
    Date of Patent: February 13, 2001
    Assignee: Norton Company
    Inventors: Richard M. Andrews, Bradley J. Miller, Marcus R. Skeem, Ren-Kae Shiue
  • Patent number: 6165246
    Abstract: In order to make the wear-resistance and machinability of the copper-based sliding material, in which such particles as AlN, Al.sub.2 O.sub.3, NiB, Fe.sub.2 B, SiC, TiC, WC, Si.sub.3 N.sub.4, Fe.sub.3 P, Fe.sub.2 P and/or Fe.sub.3 B are dispersed in the matrix consisting of sintered Cu or Cu alloy, the dispersion is performed such that the weight proportion and the average particle diameter of the medium-hardness particles of Hv 500 or more and 1000 or less are greater than those of the high-hardness particles having Hv 1100 or more.
    Type: Grant
    Filed: June 16, 1999
    Date of Patent: December 26, 2000
    Assignee: Taiho Kogyo Co., Ltd.
    Inventors: Toshihiko Kira, Hiromi Yokota, Youichiro Kitagawa, Eichi Sato
  • Patent number: 6083631
    Abstract: A product and a process for producing a matrix and a tool for use in abrasive or cutting applications including a base tool structure which may be armed with a plurality of triangular or conically shaped structures 24B consisting of abrasive particles 32 bonded together in a braze metal 38. The structures 24B may be prepared in a manner which provides a selectable rake angle. Rake angles including negative 46, neutral 46' and positive 46" may be produced. The process is accomplished by diffusing magnetizable abrasive particles on a release mechanism which has been placed on a reusable fixture 10 consisting of a plurality of balls 16 secured to a magnetized surface 14. The particles 32 stack to form structures 24 which are then encapsulated in a braze paste 26. The axis of the structures 24 is aligned with the applied magnetic field. The cones are symmetrical if the magnetic field emanates perpendicularly from the magnetized surface.
    Type: Grant
    Filed: April 10, 1997
    Date of Patent: July 4, 2000
    Inventor: Charles Neff
  • Patent number: 6060172
    Abstract: The present invention relates to a rapidly quenched metal strip used as a core material for transformers, magnetic shields, choke coils, etc., and to an Fe-based rapidly quenched metal strip having a strip thickness exceeding 20 .mu.m and up to 70 .mu.m, wherein nonmetallic inclusions contained in said metal strip have a maximum particle size up to 50% of the strip thickness, and densities of the nonmetallic inclusions are up to 10 nonmetallic inclusions/mm.sup.3 for nonmetallic inclusions having a particle size exceeding 10 .mu.m and up to 50% of the strip thickness, up to 3.times.10.sup.3 nonmetallic inclusions/mm.sup.3 for nonmetallic inclusions having a particle size of at least 3 .mu.m to up to 10 .mu.m, and up to 5.times.10.sup.5 nonmetallic inclusions/mm.sup.3 for nonmetallic inclusions having a particle size of at least 0.3 .mu.m to less than 3 .mu.m, and showing the following average value <.epsilon..sub.f > of a bending fracture strain .epsilon..sub.
    Type: Grant
    Filed: April 10, 1998
    Date of Patent: May 9, 2000
    Assignee: Nippon Steel Corporation
    Inventors: Yoshiharu Inoue, Hiroaki Sakamoto
  • Patent number: 6051324
    Abstract: A composite structure and method for manufacturing same, the composite structure being comprised of metal particles and an inorganic bonding media. The method comprises the steps of coating particles of a metal powder with a thin layer of an inorganic bonding media selected from the group of powders consisting of a ceramic, glass, and glass-ceramic. The particles are assembled in a cavity and heat, with or without the addition of pressure, is thereafter applied to the particles until the layer of inorganic bonding media forms a strong bond with the particles and with the layer of inorganic bonding media on adjacent particles. The resulting composite structure is strong and remains cohesive at high temperatures.
    Type: Grant
    Filed: September 15, 1997
    Date of Patent: April 18, 2000
    Assignee: Lockheed Martin Energy Research Corporation
    Inventors: Arthur J. Moorhead, Hyoun-Ee Kim
  • Patent number: 6040068
    Abstract: A ceramic wiring board has a non-oxide based ceramic substrate which is a sintered body containing aluminum nitride, silicon nitride or the like as main component, and a metallized layer formed on the non-oxide based ceramic substrate; the metallized layer is plasma-etched, irregularities having a difference of elevation of about 0.5 to about 200 nm are formed on the surface of metal particles forming the metallized layer which are positioned on the surface of the metallized surface, and a metal plated layer is further formed on the metallized layer.
