Oxide-containing Component Patents (Class 428/632)
  • Patent number: 6620525
    Abstract: A multilayer thermal barrier coating (TBC) and method for forming the coating on a component intended for use in a hostile environment. The coating includes layers of particle-free yttria-stabilized zirconia alternating with layers of yttria-stabilized zirconia containing at least three volume percent up to about fifty volume percent of alumina and/or chromia particles and/or precipitates. In the form of particles and/or precipitates in these amounts, sufficient alumina and/or chromia is present to significantly increase the impact and wear resistance of the coating while avoiding discrete and homogeneous layers of alumina and/or chromia and abrupt compositional interfaces that increase the incidence of spallation.
    Type: Grant
    Filed: November 9, 2000
    Date of Patent: September 16, 2003
    Assignee: General Electric Company
    Inventors: Joseph David Rigney, Ramgopal Darolia
  • Publication number: 20030170505
    Abstract: A high-temperature strength member comprises a substrate of Ni-based single crystal alloy or a Ni-based unidirectional solidified alloy and a coating of a B-containing alloy having a specified B content formed on the surface thereof by a spraying process or a vapor deposition process.
    Type: Application
    Filed: October 25, 2002
    Publication date: September 11, 2003
    Applicant: Tocalo Co., Ltd.
    Inventors: Masakazu Okazaki, Yoshio Harada, Tatsuo Suidzu
  • Patent number: 6617049
    Abstract: A thermal barrier coating (TBC) for a component intended for use in a hostile environment, such as the superalloy turbine, combustor and augmentor components of a gas turbine engine. The TBC is formed of at least partially stabilized zirconia, preferably yttria-stabilized zirconia (YSZ), and exhibits improved erosion and impact resistance as a result of containing a dispersion of alumina precipitates or particles. The TBC preferably consists essentially of YSZ and the alumina particles, which are preferably dispersed throughout the microstructure of the TBC, including the YSZ grains and grain boundaries. The alumina particles are present in an amount sufficient to increase the impact and erosion resistance of the TBC, preferably at least 5 volume percent of the TBC.
    Type: Grant
    Filed: January 18, 2001
    Date of Patent: September 9, 2003
    Assignee: General Electric Company
    Inventors: Ramgopal Darolia, Joseph David Rigney
  • Patent number: 6617003
    Abstract: An actively cooled TBC bond coat wherein active convection cooling is provided through micro channels inside or adjacent to a bond coat layer applied to a substrate. The micro channels communicate directly with at least one cooling fluid supply contained within a turbine engine component, thereby providing direct and efficient cooling for the bond coat layer. Because the substrate is covered with an actively cooled bond coat layer, it will reduce the cooling requirement for the substrate, thus allowing the engine to run at higher operating temperature without the need for additional cooling air, achieving a better engine performance. In one form, the component includes a substrate having at least one substrate channel with a first and second end. At least one micro channel is in fluid communication with a plenum which in turn is in fluid communication with at least one substrate channel through an exit orifice in the substrate channel which is at a first end of the substrate channel.
    Type: Grant
    Filed: November 6, 2000
    Date of Patent: September 9, 2003
    Assignee: General Electric Company
    Inventors: Ching-Pang Lee, Robert Edward Schafrik, Ramgopal Darolia
  • Patent number: 6617055
    Abstract: At least a portion of a free layer structure in a spin valve sensor is composed of nickel iron molybdenum (NiFeMo) so that the free layer structure does not have to be reduced in thickness in order to have a reduced magnetic moment for responding to lower signal fields from smaller bits on a rotating magnetic disk.
    Type: Grant
    Filed: April 10, 2001
    Date of Patent: September 9, 2003
    Assignee: International Business Machines Corporation
    Inventor: Hardayal Singh Gill
  • Patent number: 6610419
    Abstract: Product having a layer which protects against corrosion, and process for producing a layer which protects against corrosion. The invention relates to a product (1), in particular a gas-turbine blade (1), having a metallic basic body (2) to which a protective layer (3, 4) for protecting against corrosion is bonded. The protective layer (3, 4) has an inner layer (3) of a first MCrAlY alloy and an outer layer (4) having a second MCrAlY alloy, which is bonded to the inner layer (3). The second MCrAlY alloy is predominantly in the &ggr;-phase. The invention also relates to a process for producing a protective layer (3, 4) in which the outer layer (4) is produced by re-melting a region of the inner layer (3) or by deposition of an MCrAlY alloy from a liquid phase.
