Oxide Patents (Class 428/629)
  • Patent number: 8681107
    Abstract: An organic light emitting display apparatus includes a substrate; a display unit formed on the substrate and comprising an organic light emitting device; and a touch panel formed on the display unit, wherein the touch panel further includes a sealing substrate, a ground layer formed on a surface of the sealing substrate, a first pattern layer formed on a surface of the sealing substrate opposite to the surface of the sealing substrate on which the ground layer is formed, a first insulating layer formed on the first pattern layer, a second pattern layer formed on the first insulating layer, and a second insulating layer formed on the second pattern layer.
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: March 25, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Beung-Hwa Jeong, Kwang-Nam Kim, Chang-Soo Kim, Young-Ro Jung, Yun-Sik Ham
  • Patent number: 8673455
    Abstract: A coating steel component with a pattern of an iron based matrix with crystalline particles metallurgically bound to the surface of a steel substrate for use as disc cutters or other components with one or more abrading surfaces that can experience significant abrasive wear, high point loads, and large shear stresses during use. The coated component contains a pattern of features in the shape of freckles or stripes that are laser formed and fused to the steel substrate. The features can display an inner core that is harder than the steel substrate but generally softer than the matrix surrounding the core, providing toughness and wear resistance to the features. The features result from processing an amorphous alloy where the resulting matrix can be amorphous, partially devitrified or fully devitrified.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: March 18, 2014
    Assignee: UT-Battelle, LLC
    Inventors: Craig A. Blue, Frank Wong, Louis F. Aprigliano, Peter G. Engleman, William H. Peter, Tibor G. Rozgonyi, Levent Ozdemir
  • Patent number: 8663816
    Abstract: A hot-pressed member includes a steel sheet, a Ni-diffusion region present in a surface layer of the steel sheet, and an intermetallic compound layer and a ZnO layer which are provided in order on the Ni-diffusion region, the intermetallic compound layer corresponding to a ? phase present in a phase equilibrium diagram of a Zn—Ni alloy, wherein a spontaneous immersion potential indicated in a 0.5 M NaCl aqueous air-saturated solution at 25° C.±5° C. is ?600 to ?360 mV based on a standard hydrogen electrode.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: March 4, 2014
    Assignee: JFE Steel Corporation
    Inventors: Hiroki Nakamaru, Seiji Nakajima, Tatsuya Miyoshi, Hiroyuki Masuoka, Shinji Ootsuka
  • Publication number: 20140057130
    Abstract: A flat steel product which is provided for forming into a component by hot pressing and which has a base layer of steel on which is applied a Zn or a Zn alloy metallic protective coating for protecting against corrosion. On at least one of the free surfaces of the flat steel product, a separate cover layer is applied which contains an oxide, nitride, sulphide, carbide, hydrate or phosphate compound of a base metal. In addition, a method which allows the production of such a flat steel product, and a method which allows the production of a component from such a flat steel product.
    Type: Application
    Filed: March 5, 2012
    Publication date: February 27, 2014
    Applicant: THYSSENKRUPP STEEL EUROPE AG
    Inventors: Ken-Dominic Flechtner, Thorsten Koehler, Maria Koeyer, Manfred Meurer, Axel Schrooten
  • Patent number: 8652645
    Abstract: The present invention relates generally to an antibacterial coating which is composed of silver, to medical tools and to implants comprising such a coating and to a method as well to an apparatus for the production of such a coating. The medical tools or the dental or orthopaedic implant comprises a metal or metal alloy having a treated surface wherein the treated surface is at least partially converted to an oxide film by plasma electrolytic oxidation using a colloid-dispersed system and wherein the converted surface is partially covered by islands formed by colloid-dispersed silver-particles of the colloid-dispersed system. An Ag—TiO2 coating shows excellent properties in terms of antibacterial efficacy (even against multi-resistant strains), adhesion and biocompatibility. The life-time of an implant in a human body is increased. The antibacterial coating can be used in the field of traumatology, orthopaedic, osteosynthesis and/or endoprothesis, especially where high infection risk exists.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: February 18, 2014
    Assignee: aap Biomaterials GmbH
    Inventors: Elvira Dingeldein, Cyrille Gasqueres, Frank Witte, Amir Eliezer
  • Patent number: 8642166
    Abstract: A transparent conductive thin film comprises at least one stack layer of Ag—Ag3Sn—SnOx, or at least one stack layer of Ag—Ag4Sn—SnOx.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: February 4, 2014
    Assignee: MKE Technology Co., Ltd.
    Inventors: Chien-Tung Teng, Wei-Lun Hsu
  • Patent number: 8617769
    Abstract: Powders of respective metal elements (Mn, Co) constituting a transition metal oxide (MnCo2O4) having a spinel type crystal structure are used as a starting material of the coating film. A film of a paste containing the mixture of the powders is formed on the surface of the interconnector, and with this state, the paste is sintered to form the coating film. In the coating body, a chromia layer including Cr2O3, a first layer including elements of Mn, Co, Fe, Cr, and O, and a second layer including elements of Mn, Co, Fe, and O are provided in this order from the side close to the interconnector at the boundary between the coating film and the interconnector. With this structure, the coating film is difficult to be peeled even if the coating body is placed in a severe temperature change.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: December 31, 2013
    Assignee: NGK Insulators, Ltd.