    Type: Grant
    Filed: August 12, 1997
    Date of Patent: March 21, 2000
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Taka-aki Yasumoto, Hideki Yamaguchi
  • Patent number: 5993506
    Abstract: Disclosed are a plate-crystalline tungsten carbide-containing hard alloy which comprises 4 to 40% by volume of a binder phase containing at least one of iron group metals selected from Co, Ni and Fe as a main component; and the balance of a hard phase comprising tungsten carbide alone, or tungsten carbide and 50% by volume or less of a compound with a cubic structure selected from at least one of carbide and nitride of the 4a (Ti, Zr and Hf), 5a (V, Nb and Ta) or 6a (Cr, Mo and W) group element of the periodic table and mutual solid solutions thereof, and inevitable impurities,wherein when peak intensities at a (001) face and a (101) face in X-ray diffraction using K.alpha. rays with Cu being a target are represented by h(001) and h(101), respectively, the tungsten carbide satisfies h(001)/h(101) .gtoreq.0.50, a composition for forming a plate-crystalline tungsten carbide, and a process for preparing the plate-crystalline tungsten carbide-containing hard alloy.
    Type: Grant
    Filed: November 25, 1997
    Date of Patent: November 30, 1999
    Assignee: Toshiba Tungaloy Co., Ltd.
    Inventors: Masaki Kobayashi, Kozo Kitamura, Satoshi Kinoshita
  • Patent number: 5989729
    Abstract: A wear resistant metal composite which comprises formed porous fly ash obtained by forming fly ash into the desired shape and a metal impregnated into voids present in the interior of said formed fly ash, wherein the percentage by volume of said formed fly ash is 30% by volume or less, and wherein said fly ash is exposed on the surface of said wear resistant metal composite.
    Type: Grant
    Filed: October 29, 1997
    Date of Patent: November 23, 1999
    Assignee: Aisin Seiki Kabushiki Kaisha
    Inventors: Katumi Takagi, Shuji Inoue
  • Patent number: 5985451
    Abstract: A master brake cylinder comprises a reservoir and a cylinder for generating fluid pressure. Provided in the cylinder is a sliding piston, and mounted to front and rear ends of piston are piston cups for sealing a gap between the piston and the cylinder. The piston cups comprise a substrate made of rubber and a coating layer made of diamond-like carbon and provided on an outer peripheral surface (sliding surface) of the substrate. A surface of the coating layer constitutes a sliding surface, and so a frictional resistance thereof relative to an inner peripheral surface of the cylinder, on which the coating layer slides, is made relatively low. The coating layer can easily follow deformation of the substrate and securely adheres to the substrate.
    Type: Grant
    Filed: March 17, 1997
    Date of Patent: November 16, 1999
    Assignee: Toyoda Gosei Co., Ltd.
    Inventors: Masanobu Senda, Yasuhiko Ogisu
  • Patent number: 5975852
    Abstract: A thermal barrier coating and a method for forming the coating on an article designed for use in a hostile thermal environment, such as turbine, combustor and augmentor components of a gas turbine engine. The method is particularly directed to increasing the spallation resistance of a thermal barrier coating system that includes a thermal insulating ceramic layer. The coating system of this invention generally includes a nickel aluminide alloy on which an aluminum oxide layer is formed, over which a ceramic layer is deposited so as to overlie and contact the aluminum oxide layer. The coating system does not include a bond coat, such as a diffusion aluminide or MCrAlY coating known in the prior art. The nickel aluminide alloy may be a binary NiAl alloy consisting essentially of nickel and aluminum in stoichiometric amounts, or may contain one or more oxygen-active elements.
    Type: Grant
    Filed: March 31, 1997
    Date of Patent: November 2, 1999
    Assignee: General Electric Company
    Inventors: Banalore A. Nagaraj, Jon C. Schaeffer, Mark A. Rosenzweig
  • Patent number: 5955186
    Abstract: A cutting insert which comprises a rake face and a flank face wherein there is a cutting edge at the juncture of the rake face and the flank face. The cutting insert has a coating and a substrate wherein the coating is adherently bonded to the substrate. The substrate is a tungsten carbide-based cemented carbide wherein there is a zone of non-stratified cobalt enrichment beginning near and extending inwardly from a peripheral surface of the substrate. The bulk substrate has a porosity of greater than C00 and less than or equal to C02.