    Type: Grant
    Filed: March 14, 2001
    Date of Patent: August 26, 2003
    Assignee: Siemens Akteingesellschaft
    Inventor: Werner Stamm
  • Patent number: 6610420
    Abstract: A method for forming a thermal barrier coating system on a turbine engine component includes forming a bondcoat on the turbine engine component and depositing a thermal barrier coating so as to overlie the bondcoat. The bondcoat is formed by thermally co-spraying first and second distinct alloy powders on the turbine engine component forming an oxidation-resistant region, and thermally spraying a third alloy powder on the oxidation-resistant region to form a bonding region.
    Type: Grant
    Filed: October 30, 2001
    Date of Patent: August 26, 2003
    Assignee: General Electric Company
    Inventors: Anthony Mark Thompson, Wayne Charles Hasz
  • Patent number: 6610422
    Abstract: The method for manufacturing coated steel sheet has the steps of: immersing a steel sheet in a hot-dip coating bath to form an Al—Zn base coating layer containing 20 to 95 mass % Al on the steel sheet, forming a passivated layer on the coating layer; and applying thermal history to the coating layer. The thermal history is applied immediately after the steel sheet left the hot-dip coating bath or in a temperature range of from T(° C.) between 130° C. and 300° C. to 100° C.
    Type: Grant
    Filed: September 26, 2002
    Date of Patent: August 26, 2003
    Assignee: NKK Corporation
    Inventors: Toshihiko Ooi, Takafumi Yamaji, Keiji Yoshida, Yuichiro Tanaka, Junichi Inagaki, Masaaki Yamashita, Yasuhiro Majima, Nobuyuki Ishida, Yuichi Fukushima, Norio Inoue, Shinji Hori
  • Publication number: 20030157362
    Abstract: An optical component composite body is obtained in which there is no damage to the optical component even when it is bonded to a metal holder by solder or low melting point glass. The metal holder of the present invention is provided with a mounting portion protruding from one side of the main body and a grasping portion protruding from the other side of the main body. The mounting portion is provided with a plurality of protrusions formed in a comb tooth configuration. An optical component formed from alumina (Al2O3) is bonded by solder to a bonding surface of a protrusion, another optical component formed from LiNbO3 is bonded by solder to a bonding surface of another protrusion, and a further optical component formed from YVO4 is bonded by solder to a bonding surface of a further protrusion.
    Type: Application
    Filed: December 19, 2002
    Publication date: August 21, 2003
    Inventors: Katsunori Suzuki, Yasuaki Takano, Yasunori Nishimura
  • Publication number: 20030157363
    Abstract: A method for forming a thermal barrier coating system on an article subjected to a hostile thermal environment, such as the hot gas path components of a gas turbine engine. The coating system is generally comprised of a ceramic layer and an environmentally resistant beta phase nickel aluminum intermetallic (&bgr;-NiAl) bond coat that adheres the ceramic layer to the component surface. A thin aluminum oxide scale forms on the surface of the &bgr;-NiAl during heat treatment. An additional layer of diffusion aluminide may can be formed underlying the ceramic layer. The &bgr;-NiAl may contain alloying elements in addition to nickel and aluminum in order to increase the environmental resistance of the &bgr;-NiAl. These elements include hafnium, chromium and zirconium and increase the oxidation resistance of the &bgr;-NiAl. The &bgr;-NiAl is supplied as a powder having a size in the range of 20-80 microns.
    Type: Application
    Filed: April 26, 2001
    Publication date: August 21, 2003
    Inventors: Joseph David Rigney, Michael James Weimer, Bangalore Aswatha Nagaraj, Yuk-Chiu Lau
  • Publication number: 20030157361
    Abstract: A protective coating system and method for protecting a thermal barrier coating from CMAS infiltration. The coating system comprises inner and outer alumina layers and a platinum-group metal layer therebetween. The outer alumina layer is intended as a sacrificial layer that reacts with molten CMAS, forming a compound with a melting temperature significantly higher than CMAS. As a result, the reaction product of the outer alumina layer and CMAS resolidifies before it can infiltrate the TBC. The platinum-group metal layer is believed to serve as a barrier to infiltration of CMAS into the TBC, while the inner alumina layer appears to enhance the ability of the platinum-group metal layer to prevent CMAS infiltration.