    Inventors: Makoto Ohmori, Takashi Ryu, Toshiyuki Nakamura
  • Patent number: 8592050
    Abstract: A piston ring includes: a refined steel including: carbon C in a range of 0.20% mass to 0.90% mass, silicon Si in a range of 0.10% mass to less than 0.60% mass, manganese Mn in a range of 0.20% mass to 1.50% mass, chromium Cr in a range of 0.30% mass to 2.00% mass, and a remnant including: iron Fe, and an unavoidable impurity. A parameter A calculated from the following expression (1) based on contents of the Si, Mn and Cr is 9.0 or less: parameter A=8.8 Si+1.6 Mn+1.7 Cr—expression (1). A parameter B calculated from the following expression (2) based on contents of the C, Si, Mn and Cr is 10.8 or more: parameter B=36 C+4.2 Si+3.8 Mn+4.5 Cr—expression (2).
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: November 26, 2013
    Assignees: Nissan Motor Co., Ltd., Nippon Piston Ring Co., Ltd.
    Inventors: Junpei Ogawa, Takaaki Kondou, Tomonori Miyazawa, Toyoki Iguchi, Takuma Suzuki, Takeshi Makita, Katsuaki Ogawa, Takahiro Okazaki
  • Patent number: 8586196
    Abstract: A plating film is provided with enough hardness before anodic oxidation, which is hard to be damaged during handling, and also the production method of the plating film. This problem can be solved by an aluminum plating film with aluminum concentration of 98 wt. % or lower, and with a Vickers hardness of 250 or higher. The hardness is increased by containing oxygen, carbon, sulfur, and a halogen element as impurities. The impurity concentration is controlled by adjusting the current density, the plating temperature, or the plating bath composition.
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: November 19, 2013
    Assignee: Hitachi Metals, Ltd.
    Inventors: Hiroyuki Hoshi, Atsushi Okamoto, Setsuo Andou
  • Patent number: 8580390
    Abstract: Provided is a rolled copper foil or electrolytic copper foil for an electronic circuit to be used for forming a circuit by etching, wherein the copper foil comprises a heat resistance layer composed of zinc or zinc alloy or its oxide formed on an etching side of the rolled copper foil or electrolytic copper foil, and a layer of nickel or nickel alloy, which is a metal or alloy with a lower etching rate than copper, formed on the heat resistance layer.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: November 12, 2013
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Keisuke Yamanishi, Kengo Kaminaga, Ryo Fukuchi
  • Patent number: 8574721
    Abstract: A multilayer coating includes a bond coat layer, a first barrier layer applied on the bond coat layer, and a second barrier layer applied on the first barrier layer. The first barrier layer has a compositional gradient comprising a majority of a first rare earth stabilized zirconia material proximate the bond coat layer to a majority of a second rare earth stabilized zirconia material away from the bond coat layer. The first and second rare earth stabilized zirconia materials are different. The second barrier layer has a compositional gradient comprising a majority of the second rare earth stabilized zirconia material to 100 wt % of a third rare earth stabilized zirconia material away from the first barrier layer.
    Type: Grant
    Filed: November 12, 2012
    Date of Patent: November 5, 2013
    Assignee: United Technologies Corporation
    Inventors: Peter F. Gero, Kevin W. Schlichting, James W. Neal
  • Patent number: 8574666
    Abstract: A method of imparting corrosion resistance to an edge of a multilayer window film having a metal layer arranged between a pair of polymeric layers includes the step of treating the edge of the window film with a corrosion inhibitor.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: November 5, 2013
    Assignee: 3M Innovative Properties Company
    Inventors: Raghunath Padiyath, Josh D. Tibbits
  • Patent number: 8568861
    Abstract: The present invention relates to a metallic laminate and a manufacturing method of a light emitting diode package using the same. The present invention provides a metallic laminate including: a core layer made of an insulating material; a metal layer disposed on one surface of the core layer; a heat radiating metal layer disposed on the other surface of the core layer; and a protective metal oxide layer disposed along an outer surface of the heat radiating metal layer and made of an oxide of the heat radiating metal layer.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: October 29, 2013
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Myung Gun Chong, Cheol Ho Heo, Sang Hyuk Son, Dae Hyung You
  • Publication number: 20130199361
    Abstract: Monolithic ceramic bodies that have a mixed-oxide marginal region and a metallic surface, where the ceramic body includes an oxide of a first metal (I), while the mixed-oxide marginal region includes the oxide of the first metal (I) and the oxide of a further metal (II) having a high affinity for oxygen, and the metallic surface includes the further metal (II). The mixed oxide marginal region includes a continuous concentration gradient of the first metal (I), from 100% in the core to 0% in the transitional region to the metallic surface of the ceramic body, and a continuous concentration gradient of the further metal (II), starting from 0% in the core to 100% in the transitional region to the metallic surface of the ceramic body, where the oxygen concentration in the mixed-oxide marginal region remains constant, and the monolithic structure of the ceramic body has no phase boundaries.