    Type: Grant
    Filed: October 15, 1996
    Date of Patent: September 21, 1999
    Assignee: Kennametal Inc.
    Inventor: George P. Grab
  • Patent number: 5943546
    Abstract: A disclosed gradient function material is produced by molding and thereafter firing a slurry which contains a plurality of groups of particles having different specific gravities. The plurality of groups of particles include at least a first group of particles and a second group of particles. The first group of particles comprises a group of non-metal particles having a specific gravity ranging from about 3 to 7 and a maximum particle diameter equal to or smaller than a deflocculation limit, said non-metal particles being made of one or more materials selected from the group consisting of an oxide, a carbide, a nitride, and an oxynitride. The second group of particles comprises a group of metal particles having a specific gravity which is about 1.5 times the specific gravity of said first group of particles, and particle diameters distributed across the deflocculation limit.
    Type: Grant
    Filed: November 29, 1995
    Date of Patent: August 24, 1999
    Assignee: Toto Ltd.
    Inventors: Hirotaka Ishibashi, Koichi Hayashi, Hiroyuki Nagayama
  • Patent number: 5937268
    Abstract: A sintered sliding member having not only excellent in wear resistance but also low in attacking property against a mated member. To obtain the member, 0.1 to 3.5 wt. % h-BN and 0.1 to 3.5 wt. % graphite are mixed in a matrix material of iron-based powder containing chromium, and a resultant powder mixture is compacted to form a compact. The compact is sintered while bringing the compact into contact with copper or copper alloy so that the copper or copper alloy is infiltrated simultaneously with the sintering. In this way, the copper phase is filled in the iron-based matrix and the h-BN is distributed in the copper phase. Graphite reacts with chromium to be precipitated as chromium carbide in and/or near boundaries defined between the matrix and the copper phase.
    Type: Grant
    Filed: February 4, 1997
    Date of Patent: August 10, 1999
    Assignee: Daido Metal Company Ltd.
    Inventors: Kouki Ozaki, Koichi Yamamoto, Takayuki Shibayama
  • Patent number: 5923945
    Abstract: The invention is a process for the preparation of coated nitride powder, comprising contacting one or more metal complex(es), organo-aluminum material, optionally one or more silicon compounds or mixtures thereof, with nitride powder under conditions such that coated nitride powder is formed. A metal complex is a metal-containing system which is soluble in a host liquid. The process of the invention is a process for making coated nitride powder and obtaining the desirable properties of coated nitride powder, while maintaining the desirable properties of the uncoated powder, such as good thermal conductivity, for use in electronic applications. In another aspect, the invention is a coated nitride powder which has the advantageous properties of the uncoated powder and is a desirable alternative to current nitride coatings.
    Type: Grant
    Filed: November 13, 1996
    Date of Patent: July 13, 1999
    Assignee: The Dow Chemical Company
    Inventors: Glenn A. Eisman, Selim Yalvac, Robert A. Kirchhoff, Kevin E. Howard, Brian M. Banker, Matthew R. Kesterson
  • Patent number: 5923944
    Abstract: A fluid containment article that exhibits a reduced tendency for thermal decomposition products to deposit and adhere to its surface in contact with a hydrocarbon fluid, such as a hydrocarbon fuel, at elevated temperatures. Deposition and adhesion of thermal decomposition products are avoided by tailoring both the composition and surface finish of the surface contacting the hydrocarbon fluid. Preferred characteristics are achieved by appropriately preparing the surface of the article to have a surface roughness characterized by an R.sub.max of up to about 0.4 micrometer, and then depositing an oxide coating on the surface using a deposition process that yields a coating consisting essentially of a metal oxide and the vapors of an organometallic compound used in the deposition process.
    Type: Grant
    Filed: October 16, 1996
    Date of Patent: July 13, 1999
    Assignee: General Electric Company
    Inventors: George A. Coffinberry, Kevin R. Leamy, Frederick J. Sellers, John F. Ackerman
  • Patent number: 5903814
    Abstract: A flux cored wire for gas shielded arc welding with a mixed gas comprising argon and carbon dioxide which comprises:a seam-welded steel sheath; and a core filled in the steel sheath and comprising, all in weight percent:a slag and arc stabilizer comprising 4.0 to 6.0% TiO.sub.2, 0.2 to 0.8% SiO.sub.2, 0.4 to 0.8% ZrO.sub.2, 0.2 to 0.8% Al.sub.2 O.sub.3, 0.06 to 0.25% Na.sub.2 O+K.sub.2 O, and 0.1 to 0.4% metal fluoride;an alloying agent and metal deoxidizer comprising 0.03 to 0.06% C, 0.20 to 0.80% Si, 1.50 to 2.20% Mn, and 0.30 to 0.60% Mg; andnot less than 2% Fe;in which the difference between the percentages of iron or a combination of Na and K segregated in any two quartered cross section of the wire that are defined by equations (1) and (2) in the specification are not more than 10% and not more than 0.15%, respectively.