    Type: Application
    Filed: February 19, 2002
    Publication date: August 21, 2003
    Inventors: Bangalore Aswatha Nagaraj, Jeffrey Lawrence Williams, John Frederick Ackerman
  • Patent number: 6607843
    Abstract: The invention includes a brazed ceramic ring that separates the positive and negative ends of the battery while still providing a leak-tight seal. The ceramic is aluminum oxide or zirconium oxide or zirconium oxide with 3% yttrium. The invention includes a brazing material that is greater than 50% gold. The invention includes a titanium alloy case (Ti-6Al-4V) which is titanium with 6% aluminum and 4% vanadium as its major alloying elements. The case has the desirable properties of titanium such as high strength for a relatively low weight; and the case has the requisite ability and electro-activity to be used as a positive current carrying element where the battery's positive electrode exhibits more than 3.5 V vs. Li/Li+.
    Type: Grant
    Filed: January 30, 2001
    Date of Patent: August 19, 2003
    Assignee: Quallion LLC
    Inventors: Douglas Alan Ruth, II, Hisashi Tsukamoto, Clay Kishiyama, Andrew Szyszkowski
  • Patent number: 6605364
    Abstract: A method is provided for repairing a surface portion of an article including a metallic environmental resistant coating on a substrate. The coating includes a coating outer portion bonded with the substrate through a diffusion zone that includes at least one feature, for example Al and/or an intermetallic phase, in an amount detrimental to application of a metallic replacement coating and/or repair of the article. The method comprises removing the coating outer portion to expose a surface of the diffusion zone. The substrate and the diffusion zone are heated at a temperature and for a time sufficient to diffuse and/or dissolve at least a portion of the at least one feature in the exposed surface and in a portion of the diffusion zone beneath the exposed surface to a level below the detrimental amount. This provides a replacement surface portion integral with diffusion zone. Then a metallic replacement coating outer portion is applied to the replacement surface portion.
    Type: Grant
    Filed: July 18, 2000
    Date of Patent: August 12, 2003
    Assignee: General Electric Company
    Inventors: Jeffrey Allen Conner, Roger Dale Wustman, Jonathan Philip Clarke
  • Publication number: 20030138658
    Abstract: The invention provides a multilayer ceramic coating for applying thermal barrier protection to a substrate. It has an inner ceramic layer coating the substrate. The inner ceramic layer has a plurality of macrocracks distributed throughout the inner ceramic layer. An outer ceramic layer coats the inner ceramic layer. The outer ceramic layer is substantially free of vertical macrocracks.
    Type: Application
    Filed: January 22, 2002
    Publication date: July 24, 2003
    Inventors: Thomas Alan Taylor, Danny Lee Appleby, Ann Bolcavage
  • Publication number: 20030138660
    Abstract: A thermal barrier coating (TBC) for a component intended for use in a hostile environment, such as the superalloy turbine, combustor and augmentor components of a gas turbine engine. The TBC is formed of at least partially stabilized zirconia, preferably yttria-stabilized zirconia (YSZ), and exhibits improved erosion and impact resistance as a result of containing a dispersion of alumina precipitates or particles. The TBC preferably consists essentially of YSZ and the alumina particles, which are preferably dispersed throughout the microstructure of the TBC, including the YSZ grains and grain boundaries. The alumina particles are present in an amount sufficient to increase the impact and erosion resistance of the TBC, preferably at least 5 volume percent of the TBC.
    Type: Application
    Filed: January 18, 2001
    Publication date: July 24, 2003
    Inventors: Ramgopal Darolia, Joseph David Rigney
  • Publication number: 20030138659
    Abstract: The present invention relates to a thin impermeable top coat on a thermal barrier coating for a metal part, such as a turbine blade, wherein the composite thin top coat is porous, inert, no-sacrificial, less permeable ceramic layer that eliminates the infiltration of environmental contaminants into the thermal barrier coating during operation of the metal part, thereby extending the life of the underlying thermal barrier coating and metal part therunder.
    Type: Application
    Filed: October 24, 2002
    Publication date: July 24, 2003
    Inventor: Kartik Shanker
  • Publication number: 20030134139
    Abstract: A predominantly beta-phase NiAl overlay coating for use as an environmental coating or a TBC bond coat for articles used in hostile thermal environments, such as components of a gas turbine engine. The coating contains up to about 4 atomic percent hafnium, such as in excess of 1.0 atomic percent hafnium. The coating may also contain about 2 to about 15 atomic percent chromium.