    Type: Application
    Filed: October 6, 2011
    Publication date: August 8, 2013
    Applicant: CeramOss GmbH
    Inventors: Sorin Lenz, Christian Mahringer, Günter Rübig, Alexander Schreiner
  • Publication number: 20130183542
    Abstract: A production process for producing an iron-tin alloy layer on a packaging steel substrate and to a substrate provided with said layer wherein one or both sides of a SR- or DR-blackplate substrate is coated with an iron-tin alloy layer which contains at least 80 weight percent (wt. %) of FeSn (50 at. % tin and 50 at. % iron).
    Type: Application
    Filed: October 5, 2011
    Publication date: July 18, 2013
    Applicant: TATA STEEL IJMUIDEN BV
    Inventors: Ilja Portegies Zwart, Jacques Hubert Olga Joseph Wijenberg
  • Patent number: 8481171
    Abstract: The present invention relates to a metallic laminate and a manufacturing method of a light emitting diode package using the same. The present invention provides a metallic laminate including: a core layer made of an insulating material; a metal layer disposed on one surface of the core layer; a heat radiating metal layer disposed on the other surface of the core layer; and a protective metal oxide layer disposed along an outer surface of the heat radiating metal layer and made of an oxide of the heat radiating metal layer.
    Type: Grant
    Filed: January 20, 2010
    Date of Patent: July 9, 2013
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Myung Gun Chong, Cheol Ho Heo, Sang Hyuk Son, Dae Hyung You
  • Publication number: 20130171469
    Abstract: A transparent conductive thin film comprises at least one stack layer of Ag—Ag3Sn—SnOx, or at least one stack layer of Ag—Ag4Sn—SnOx.
    Type: Application
    Filed: December 28, 2012
    Publication date: July 4, 2013
    Applicant: MKE TECHNOLOGY CO. LTD
    Inventor: MKE TECHNOLOGY CO. LTD
  • Patent number: 8470097
    Abstract: A method of providing sulfidation corrosion resistance and corrosion induced fouling resistance to a heat transfer component surface includes providing a silicon containing steel composition including an alloy and a Si-partitioned non-metallic film formed on a surface of the alloy. The alloy is formed from the composition ?, ?,and ?, in which ? is a metal selected from the group consisting of Fe, Ni, Co, and mixtures thereof, ? is Si, and ? is at least one alloying element selected from the group consisting of Cr, Al, Mn, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Sc, La, Y, Ce, Ru, Rh, Ir, Pd, Pt, Cu, Ag, Au, Ga, Ge, As, In, Sn, Sb, Pb, B, C, N, P, O, S and mixtures thereof. The Si-partitioned non-metallic film comprises at least one of sulfide, oxysulfide and mixtures thereof.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: June 25, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: ChangMin Chun, Mark A Greaney, Thomas Bruno, Ian A Cody, Trikur A Ramanarayanan, LeRoy A Clavenna
  • Patent number: 8435645
    Abstract: A dielectric device comprises a substrate made of a metal and an oxide dielectric layer mounted on a surface of the substrate. The surface of the substrate has metal oxide regions distributed like islands, while the oxide dielectric layer is in close contact with the substrate through the metal oxide regions. Since adhesion is higher in an area where the substrate and the oxide dielectric layer are in close contact with each other through the metal oxide regions distributed like islands on the surface of the substrate, the adhesion between the substrate and oxide dielectric layer in the dielectric device is enhanced. As compared with a case where a rough surface is formed on a metal foil, the metal oxide region and the substrate are inhibited from forming a rough surface, whereby leakage characteristics can be kept from being deteriorated by the rough surface.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: May 7, 2013
    Assignee: TDK Corporation
    Inventors: Akira Shibue, Tomohiko Kato, Shinichiro Kakei, Yasunobu Oikawa, Kenji Horino
  • Patent number: 8337989
    Abstract: A multilayer coating includes a bond coat layer and a first barrier layer applied on the bond coat layer. The first barrier layer has a compositional gradient comprising a majority of a first rare earth stabilized zirconia material proximate the bond coat layer to a majority of a second rare earth stabilized zirconia material away from the bond coat layer. The first and second rare earth stabilized zirconia materials are different.