    Type: Grant
    Filed: July 30, 1997
    Date of Patent: May 11, 1999
    Assignee: Nippon Steel Welding Products & Engineering Co., Ltd.
    Inventors: Toshihiro Miura, Kazutoshi Suda, Masao Kamada, Hirotoshi Ishide
  • Patent number: 5894053
    Abstract: In a process for applying a metallic adhesion layer for thermally sprayed ceramic thermal barrier coatings to metallic components, the surface which is to be coated being cleaned in a first process step, so that the metallic surface is free of grease and oxide, a binder is applied to the metallic surface of the base material in a second process step. Metallic adhesive powder is applied uniformly to the binder in a third process step and solder powder, which has a smaller particle size than the adhesive powder, is applied uniformly to the binder in a fourth process step. After drying the binder, a heat treatment is carried out for the purpose of soldering. The adhesion layers produced in this way are rough and provide a considerable positive lock for the ceramic thermal barrier coatings which are to be sprayed thereon.
    Type: Grant
    Filed: November 5, 1996
    Date of Patent: April 13, 1999
    Assignee: ABB Research Ltd.
    Inventor: Reinhard Fried
  • Patent number: 5891584
    Abstract: Articles for hot hydrocarbon fluid wherein the surface for contacting the fluid is a diffusion barrier material or a catalytic material coated on a metal substrate. The material is either catalytically-inactive tantalum oxide which inhibits the formation of coke in the fluid or catalytically-active zirconium oxide which promotes the formation of a loosely adherent coke in the fluid while inhibiting the formation of gum in the fluid. The coating materials, i.e., the diffusion barrier coating material and the catalytic coating material, are deposited by chemical vapor deposition (CVD), e.g., by effusive chemical vapor deposition of an organometallic compound on the surface without the use of carrier gas, without pre-oxidation of the surface and without thermal decomposition of the diffusion barrier material or the catalytic coating material.
    Type: Grant
    Filed: March 17, 1997
    Date of Patent: April 6, 1999
    Assignee: General Electric Company
    Inventor: George A. Coffinberry
  • Patent number: 5889219
    Abstract: A sintered body having diamond grains dispersed and held in a matrix of cemented carbide or cermet is obtained by direct resistance heating and pressurized sintering. The sintering is performed at a liquid phase generating temperature in a short time, so that the diamond grains are not directly bonded to each other. Thus, a superhard composite member that has excellent hardness and wear resistance can be obtained without employing an ultra high-pressure vessel.
    Type: Grant
    Filed: November 12, 1996
    Date of Patent: March 30, 1999
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Hideki Moriguchi, Yoshifumi Arisawa, Michio Otsuka
  • Patent number: 5835841
    Abstract: A composite material is composed of a matrix and dispersed components which form a discontinuous three-dimensional network structure in the matrix. It permits the dispersed components to fully exhibit the characteristic properties without any loss of mechanical properties. A process for producing the above-mentioned composite material includes preparing a raw material powder such that granules of desired shape for the matrix are discontinuously covered with components of desired shape for the dispersed phase, molding the raw material powder into a desired shape, and heating the molded article.
    Type: Grant
    Filed: May 22, 1996
    Date of Patent: November 10, 1998
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Katsunori Yamada, Nobuo Kamiya
  • Patent number: 5835842
    Abstract: A material for use in the production of an alloy having excellent corrosion resistance and abrasion resistance is provided. The material includes a cored wire formed from at least a pipe of matrix metal, which is at least one member selected from an Fe-base alloy, a Co-base alloy, and a Ni-base alloy. A VC powder having a particle diameter of 10 .mu.m or less is filled into the pipe. Also provided is a material for use in the production of an alloy having excellent corrosion resistance and abrasion resistance. The material includes a powder mixture containing at least a matrix metal, which is at least one member selected from an Fe-base alloy, a Co-based alloy and a Ni-base alloy, and a VC powder having a particle diameter of 10 .mu.m or less.