    Type: Application
    Filed: January 11, 2002
    Publication date: July 17, 2003
    Inventors: Jeffrey Allan Pfaendtner, Joseph David Rigney, Ramgopal Darolia, Reed Roeder Corderman, Richard Arthur Nardi
  • Patent number: 6593014
    Abstract: A thermomagnetic recording medium includes a thermal change layer whose thermal conductivity is induced to change by a metal-to-insulator transition, is greater on a lower temperature side of a transition temperature and is smaller on a higher temperature side thereof. A thermomagnetic recording method includes setting a recording or reproducing temperature higher than the temperature of the recording medium at the circumference of a light spot and higher than a threshold temperature for change of the thermal conductivity of the thermal change layer. A thermomagnetic recording and reproducing device is provided with the above-mentioned thermomagnetic recording medium, an optical pickup and a magnetic head and conducts recording and reproduction by the above-mentioned thermomagnetic recording and reproducing device.
    Type: Grant
    Filed: May 26, 2000
    Date of Patent: July 15, 2003
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Yasushi Ogimoto, Kenji Nakanishi, Masaki Hamamoto, Kunio Kojima, Hiroyuki Katayama
  • Patent number: 6589324
    Abstract: A chromium-free agent for treating metallic surface comprising the following (i)-(iv): (i) at least one of (A) a mixture of an aluminum salt and an inorganic oxide particle and (B) an aluminum-containing inorganic oxide particle comprising aluminum, oxygen and at least one element other than these two (ii) a salt of a metal other than aluminum (iii) a phosphorus compound (iv) a resin and/or a precursor thereof provided that when (i) is a mixture of an aluminum salt and an inorganic oxide particle, the equivalent ratio of phosphorus/aluminum is not less than 0.1. The agent for treating metallic surface is applied to the surface of a metal material such as steel plate, plated steel plate, alloy-plated steel plate, alloy plate, silicon steel plate, stainless steel plate, shape steel, pipe, wire material and the like, and dried to form a film superior in corrosion resistance, adhesion to a metal material and adhesion to a paint.
    Type: Grant
    Filed: April 22, 1999
    Date of Patent: July 8, 2003
    Assignee: Toyo Boseki Kabushiki Kaisha
    Inventors: Hiroaki Kamo, Yasunari Hotta, Toshiyuki Shimizu, Hisao Odashima
  • Publication number: 20030124342
    Abstract: An environmentally resistant coating (34) for improving the oxidation resistance of a niobium-based refractory metal intermetallic composite (Nb-based RMIC) at high temperatures, the environmentally resistant coating (34) comprising silicon, titanium, chromium, and niobium. The invention includes a turbine system (10) having turbine components (11) comprising at least one Nb-based RMIC, the environmentally resistant coating (34) disposed on a surface (33) of the Nb-based RMIC, and a thermal barrier coating (42) disposed on an outer surface (40) of the environmentally resistant coating (34). Methods of making a turbine component (11) having the environmentally resistant coating (34) and coating a Nb-based RMIC substrate (32) with the environmentally resistant coating (34) are also disclosed.
    Type: Application
    Filed: December 10, 2002
    Publication date: July 3, 2003
    Inventors: Ji-Cheng Zhao, Melvin Robert Jackson, Bernard Patrick Bewlay
  • Patent number: 6586102
    Abstract: Coated articles are provided with an anti-reflective (AR) layer(s) system which enables reduced reflection, increased visible transmission, and/or neutral color. In certain embodiments, the AR layer(s) system includes a silicon nitride layer(s), a silicon oxynitride layer, and/or a silicon oxide layer on the substrate over an infrared (IR) reflecting layer(s) such as silver. The AR system surprisingly enables improved visible transmission and/or reflection to be combined with more neutral color.
    Type: Grant
    Filed: November 30, 2001
    Date of Patent: July 1, 2003
    Assignee: Guardian Industries Corp.
    Inventor: Grzegorz Stachowiak
  • Patent number: 6586114
    Abstract: An article, particularly a metallic article, is coated with a multi-layer coating having the color or appearance of dark copper. The coating comprises a chromium, refractory metal or refractory metal alloy adhesion promoting layer, a titanium-zirconium alloy nitride or titanium-zirconium alloy carbonitride protective and color layer, and a titanium-zirconium alloy oxide or titanium-zirconium oxynitride color enhancing layer.