    Type: Grant
    Filed: May 17, 2010
    Date of Patent: December 25, 2012
    Assignee: United Technologies Corporation
    Inventors: Peter F. Gero, Kevin W. Schlichting, James W. Neal
  • Patent number: 8337998
    Abstract: A joined body of dissimilar metals which is produced by joining a steel material and an aluminum alloy material, wherein the steel material to be joined has a specific composition and is specified in the compositions of outer surface oxide layer and inner oxide layer and the aluminum alloy material to be joined is an Al—Mg-base or Al—Zn—Mg-base aluminum alloy having a specific composition. In the joined body of dissimilar metals, a content of Fe at a joint interface on the aluminum alloy material side is regulated, and a reaction layer of Fe and Al is formed at the joint interface of the joined body of dissimilar metals. The joined body of dissimilar metals exhibits high joint strength.
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: December 25, 2012
    Assignee: Kobe Steel, Ltd.
    Inventors: Mikako Takeda, Mamoru Nagao, Masao Kinefuchi
  • Patent number: 8334056
    Abstract: An alloy including: about 10 at % to about 30 at % of a Pt-group metal; less than about 23 at % Al; about 0.5 at % to about 2 at % of at least one reactive element selected from Hf, Y, La, Ce and Zr, and combinations thereof; a superalloy substrate constituent selected from the group consisting of Cr, Co, Mo, Ta, Re and combinations thereof; and Ni; wherein the Pt-group metal, Al, the reactive element and the superalloy substrate constituent are present in the alloy in a concentration to the extent that the alloy has a solely ??-Ni3Al phase constitution.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: December 18, 2012
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Brian M. Gleeson, Daniel J. Sordelet, Wen Wang
  • Publication number: 20120190118
    Abstract: A component for high-temperature use comprises a metallic base material and a non-ferromagnetic protective layer arranged thereon, which is able to form a protective oxide layer on the component surface at temperatures between 600° C. and 1100° C. A sensor material is introduced into the protective layer, wherein, in the stated temperature range, the local magnetism, notably ferromagnetism or ferrimagnetism, at the site of the sensor material is dependent on the local concentration and/or composition of the material of the protective layer in the immediate vicinity of the sensor material and/or on the cumulative temperature-time curve at the site of the sensor material. The component can be examined non-destructively, from the outside, for the local magnetism in the protective layer, which is typically between 100 ?m and 500 ?m thick.
    Type: Application
    Filed: August 10, 2010
    Publication date: July 26, 2012
    Applicant: Forschungszentrum Juelich GmbH
    Inventors: Thomas Huettel, Robert Vassen, Willem J. Quadakkers
  • Patent number: 8221899
    Abstract: A joined body of dissimilar metals which is produced by joining a steel material and an aluminum alloy material, wherein the steel material to be joined has a specific composition and is specified in the compositions of outer surface oxide layer and inner oxide layer and the aluminum alloy material to be joined is an Al—Mg—Si-base aluminum alloy having a specific composition. In the joined body of dissimilar metals, a content of Fe at a joint interface on the aluminum alloy material side is regulated, and a reaction layer of Fe and Al is formed at the joint interface of the joined body of dissimilar metals. The joined body of dissimilar metals exhibits high joint strength.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: July 17, 2012
    Assignee: Kobe Steel, Ltd.
    Inventors: Mikako Takeda, Mamoru Nagao, Masao Kinefuchi
  • Patent number: 8216694
    Abstract: A coating composition for zinc- and zinc alloy-coated steel sheets includes: 1 to 30% by weight of hypophosphorous acid, 0.1 to 10% by weight of manganese, 0.01 to 5% by weight of a polyvinyl compound, zinc oxide and the balance of water, and further comprises 20% by weight or less of alcohol, when necessary, wherein the zinc oxide is included in such a content that, when 50 Ml (milliliters) of the coating composition is neutralized and titrated with 0.1N NaOH, the NaOH used for the neutralization titration is present in an amount of 10.0 Ml (milliliters) or less, and a content of free acid in the coating composition is adjusted to such an amount that, when 50 Ml (milliliters) of the coating composition is neutralized and titrated with 0.1N NaOH, the NaOH used for the neutralization titration is present in an amount of 10.0 Ml (milliliters) or less.
    Type: Grant
    Filed: July 29, 2008
    Date of Patent: July 10, 2012
    Assignee: Posco
    Inventors: Young Geun Kim, Ha Sun Park, Sang Min Lee, Si Youl Choun, Yong Woon Kim, Jae Ryung Lee
  • Patent number: 8211548
    Abstract: A heat transfer component that is resistant to both corrosion and fouling is disclosed having a heat exchange surface formed from a silicon containing steel composition including an alloy and a non-metallic film formed on a surface of the alloy. The alloy is formed from the composition ?, ?, and ?, in which ? is a metal selected from the group consisting of Fe, Ni, Co, and mixtures thereof, ? is Si, and ? is at least one alloying element selected from the group consisting of Cr, Al, Mn, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Sc, La, Y, Ce, Ru, Rh, Ir, Pd, Pt, Cu, Ag, Au, Ga, Ge, As, In, Sn, Sb, Pb, B, C, N, P, O, S and mixtures thereof. The non-metallic film comprises sulfide, oxide, carbide, nitride, oxysulfide, oxycarbide, oxynitride and mixtures thereof. The surface roughness of the heat transfer component is less than 40 micro inches.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: July 3, 2012
    Assignee: ExxonMobil Research & Engineering Co.