    Type: Grant
    Filed: December 10, 1996
    Date of Patent: November 10, 1998
    Assignees: Toshiba Kikai Kabushiki Kaisha, Daido Stell Co., Ltd.
    Inventors: Kyoichi Sasaki, Yoshihisa Kato
  • Patent number: 5832360
    Abstract: A bond for a single layer metal bond abrasive tool can be easily chemically and electrochemically stripped from the metal core of a recovered used tool to facilitate reuse of the core. Relative to conventionally bonded tools, the speed of stripping the novel bond is quick, and the stripped core has a smooth, clean surface which needs only minimal mechanical repair prior to reuse. In one aspect, the novel bond consists essentially of a ternary bond composition of copper, tin and titanium, in which the copper and tin are pre-alloyed and the pre-alloy and titanium component are incorporated in the bond composition as fine particle size powders. In another aspect, the bond is a quaternary bond composition consisting essentially of copper, tin, titanium and silver. The powder components can be used dry or mixed with a fugitive liquid binder as a paste. The novel bond can be brazed at lower temperature than copper/tin/titanium bonds prepared otherwise.
    Type: Grant
    Filed: August 28, 1997
    Date of Patent: November 3, 1998
    Assignee: Norton Company
    Inventors: Richard M. Andrews, Bradley J. Miller, Marcus R. Skeem, Ren-Kae Shiue
  • Patent number: 5822674
    Abstract: A material for electric contacts based on silver-tin oxide is obtained by mixing a powder of silver or an alloy mainly containing silver with a powder consisting mainly of tin oxide and 0.01 to 10 wt. % (in relation to the quantity of tin oxide) of an additive consisting of one or more compounds containing silver, oxygen and a metal from sub-groups II to VI of the periodic system and/or antimony, bismuth, germanium, indium and gallium, compacting the mixture and sintering it. The tin oxide may be replaced by zinc oxide.
    Type: Grant
    Filed: May 18, 1995
    Date of Patent: October 13, 1998
    Assignee: Doduco GmbH + Co. Dr. Eugen Durrwachter
    Inventors: Volker Behrens, Thomas Honig
  • Patent number: 5812926
    Abstract: A hard facing alloy is applied to a surface of a substrate by making a mixture of at least two constituents whose net composition is the desired hard facing alloy composition. The constituents have different solidus temperatures, at least one of which is above a processing temperature of the substrate and another of which is below the processing temperature of the substrate. In one preferred approach, the mixture is prepared by pressing and lightly sintering the constituents in the form of powders, so that the mixture retains its shape and can be attached to the substrate surface. Then the substrate is heated to the processing temperature and maintained for a time sufficient to permit interdiffusion of the several different phases toward a homogeneous hard facing alloy composition uniformly through a major portion of the volume.
    Type: Grant
    Filed: September 3, 1991
    Date of Patent: September 22, 1998
    Assignee: General Electric Company
    Inventors: Joseph Carl Wukusick, Roger Johnson Perkins, deceased, Murray Sawyer Smith, Jr.
  • Patent number: 5805973
    Abstract: Articles for hot hydrocarbon fluid wherein the surface for contacting the fluid is a metal oxide, amorphous glass or metal fluoride diffusion barrier material coated on a metal substrate. The metal oxide, amorphous glass or metal fluoride is deposited by chemical vapor deposition (CVD), e.g., by effusive CVD of an organometallic compound on the surface without the use of carrier gas, without pre-oxidation of the surface and without thermal decomposition of the diffusion barrier coating material. Examples of coating materials deposited by effusive CVD are SiO.sub.2, TiO.sub.2, spinel and Al.sub.2 O.sub.3. The articles having the coated surfaces find utility in components subjected to high temperatures wherein the components are in contact with hydrocarbon fluids without additives, without special attention to quality control and without the need for special processing.
    Type: Grant
    Filed: March 12, 1997
    Date of Patent: September 8, 1998
    Assignee: General Electric Company
    Inventors: George A. Coffinberry, John F. Ackerman
  • Patent number: 5787578
    Abstract: Disclosed is a method of selectively depositing a metallic layer on a metallic feature on a ceramic substrate. The metallic layer preferably may be elemental nickel particles, elemental copper particles, a mixture of copper and nickel particles, or copper/nickel alloy particles. The metallic layer is deposited as a paste mixture which includes the metallic particles and a binder material. Through a subsequent heating step, the metallic layer tightly bonds to the metallic feature but only loosely bonds to the ceramic substrate. Thereafter, an ultrasonic treatment is applied to remove the loosely adhered metallic layer on the ceramic substrate. The metallic layer on the metallic feature, being tightly bonded, is not removed by the ultrasonic treatment.