    Type: Grant
    Filed: July 24, 2002
    Date of Patent: July 1, 2003
    Assignee: Vapor Technologies, Inc.
    Inventor: Bryce Randolph Anton
  • Patent number: 6586121
    Abstract: A spin-valve thin-film magnetic element includes a substrate; an antiferromagnetic layer; a pinned magnetic layer in contact with the antiferromagnetic layer, the magnetization direction of the pinned magnetic layer being pinned by an exchange coupling magnetic field with the antiferromagnetic layer; a nonmagnetic conductive layer in contact with the pinned magnetic layer; a free magnetic layer in contact with the nonmagnetic conductive layer, the magnetization direction of the free magnetic layer being aligned in a direction perpendicular to the magnetization direction of the pinned magnetic layer; and a back layer composed of a nonmagnetic conductive material formed in contact with the free magnetic layer at the opposite side of the nonmagnetic conductive layer. The back layer is composed of at least one metal selected from the group consisting of Ru, Pt, Ir, Rh, Pd, Os, and Cr.
    Type: Grant
    Filed: May 22, 2001
    Date of Patent: July 1, 2003
    Assignee: Alps Electric Co., Ltd.
    Inventors: Yosuke Ide, Masamichi Saito, Kenichi Tanaka, Naoya Hasegawa
  • Publication number: 20030118861
    Abstract: The disclosure relates to a process for forming a deposit on the surface of a metallic or conductive surface. The process employs an electroless process to deposit a silicate containing coating or film upon a metallic or conductive surface.
    Type: Application
    Filed: August 2, 2002
    Publication date: June 26, 2003
    Inventors: Robert L. Heimann, Brank Popov, Bruce Flint, Dragan Slavkov, Craig Bishop
  • Publication number: 20030118874
    Abstract: A ceramic thermal barrier coating on a substrate wherein the coating comprises primary columnar grains that extend transversely of a surface of the substrate and that include integral secondary columnar grains extending laterally therefrom relative to a respective column axis. The secondary columnar grains typically extend from the primary columnar grains at an acute angle of less than 90 degrees relative to the column axis of the primary columnar grains. The coating structure exhibits reduced thermal conductivity as compared to a conventional thermal barrier coating.
    Type: Application
    Filed: December 21, 2001
    Publication date: June 26, 2003
    Inventor: Kenneth S. Murphy
  • Publication number: 20030118860
    Abstract: A substrate carrying a temporary protective cover and related methods of producing and processing substrates are described. In one embodiment, a substrate bears a hydrophilic coating carrying a temporary protective cover that protects the hydrophilic coating against contamination but that can readily be readily removed from the hydrophilic coating by washing with a given washing fluid.
    Type: Application
    Filed: October 11, 2002
    Publication date: June 26, 2003
    Inventors: Roger D. O'Shaughnessy, Annette J. Krisko, Klaus Hartig
  • Patent number: 6582834
    Abstract: An anti-stick coating that inhibits the adhesion of contaminants that form deposits on the internal cooling passages of gas turbine engine components. The anti-stick coating is formed as an outer coating of the internal cooling passages, and preferably overlies an environmental coating such as a diffusion aluminide coating formed on the passage surfaces. The outer coating has a thickness of not greater than three micrometers, and is resistant to adhesion by dirt contaminants as a result of comprising at least one layer of tantala, titania, hafnia, niobium oxide, yttria, silica and/or alumina. The outer coating is preferably deposited directly on the environmental coating by chemical vapor deposition.
    Type: Grant
    Filed: June 12, 2001
    Date of Patent: June 24, 2003
    Assignee: General Electric Company
    Inventors: Bangalore Aswatha Nagaraj, Ching-Pang Lee, William Randolph Stowell, Aaron Dennis Gastrich
  • Publication number: 20030113577
    Abstract: An electrically conductive metal element comprises an electrically conductive metal substrate having a layer of Ni—Sn alloy overlying an electrically conductive surface of the substrate and at least one layer of Ag or of Ag containing Sn overlying the Ni—Sn alloy layer. The Ni—Sn alloy(s) has a Sn-content not greater than for Ni3Sn2 for high temperature uses. In a convenient method of forming the element the Sn is applied to one or more layers of Ni in a Ag+Sn mixture and diffused into the Ni layer(s) to form the Ni—Sn alloy layer and at least one layer of Ag or of Ag containing Sn. The element may have a surface layer of SnO2 which can be formed by oxidising residual Sn which migrates to the outer surface of the at least one layer of Ag containing Sn.