    Inventors: ChangMin Chun, Mark A. Greaney, Thomas Bruno, Ian A. Cody, Trikur A. Ramanarayanan, LeRoy R. Clavenna
  • Publication number: 20120121926
    Abstract: A coated article includes a substrate, an anti-corrosion layer formed on the substrate, and a decorative layer formed on the anti-corrosion layer. The substrate is made of aluminum or aluminum alloy. The anti-corrosion layer includes an aluminum layer formed on the substrate and an aluminum oxide layer formed on the aluminum layer. The coated article has improved corrosion resistance.
    Type: Application
    Filed: August 19, 2011
    Publication date: May 17, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD.
    Inventors: HSIN-PEI CHANG, WEN-RONG CHEN, HUANN-WU CHIANG, CHENG-SHI CHEN, XIAO-QIANG CHEN
  • Patent number: 8142905
    Abstract: Provided is a copper foil for a printed circuit board comprising a layer including nickel, zinc, a compound of nickel and that of zinc (hereinafter referred to a “nickel zinc layer”) on a roughened surface of a copper foil, and a chromate film layer on the nickel zinc layer, wherein the zinc add-on weight per unit area of the nickel zinc layer is 180 ?g/dm2 or more and 3500 ?g/dm2 or less, and the nickel weight ratio in the nickel zinc layer {nickel add-on weight/(nickel add-on weight+zinc add-on weight)} is 0.38 or more and 0.7 or less. This surface treatment technology of a copper foil is able to effectively prevent the circuit corrosion phenomenon in cases of laminating a copper foil on a resin base material and using a sulfuric acid hydrogen peroxide etching solution to perform soft etching to the circuit.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: March 27, 2012
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Terumasa Moriyama, Kengo Kaminaga
  • Publication number: 20120021245
    Abstract: A process for joining a carbon steel part and a zirconia ceramic part, comprising steps of: providing a metal part made of carbon steel, a ceramic part made of zirconia ceramic, and a titanium foil; bringing the metal part, ceramic part, and titanium foil into contact, with the titanium foil inserted between the metal part and ceramic part; applying a joining pressure of about 10˜50 MPa to the parts to be joined; and simultaneously applying a pulse electric current to the parts while the joining pressure is applied for heating up the parts to a joining temperature of about 800° C. to about 1100° C. at a rate of about 50˜600° C./min, maintaining the joining temperature for about 10˜50 minutes.
    Type: Application
    Filed: April 29, 2011
    Publication date: January 26, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD.
    Inventors: HSIN-PEI CHANG, WEN-RONG CHEN, HUANN-WU CHIANG, CHENG-SHI CHEN, WEN-FENG HU
  • Patent number: 8048534
    Abstract: A superalloy article which comprises a substrate comprised of a superalloy, a bond coat comprised of MCrAlY wherein M is a metal selected from the group consisting of cobalt, nickel and mixtures thereof applied onto at least a portion of the substrate and a ceramic top coat applied over at least a portion of the bond coat. The bond coat is exposed to a temperature of within the range of between about 1600-1800° F. subsequent to its application onto the substrate.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: November 1, 2011
    Assignee: Board of Governors for Higher Education, State of Rhode Island and Providence Plantations
    Inventors: Otto J. Gregory, Markus A. Downey
  • Patent number: 8029914
    Abstract: High performance coated metal compositions resistant to metal dusting corrosion and methods of providing such compositions are provided by the present invention. The coated metal compositions are represented by the structure (PQR), wherein P is an oxide layer at the surface of (PQR), Q is a coating metal layer interposed between P and R, and R is a base metal. P includes alumina, chromia, silica, mullite or mixtures thereof. Q includes Ni and Al, and at least one element selected from the group consisting of Cr, Si, Mn, Fe, Co, B, C, N, P, Ga, Ge, As, In, Sn, Sb, Pb, Sc, La, Y, Ce, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Ru, Rh, Ir, Pd, Pt, Cu, Ag, Au and mixtures thereof. R is selected from the group consisting of carbon steels, low chromium steels, ferritic stainless steels, austenetic stainless steels, duplex stainless steels, Inconel alloys, Incoloy alloys, Fe—Ni based alloys, Ni-based alloys and Co-based alloys.