    Type: Grant
    Filed: July 9, 1996
    Date of Patent: August 4, 1998
    Assignee: International Business Machines Corporation
    Inventors: Shaji Farooq, Suryanarayana Kaja, John U. Knickerbocker, Brenda Peterson, Srinivasan N. Reddy, Rao V. Vallabhaneni, Donald R. Wall
  • Patent number: 5780164
    Abstract: A hard drive disk substrate is formed of a multi-phase ceramic-based material having at least two phases with amorphous phases being present in an amount less than about 1 volume percent based on the volume of the ceramic-based material or at least one phase being free metal. A process for producing the ceramic-based disk substrate is produced by forming a flat disk of a porous ceramic and then infiltrating the porous ceramic with a metal whereby a multi-phase ceramic-based computer hard drive disk is produced. Additionally, a step of passivating the porous ceramic by elevating it to a temperature of about 1300.degree. to about 1800.degree. C. before the infiltrating step may be performed, such that the surfaces are passivated and the reaction kinetics can be controlled during the infiltrating step. A preferred composite material is made of a multi-phase boron carbide composite material including grains having peaks with an average roughness value, Ra, of between about 1 to about 200 .ANG.
    Type: Grant
    Filed: June 29, 1995
    Date of Patent: July 14, 1998
    Assignee: The Dow Chemical Company
    Inventors: Aleksander J. Pyzik, Uday V. Deshmukh, Chan Han, Kevin J. Nilsen, Donald J. Perettie, Arthur R. Prunier, Jr.
  • Patent number: 5763093
    Abstract: Disclosed is an aluminum nitride body having graded metallurgy and a method for making such a body. The aluminum nitride body has at least one via and includes a first layer in direct contact with the aluminum nitride body and a second layer in direct contact with, and that completely encapsulates, the first layer. The first layer includes 30 to 60 volume percent aluminum nitride and 40 to 70 volume percent tungsten and/or molybdenum while the second layer includes 90 to 100 volume percent of tungsten and/or molybdenum and 0 to 10 volume percent of aluminum nitride.
    Type: Grant
    Filed: June 3, 1996
    Date of Patent: June 9, 1998
    Assignees: International Business Machines Corporation, The Carborundum Company
    Inventors: Jon Alfred Casey, Carla Natalia Cordero, Benjamin Vito Fasano, David Brian Goland, Robert Hannon, Jonathan H. Harris, Lester Wynn Herron, Gregory Marvin Johnson, Niranjan Mohanlal Patel, Andrew Michael Reitter, Subhash Laxman Shinde, Rao Venkateswara Vallabhaneni, Robert A. Youngman
  • Patent number: 5759707
    Abstract: Metal structures, e.g. coolers or heat exchangers, can be produced by placing together metal components coated with solder, dipping them into a slurry of a flux, and soldering them by heating. Alternatively, components coated with solder can also be coated with flux, then placed together to form the metal structure and soldered by heating. In this case, however, the flux must be applied so as to adhere securely, and to this end in the prior art the flux has been "glued on" to the metal surface by organic or other binders, which when burned out during the soldering process can produce undesirable exhaust gases or emissions. The present invention discloses a metal component which is provided with a sintered flux coating which adheres without binder. The coating can optionally also contain solder metal or other auxiliaries dispersed therein.
    Type: Grant
    Filed: October 4, 1996
    Date of Patent: June 2, 1998
    Assignee: Solvay Fluor und Derivate GmbH
    Inventors: Heinz-Joachim Belt, Ruediger Sander, Werner Rudolph
  • Patent number: 5741596
    Abstract: An oxidation protection coating for metal substrate surfaces. The coating, according to a preferred embodiment, comprises an initial or first layer of a glass-ceramic, such as a barium aluminosilicate composed chiefly of baria, silica and alumina; or mullite, composed of silica-alumina or, alternatively, baria-silica. Titanium dioxide, nickel oxide or SnO.sub.2 can be added. The next layer of the coating is comprised of alumina or silicon carbide. The third or final layer is comprised of a thin layer of silica or a high-silica material, e.g., a silica containing 4% B.sub.2 O.sub.3. For a thicker third layer, particles of a dark solid, such as boron silicide, ferrous oxide, ferric oxide, nickel oxide, manganese dioxide, carbon or silicon carbide, can be incorporated. The three-layer coating provides high emittance and low catalytic activity for the recombination of oxygen and nitrogen, as well as being a hydrogen diffusion barrier.