    Type: Application
    Filed: December 31, 2002
    Publication date: June 19, 2003
    Inventor: Xiao Guang Zheng
  • Patent number: 6579627
    Abstract: A nickel-base superalloy article has a protective layer on a surface of the substrate. The protective layer has a composition including nickel, aluminum, and at least two modifying elements selected from the group consisting of zirconium, hafnium, yttrium, and silicon. The protective layer is preferably predominantly beta (&bgr;) phase NiAl composition. Each of the modifying elements which is present is included in an amount of from about 0.1 to about 5 percent by weight of the protective layer in the case of zirconium, hafnium, and silicon modifying element, and in an amount of from about 0.1 to about 1 percent by weight of the protective layer in the case of yttrium modifying element.
    Type: Grant
    Filed: May 3, 2000
    Date of Patent: June 17, 2003
    Assignee: General Electric Company
    Inventors: Ramgopal Darolia, Robert A. Miller, Ronald D. Noebe
  • Patent number: 6579624
    Abstract: A functional film includes a transition layer having a first constituent having SiO as a dielectric material and at least one second constituent selected from aluminum (Al), silver (Ag), silicon (Si), germanium (Ge), yttrium (Y), zinc (Zn), zirconium (Zr), tungsten (W) and tantalum (Ta). The first and second constituents have corresponding gradual content gradients according to a thickness of the functional film.
    Type: Grant
    Filed: November 28, 2001
    Date of Patent: June 17, 2003
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Chaun-gi Choi, Young-rag Do, Joon-bae Lee, Chang-won Park
  • Patent number: 6572974
    Abstract: Changes in the infrared reflection spectrum of a thin film of silica-like resinous material sandwiched between metal electrodes can be induced by applying an electric potential to a top electrode which is semitransparent. Characteristic infrared absorption lines change in proportion to a small electric current flowing through the material. These changes occur with response times of the order of seconds, and show time constants of the order of minutes to reach stationary values.
    Type: Grant
    Filed: December 6, 1999
    Date of Patent: June 3, 2003
    Assignee: The Regents of the University of Michigan
    Inventors: Mark Angelo Biscotte, Mark Monroe Banaszak Holl, Bradford Grant Orr, Udo C. Pernisz
  • Patent number: 6572981
    Abstract: A method for improving the thermal fatigue life of a thermal barrier coating (TBC) deposited on an aluminide bond coat through a process by which the surface morphology of the aluminide bond coat is modified to eliminate or at least reduce oxidation and oxidation-induced convolutions at the alumina-bond coat interface, as explained more fully below. The bond coat is deposited to have generally columnar grains and grain boundary ridges at its surface, and is then peened at an intensity sufficient to flatten at least some of the grain boundary ridges, but insufficient to cause recrystallization of the bond coat when later heated, such as during deposition of the thermal barrier coating. In so doing, the original surface texture of the bond coat is altered to be smoother where the grain boundaries meet the bond coat surface, thereby yielding a smoother bond coat surface where the critical alumina-bond coat interface will exist following oxidation of the bond coat.
    Type: Grant
    Filed: January 16, 2002
    Date of Patent: June 3, 2003
    Assignee: General Electric Company
    Inventor: Irene Theodor Spitsberg
  • Patent number: 6566621
    Abstract: A metal-ceramic composite (a vacuum switch unit 50) having a metal member 13 having a tubular portion 13b, and a cylindrical ceramic member 55. The metal-ceramic composite (the vacuum switch unit 50) has a structure in which an end face of the tubular portion 13b of the metal member 13 is butt joined via a joint metal layer 15 to an end face 55a of the cylindrical ceramic member 55 in an edge sealed manner. In order to provide a metal-ceramic composite having a high joint strength which is less likely to cause defects such as cuts or cracks at the joint, the joint metal layer 15 and the ceramic member 55 contact each other at an annular region of W (mm) in average width which extends circumferentially about the end face 55a of the ceramic member 55. Furthermore, W and D have respective values which satisfy D≧30 {circle around (1)}; and (1/60)×D≦W≦(D/30)+3.1 {circle around (2)} where D (mm) is an outer diameter of the ceramic member.