    Type: Grant
    Filed: July 10, 2007
    Date of Patent: October 4, 2011
    Assignee: ExxonMobile Research and Engineering Company
    Inventors: Kenneth E. Bagnoli, G. Phillip Anderson, Trikur A. Ramanarayanan, ChangMin Chun
  • Publication number: 20110186131
    Abstract: A substrate for selenium compound semiconductor has at least a steel base and an aluminum base. The aluminum base is arranged on one end in a direction of lamination of the steel base and the aluminum base, the steel base is arranged on the other end in the direction. An alloy layer having a thickness of from 0.01 ?m to 10 ?m is formed between the steel base and the aluminum base. A thermal oxide film having a thickness of 6 nm or more is formed on a surface of the steel base opposite to the aluminum base.
    Type: Application
    Filed: January 28, 2011
    Publication date: August 4, 2011
    Applicant: FUJIFILM Corporation
    Inventors: Atsushi MUKAI, Shigenori Yuya, Toshiaki Fukunaga, Ryuichi Nakayama
  • Patent number: 7951466
    Abstract: A titanium alloy material includes a Ti—Al alloy and an oxide film on the Ti—Al alloy. The Ti—Al alloy contains 0.50-3.0 mass % Al and a balance of Ti and unavoidable impurities. The titanium alloy material has excellent hydrogen absorption resistance and can be used as a basic structural material in hydrogen absorption environments.
    Type: Grant
    Filed: February 6, 2003
    Date of Patent: May 31, 2011
    Assignee: Kobe Steel, Ltd.
    Inventors: Shinji Sakashita, Takashi Yashiki, Katsuhiro Matsukado, Takenori Nakayama
  • Publication number: 20110111327
    Abstract: Powders of respective metal elements (Mn, Co) constituting a transition metal oxide (MnCo2O4) having a spinel type crystal structure are used as a starting material of the coating film. A film of a paste containing the mixture of the powders is formed on the surface of the interconnector, and with this state, the paste is sintered to form the coating film. In the coating body, a chromia layer including Cr2O3, a first layer including elements of Mn, Co, Fe, Cr, and O, and a second layer including elements of Mn, Co, Fe, and O are provided in this order from the side close to the interconnector at the boundary between the coating film and the interconnector. With this structure, the coating film is difficult to be peeled even if the coating body is placed in a severe temperature change.
    Type: Application
    Filed: October 22, 2010
    Publication date: May 12, 2011
    Applicant: NGK Insulators, Ltd.
    Inventors: Makoto OHMORI, Takashi RYU, Toshiyuki NAKAMURA
  • Patent number: 7939180
    Abstract: A resin product (e.g., a millimeter-wave radar device cover) comprises a plate-like resin substrate, a base film formed on the resin substrate, and a metallic gloss film having a discontinuous structure formed on the base film, a top coat, a block coat, or the like being formed as a protective film on the metal film. The metal film contains a first film having a discontinuous structure obtainable by vacuum deposition of a first metal, a modified surface obtainable by modification of the surface of the first film by bringing the surface into contact with air, and a second film having a discontinuous structure obtainable by vacuum deposition of a second metal on the modified surface.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: May 10, 2011
    Assignee: Toyoda Gosei Co., Ltd.
    Inventors: Tetsuya Fujii, Chiharu Totani, Hiroshi Watarai, Takayasu Ido
  • Patent number: 7927714
    Abstract: A metallic article for high temperature applications such as a turbine engine component is protected by a thermal barrier coating system on the article's metallic substrate. The thermal barrier coating system includes a bond coat layer of aluminum containing alloy on the metal substrate, an alumina layer on the bond coat layer and a ceramic thermal barrier layer on the alumina layer. The bond coat layer is doped with elemental barium that enhances the creep resistance of the alumina layer, thus, minimizing spallation of the ceramic thermal barrier layer.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: April 19, 2011
    Assignee: The Trustees of Princeton University
    Inventors: Emily A. Carter, Ivan Milas
  • Patent number: 7879400
    Abstract: There is provided a substrate processing apparatus equipped with a metallic component, with at least a part of its metallic surface exposed to an inside of a processing chamber and subjected to baking treatment at a pressure less than atmospheric pressure. As a result of this baking treatment, a film which does not react with various types of reactive gases, and which can block the out diffusion of metals, is formed on the surface of the above-mentioned metallic component.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: February 1, 2011
    Assignee: Hitachi Kokusal Electric Inc.
    Inventors: Takahiro Maeda, Kiyohiko Maeda, Takashi Ozaki
  • Publication number: 20110020665
    Abstract: A surface finishing and coating methodology that provides a superior looking aluminum product with acceptable corrosion performance for outdoor use. In one embodiment, a coating of high purity aluminum is applied first to an aluminum article or product via cold or thermal spray and the mechanical surface modification (e.g., polishing, buffing, brushing, etc.) is clone second. The resulting product has the desirable light weight and mechanical properties of aluminum with the chosen look and performance of the high purity aluminum coating. The aluminum product to be coated may be obtained by extrusion, forging, casting, or rolling.
    Type: Application
    Filed: June 13, 2008
    Publication date: January 27, 2011
    Applicant: ALCOA INC.