    Type: Grant
    Filed: February 21, 1989
    Date of Patent: April 21, 1998
    Assignee: Boeing North American, Inc.
    Inventors: Raymund P. Skowronski, David Kramer
  • Patent number: 5741556
    Abstract: A thermal spray process for producing a MCrAlY-based coating wherein M is selected from the group consisting of iron, cobalt, nickel and mixtures thereof and wherein the oxygen in the fuel-oxidant mixture of the thermal spray process converts a substantial portion of the yttrium component to Y.sub.2 O.sub.3, a minor portion of the aluminum component to Al.sub.2 O.sub.3, and the Y.sub.2 O.sub.3 and Al.sub.2 O.sub.3 are present in an amount of less than 15 volume percent of the coating.
    Type: Grant
    Filed: April 5, 1996
    Date of Patent: April 21, 1998
    Assignee: Praxair S.T. Technology, Inc.
    Inventors: Thomas Alan Taylor, James Kent Knapp
  • Patent number: 5740515
    Abstract: An article of manufacture which is subject to erosive and corrosive attack in a high-temperature environment is formed of a substrate of nickel or cobalt-based superalloy, and a protective silicide coating disposed on the substrate. A thermal barrier layer of ceramic may be disposed between the superalloy and the silicide layer, and an MCrAlY layer may be disposed between the ceramic and the superalloy substrate. The silicide coating is preferably MoSi.sub.2.
    Type: Grant
    Filed: April 6, 1995
    Date of Patent: April 14, 1998
    Assignee: Siemens Aktiengesellschaft
    Inventor: Wolfram Beele
  • Patent number: 5736261
    Abstract: A conductive paste in which cracks do not occur even at boundaries between areas of different film thicknesses comprises spherical and flake-form silver powders, a low softening point glass frit, organic rhodium material and an organic vehicle; the proportion of the flake-form silver powder with respect to the total amount of silver powder is in the range 15 to 80 wt % and the proportion of the rhodium contained in the organic rhodium material with respect to the total amount of silver powder is 0.0001 wt % or less.
    Type: Grant
    Filed: November 22, 1995
    Date of Patent: April 7, 1998
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Haruhiko Kano
  • Patent number: 5729823
    Abstract: The present invention relates to a cemented carbide insert, comprising a cemented carbide substrate and a coating. The substrate contains WC and cubic carbonitride phase in a binder phase based of Co and/or Ni and has a binder phase enriched surface zone essentially free of cubic phase. The binder phase enriched surface zone prevails over the edge. As a result, an insert according to the invention has improved edge toughness and resistance against plastic deformation and is particularly useful for machining of sticky work piece materials such as stainless steel.
    Type: Grant
    Filed: March 14, 1996
    Date of Patent: March 17, 1998
    Assignee: Sandvik AB
    Inventors: Per Gustafson, Leif kesson
  • Patent number: 5729822
    Abstract: A powder metal gear wheel having a core density of at least 7.3 g/cc, and in one embodiment 7.4 to 7.6 g/cc and a hardened carburized surface. A method of manufacturing transmission gears comprises, sintering a powder metal blank to produce a core density of between 7.4 to 7.6 g/cc, rolling the surface of the gear blank to densify the surface, and then heating the rolled sintered part and carburizing in a vacuum furnace.
    Type: Grant
    Filed: May 24, 1996
    Date of Patent: March 17, 1998
    Assignee: Stackpole Limited
    Inventors: Rohith Shivanath, Peter Jones
  • Patent number: 5718948
    Abstract: The invention relates to a coated cemented carbide body for rock drilling having a substrate containing at least one metal carbide and a binder metal and an at least partly covering coating comprising at least one diamond- or cBN-layer applied by CVD- or PVD-technique. The cemented carbide body has a core of cemented carbide containing eta-phase surrounded by a surface zone of cemented carbide free of eta-phase.
    Type: Grant
    Filed: March 17, 1994
    Date of Patent: February 17, 1998
    Assignee: Sandvik AB
    Inventors: Stefan S. O. Ederyd, E. K. Staffen Soderberg, Udo K. R. Fischer
  • Patent number: 5708959
    Abstract: This invention relates to a substrate for semiconductor apparatus loading a semiconductor chip in integrated circuit apparatus and is characterized in that a sintered compact containing copper of 2 to 30 wt. % in tungsten and/or molybdenum is used as the substrate having the heat radiation capable of efficiently radiating heat developed from the loaded semiconductor chip and thermal expansion coefficient similar to those of semiconductor chip and other enclosure material except for the substrate.