    Type: Grant
    Filed: November 29, 2001
    Date of Patent: May 20, 2003
    Assignee: NGK Spark Plug Co., Ltd.
    Inventor: Yusuke Makino
  • Patent number: 6565984
    Abstract: We have discovered that the formation of particulate inclusions at the surface and the interior of an aluminum alloy article interferes with the performance of the article when a surface of the article is protected by an anodized coating. We have also discovered that the formation of such particulate inclusions can be controlled to a large extent by controlling the concentration of particular impurities present in the alloy used to fabricate the aluminum alloy article.
    Type: Grant
    Filed: May 28, 2002
    Date of Patent: May 20, 2003
    Assignee: Applied Materials Inc.
    Inventors: Shun Wu, Clifford Stow, Hong Wang, Yixing Lin
  • Patent number: 6562483
    Abstract: A method for providing a protective coating on a metal-based substrate is disclosed. The method involves the application of an aluminum-rich mixture to the substrate to form a discontinuous layer of aluminum-rich particles, followed by the application of a second coating over the discontinuous layer of aluminum-rich particles. Aluminum diffuses from the aluminum-rich layer into the substrate, and into any bond coat layer which is subsequently applied. Related articles are also described.
    Type: Grant
    Filed: January 4, 2002
    Date of Patent: May 13, 2003
    Assignee: General Electric Company
    Inventors: Anthony Mark Thompson, Dennis Michael Gray, Melvin Robert Jackson
  • Patent number: 6558813
    Abstract: A protected article includes a substrate, such as a nickel-base superalloy, a protective coating comprising aluminum overlying a surface of the substrate, and an iridium-containing oxygen barrier layer overlying the protective coating. A ceramic thermal barrier coating may overlie the protective coating and the oxygen barrier layer.
    Type: Grant
    Filed: July 27, 2001
    Date of Patent: May 6, 2003
    Assignee: General Electric Co.
    Inventor: Ramgopal Darolia
  • Patent number: 6558814
    Abstract: A coating system having a low thermal conductivity, and a method by which the low thermal conductivity of the coating system is maintained through the development of cracks within a thermal-insulating layer of the coating system. The thermal-insulating layer is a mixture of two or more materials with different coefficients of thermal expansion (CTE). The materials of the thermal-insulating layer are selected and combined so that a low thermal conductivity is maintained for the coating system as the result of cracks developing and propagating from interfaces between the materials when the coating system is subjected to heating and cooling cycles.
    Type: Grant
    Filed: August 3, 2001
    Date of Patent: May 6, 2003
    Assignee: General Electric Company
    Inventors: Irene Spitsberg, Hongyu Wang
  • Patent number: 6558816
    Abstract: An article is coated with a multi-layer decorative and protective coating having the appearance of stainless steel. The coating comprises a polymeric layer on the surface of said article and vapor deposited on the polymeric layer a stack layer containing layers of refractory metal or metal alloy alternating with layers containing the reaction products of refractory metal or refractory metal alloy, nitrogen and oxygen wherein the total nitrogen and oxygen content of these reaction products is from about 4 to about 32 atomic percent, with the nitrogen content being at least about 3 atomic percent.
    Type: Grant
    Filed: April 5, 2001
    Date of Patent: May 6, 2003
    Assignee: Vapor Technologies, Inc.
    Inventor: Guocun Chen
  • Patent number: 6555249
    Abstract: The coated steel sheet includes a zinc phosphate coating containing Mg on a surface of a galvanized steel sheet, and an orthophosphoric acid ester-containing coating on a surface of the zinc phosphate coating. The coated steel sheet has no coating fall-off even during a chemical conversion treatment step of an automobile producing line and has excellent perforative corrosion resistance either with no-painting or after electrodeposition painting, chemical conversion treatability and press formability.