    Inventors: Daniel L. Serafin, Ian A. McCallum, Roger W. Kaufold, Robert E. Bombalski, Luis Fanor Vega, Donald Robert Smith
  • Patent number: 7816015
    Abstract: A composite copper foil having three layers of a supporting metal layer, an exfoliating layer and a thin copper layer, wherein one surface of the exfoliating layer comprises, as a main component, an alloy of tungsten or an alloy of molybdenum and the other surface thereof comprises, as a main component, a metal oxide containing tungsten or a metal oxide containing molybdenum. The composite copper foil is free from undesired swelling, separation or falling of the supporting metal layer during heating and working at a high temperature, and the supporting metal layer can be exfoliated from the thin copper layer with case, after the heating and the working.
    Type: Grant
    Filed: July 22, 2005
    Date of Patent: October 19, 2010
    Assignee: Nippon Denkai, Ltd.
    Inventor: Yuushi Sato
  • Patent number: 7784764
    Abstract: A low-adhesion material containing a rare-earth element is formed as a layer or a film on a mold surface of a mold for molding a resin. A main component of the low-adhesion material is a rare-earth compound, and Y2O3 is used as an example. A content of the rare-earth compound in the low-adhesion material is not less than 40 percent by volume. Thereby, a mold for molding a resin having excellent releasability can be obtained.
    Type: Grant
    Filed: November 1, 2005
    Date of Patent: August 31, 2010
    Assignees: Towa Corporation, Japan Fine Ceramics Center
    Inventors: Takaki Kuno, Yoshinori Noguchi, Keiji Maeda, Seiichi Suda, Satoshi Kitaoka, Naoki Kawashima, Masato Yoshiya
  • Patent number: 7569285
    Abstract: The present invention provides a dense-coverage, adherent phosphorous-based coating on the native oxide surface of a material. Disclosed phosphorous-based coatings include phosphate and organo-phosphonate coatings. The present invention also provides further derivatization of the phosphorous-based coatings to yield dense surface coverage of chemically reactive coatings and osteoblast adhesion-promoting and proliferation-promoting coatings on the native oxide surface of a titanium material.
    Type: Grant
    Filed: June 24, 2002
    Date of Patent: August 4, 2009
    Assignee: The Trustees of Princeton University
    Inventors: Jeffrey Schwartz, Michael P. Danahy, Michael J. Avaltroni, Kim S. Midwood, Jean E. Schwarzbauer, Michael D. Carolus, Ellen S. Gawalt
  • Publication number: 20090155617
    Abstract: Disclosed are an Fe—Au barcode type nanowire and a method of manufacturing the same. The nanowire has a magnetic-optical multifunction and is suitable for adjusting magnetic intensity thereof. The Fe—Au nanowire has a multilayered structure, in which an iron layer and a gold layer are alternately and repeatedly formed, and is formed in a single plating bath through a pulse electro-deposition.
    Type: Application
    Filed: October 31, 2007
    Publication date: June 18, 2009
    Applicant: KOREA University, Industry & Academy Collaboration Foundation of Korea University, Industry & Academ
    Inventors: Young Keun Kim, Ju Hun Lee, Jun Hua Wu, Hong Ling Liu, Ji Ung Cho, Ji Hyun Min, Boo Hyun An, Moon Kyu Cho, Su Jung Noh
  • Patent number: 7507483
    Abstract: An implantable device with a metal, metal alloy, metalloid, polymeric or ceramic surface and a phosphonic acid coating layer directly contacting the surface wherein the surface has hydroxyl groups covalently bonded to the acid groups of the coating layer and the phosphonate organic ligands are omega-functionalized.
    Type: Grant
    Filed: April 1, 2003
    Date of Patent: March 24, 2009
    Inventors: Jeffrey Schwartz, Michael J. Avaltroni, Michael D. Carolus, Eric L. Hanson, Jean E. Schwarzbauer, Kim S. Midwood, Michael P. Danahy
  • Patent number: 7507605
    Abstract: A leadframe with a structure made of a base metal (105), wherein the structure has a plurality of surfaces. On each of these surfaces are metal layers in a stack adherent to the base metal. The stack comprises a nickel layer (201) in contact with the base metal, a palladium layer (202) in contact with the nickel layer, and an outermost tin layer (203) in contact with the palladium layer. In terms of preferred layer thicknesses, the nickel layer is between about 0.5 and 2.0 ?m thick, the palladium layer between about 5 and 150 nm thick, and the tin layer less than about 5 nm thick, preferably about 3 nm. At this thinness, the tin has no capability of forming whiskers, but offers superb adhesion to polymeric encapsulation materials, improved characteristics for reliable stitch bonding as well as affinity to reflow metals (solders).