    Type: Grant
    Filed: April 22, 1996
    Date of Patent: January 13, 1998
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Mituo Osada, Yoshinari Amano, Nobuo Ogasa, Akira Ohtsuka
  • Patent number: 5705280
    Abstract: This invention relates to composite materials and the production of composite materials that are designed for use under high stress and at high temperatures. More particularly, this invention relates to materials suited for use in turbine engines, such as those used in aircraft, that must withstand high temperature, high stress, corrosion and oxidation. The invention specifically relates to composite materials which have alloy matrices, e.g., nickel aluminide, reinforced with a substantially continuous, interpenetrating, and interconnected network of a metal oxide. These composite materials have superior properties as compared to superalloys, intermetallics, ceramics, or artificially reinforced materials.
    Type: Grant
    Filed: December 23, 1996
    Date of Patent: January 6, 1998
    Inventor: Herbert W. Doty
  • Patent number: 5697046
    Abstract: Methods for making, methods for using and articles comprising ferromagnetic cermets, preferably cemented carbides and more preferably tungsten carbide, having at least two regions exhibiting at least one property that differs are discussed. The multiple-region cermets are particularly useful in wear applications. The cermets are manufactured by juxtaposing and densifying at least two powder blends having different properties (e.g., differential carbide grain size or differential carbide chemistry or differential binder content or differential binder chemistry or differential magnetic saturation or any combination of the preceding). Preferably, a first region of the cermet comprises a first hard component having a prescribed binder content and a first magnetic saturation and a second region, juxtaposing or adjoining the first region, comprising a second binder content different than the binder content of the first region and a second magnetic saturation different than that of the first region.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: December 9, 1997
    Assignee: Kennametal Inc.
    Inventor: Edward V. Conley
  • Patent number: 5690716
    Abstract: A thermal spray powder for producing high hardness, low friction, wear resistant coatings on friction surfaces, comprising a blend of an agglomerated molybdenum/dimolybdenum carbide powder and a self-fluxing NiCrFeBSi alloy powder.
    Type: Grant
    Filed: February 17, 1995
    Date of Patent: November 25, 1997
    Assignee: Osram Sylvania Inc.
    Inventor: Sanjay Sampath
  • Patent number: 5682596
    Abstract: A metal alloy article is provided with an improved fretting wear resistant coating combination for use in the temperature range of about 650.degree.-1100.degree. F. on an article contact surface shaped to cooperate with an abutting member. An example is a gas turbine engine blade base carried by an abutting support slot. The coating combination includes an inner portion of a Ni base alloy having a room temperature annealed yield strength of greater than about 30 ksi to less than about 57 ksi and densely deposited from a powder, for example by the high velocity oxygen--fuel thermal spray process rather than by other processes such as air plasma spray. Cured on the inner portion is an outer portion of graphite particles mixed in an inorganic binder capable of stable use in the range of about 650.degree.-1100.degree. F., for example silicates or phosphates, such as of aluminum.
    Type: Grant
    Filed: November 28, 1995
    Date of Patent: October 28, 1997
    Assignee: General Electric Company
    Inventors: Kevin P. Taylor, Jerry D. Schell
  • Patent number: 5682594
    Abstract: Coated ceramic filler materials comprised of ceramic particles, fibers, whiskers, etc. having at least two substantially continuous coatings thereon are provided. The coatings are selected so that the interfacial shear strength between the ceramic filler material and the first coating, between coatings, or between the outer coating and the surrounding matrix material, are not equal so as to permit debonding and pull-our when fracture occurs. The resultant, multi-coated ceramic filler materials may be employed to provide composites, especially ceramic matrix composites, with increased fracture toughness. The ceramic filler materials are designed to be particularly compatible with ceramic matrices formed by directed oxidation of precursor metals, but such ceramic filler materials are also adaptable for use in many other composite material systems.In a preferred embodiment, the coatings are applied to the ceramic fiber plies or preforms by CVD.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: October 28, 1997
    Assignee: Lanxide Technology Company, LP
    Inventors: Christopher Robin Kennedy, Birol Sonuparlak, Ali Syed Fareed, John Edward Garnier, Gerhard Hans Schiroky, Dennis James Landini, Virgil Irick, Jr.