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: March 24, 2009
    Assignee: Texas Instruments Incorporated
    Inventor: Donald C. Abbott
  • Patent number: 7463358
    Abstract: An article, process, and method for surface plasmon resonance plates are described. A substrate is covered with a thin metal film onto which a second thin metal film is deposited. The surface of the second thin metal film is converted to the metal oxide which is used to covalently bond organosilanes to the surface. Reactive organosilanes containing terminal bonding groups are arranged in a plurality of spots that are surrounded by inert organosilanes. Biomolecule attachment to the binding group is detected or measured from surface plasmon signals from the first thin metal film.
    Type: Grant
    Filed: December 6, 2005
    Date of Patent: December 9, 2008
    Assignee: Lumera Corporation
    Inventors: Nick Wolf, Danliang Jin, Anna M. Barklund, Raluca Dinu
  • Publication number: 20080131722
    Abstract: One embodiment includes: a copper substrate; a catalyst on top of a single surface of the copper substrate; and a thermal interface material on top of the single surface of the copper substrate. The thermal interface material comprises: a layer of carbon nanotubes that contacts the catalyst, and a filler material located between the carbon nanotubes. The carbon nanotubes are oriented substantially perpendicular to the single surface of the copper substrate. The thermal interface material has: a bulk thermal resistance, a contact resistance between the thermal interface material and the copper substrate, and a contact resistance between the thermal interface material and a solid-state device. The summation of the bulk thermal resistance, the contact resistance between the thermal interface material and the copper substrate, and the contact resistance between the thermal interface material and the solid-state device has a value of 0.06 cm2K/W or less.
    Type: Application
    Filed: May 15, 2007
    Publication date: June 5, 2008
    Inventors: Ephraim Suhir, Subrata Dey, Barbara Wacker, Peter Schwartz
  • Patent number: 7273662
    Abstract: An alloy including a Pt-group metal, Ni and Al in relative concentration to provide a ?-Ni+??-Ni3Al phase constitution, and a coating including the alloy.
    Type: Grant
    Filed: May 16, 2003
    Date of Patent: September 25, 2007
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Brian Gleeson, Daniel Sordelet, Wen Wang
  • Patent number: 7267859
    Abstract: The presently disclosed invention provides for the fabrication of porous anodic alumina (PAA) films on a wide variety of substrates. The substrate comprises a wafer layer and may further include an adhesion layer deposited on the wafer layer. An anodic alumina template is formed on the substrate. When a rigid substrate such as Si is used, the resulting anodic alumina film is more tractable, easily grown on extensive areas in a uniform manner, and manipulated without danger of cracking. The substrate can be manipulated to obtain free-standing alumina templates of high optical quality and substantially flat surfaces PAA films can also be grown this way on patterned and non-planar surfaces. Furthermore, under certain conditions the resulting PAA is missing the barrier layer (partially or completely) and the bottom of the pores can be readily accessed electrically.
    Type: Grant
    Filed: November 25, 2002
    Date of Patent: September 11, 2007
    Assignee: Massachusetts Institute of Technology
    Inventors: Oded Rabin, Paul R. Herz, Mildred S. Dresselhaus, Akintunde I. Akinwande, Yu-Ming Lin
  • Patent number: 7244502
    Abstract: The present invention provides a composition for use in forming an abrasion-resistant easy-to-clean coating on a substrate. The composition according to the invention includes a mixture of a fluorocarbon polymer component and an enamel-forming component. The enamel-forming component includes at least a first lead-free and cadmium-free glass frit. The first lead-free and cadmium-free glass frit includes from about 30% to about 50% P2O5, from about 15% to about 30% Al2O3, and from about 2% to about 40% X2O where X=Na and/or K. The present invention also provides a method of forming an abrasion-resistant easy-to-clean coating on a substrate. The method includes applying the composition according to the invention to a substrate and sintering the applied composition to fuse an abrasion-resistant easy-to-clean coating to the substrate.
    Type: Grant
    Filed: February 9, 2005
    Date of Patent: July 17, 2007
    Assignee: Ferro France - S.A.R.L.
    Inventors: Alain Aronica, David Coutouly, Damian Macaya, Remy Caisse
  • Patent number: 7241510
    Abstract: In one embodiment, a peelable circuit board foil (200) has a metal support layer (205) and a conductive metal foil layer (210) bonded by an inorganic high temperature release structure (215) that comprises a co-deposited layer (250) and a metal oxide layer (260). The co-deposited layer comprises an admixture of nickel and one or more of boron, phosphorus, and chromium. In a second embodiment, the peelable printed circuit foil (200) has a crystallized dielectric oxide layer (405) disposed on the metal foil layer and an electrode layer (415) disposed on the crystallized dielectric oxide layer, forming a dielectric peelable circuit board foil (400) that may be adhered to a layer of a flexible or rigid circuit board, after which the metal support layer can be peeled away, leaving a capacitive structure including the metal foil layer, the crystallized dielectric oxide layer, and the electrode layer.
    Type: Grant
    Filed: May 27, 2005
    Date of Patent: July 10, 2007
    Assignee: Motorola, Inc.
    Inventors: Gregory J. Dunn, Remy J. Chelini, Timothy B. Dean