    Type: Grant
    Filed: May 17, 2001
    Date of Patent: April 29, 2003
    Assignee: Kawasaki Steel Corporation
    Inventors: Kyoko Hamahara, Hisatada Nakakoji, Kazuo Mochizuki
  • Publication number: 20030077477
    Abstract: An article protected by a thermal barrier coating system includes a substrate having a substrate surface, and a thermal barrier coating system overlying the substrate. The thermal barrier coating system has a thermal barrier coating formed of a thermal barrier coating material arranged as a plurality of columnar grains extending generally perpendicular to the substrate surface and having grain surfaces. A sintering inhibitor is within the columnar grains, either uniformly distributed or concentrated at the grain surfaces. The sintering inhibitor is lanthanum oxide, lanthanum chromate, chromium oxide, and/or yttrium chromate, mixtures thereof, mixtures thereof with aluminum oxide, modifications thereof wherein cobalt or manganese is substituted for chromium, precursors thereof, and reaction products thereof.
    Type: Application
    Filed: October 22, 2001
    Publication date: April 24, 2003
    Inventors: Robert William Bruce, Nicholas Hamilton Burlingame
  • Patent number: 6551722
    Abstract: An article is coated with a multi-layer coating having a stainless steel color. The coating comprises an electroplated layer or layers on the article surface, a refractory metal or refractory metal alloy strike layer on the electroplated layer or layers, a color layer containing a refractory metal oxide or refractory metal alloy oxide having a substoichiometric oxygen content on the strike layer, and a refractory metal oxide or refractory metal alloy oxide having a substantially stoichiometric oxygen content layer on said color layer.
    Type: Grant
    Filed: April 11, 2001
    Date of Patent: April 22, 2003
    Assignee: Masco Corporation of Indiana
    Inventors: Patrick B. Jonte, James S. Lipe, Guocun Chen
  • Patent number: 6548190
    Abstract: A multilayer thermal barrier coating (TBC) having a low thermal conductivity that is maintained or even decreases as a result of a post-deposition high temperature exposure. The TBC comprises an inner layer and an insulating layer overlying the inner layer. The inner layer is preferably yttria-stabilized zirconia (YSZ), while the insulating layer contains barium strontium aluminosilicate (BSAS). After deposition, the TBC is heated to a temperature and for a duration sufficient to cause a decrease in the thermal conductivity of the BSAS-containing layer and, consequently, the entire TBC.
    Type: Grant
    Filed: June 15, 2001
    Date of Patent: April 15, 2003
    Assignee: General Electric Company
    Inventors: Irene Spitsberg, Bangalore Aswatha Nagaraj
  • Patent number: 6548193
    Abstract: An article is coated with a multi-layer decorative and protective coating having the appearance of stainless steel. The coating comprises one or more electroplated layers on the surface of said article and vapor deposited on the electroplated layers a color layer comprised of the reaction products of refractory metal or refractory metal alloy, nitrogen and oxygen wherein the total nitrogen and oxygen content is from about 4 to about 32 atomic percent with the nitrogen content being at least about 3 atomic percent.
    Type: Grant
    Filed: April 5, 2001
    Date of Patent: April 15, 2003
    Assignee: Vapor Technologies, Inc.
    Inventor: Guocun Chen
  • Patent number: 6548192
    Abstract: An article is coated with a multi-layer decorative and protective coating having the appearance of stainless steel. The coating comprises one or more electroplated layers on the surface of said article and vapor deposited on the electroplated layers a stack layer containing layers of refractory metal or metal alloy alternating with layers containing the reaction products of refractory metal or refractory metal alloy, nitrogen and oxygen wherein the total nitrogen and oxygen content of these reaction products is from about 4 to about 32 atomic percent with the nitrogen content being at least about 3 atomic percent.
    Type: Grant
    Filed: April 5, 2001
    Date of Patent: April 15, 2003
    Assignee: Vapor Technologies, Inc.
    Inventor: Guocun Chen
  • Patent number: 6544666
    Abstract: A new processed steel sheet comprising of a steel base coated with a Zn or its alloy plating layer and a converted layer, which contains both of at least an insoluble or scarcely-soluble metal compound and at least a soluble metal compound. The insoluble or scarcely-soluble compound may be one or more of valve metal oxides or hydroxides, and the soluble compound may be one or more of valve metal fluorides. The converted layer may be also composed of one or more of complex compounds of Mn and Ti. The insoluble or scarcely-soluble compound acts as a barrier for insulation of a steel base from an atmosphere, while the soluble compound exhibits a self-repairing faculty to repair defective parts of the converted layer. Due to the converted layer, the processed steel sheet is remarkably improved in corrosion resistance, without the presence of chromium compounds which would put harmful influences on the environment.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: April 8, 2003
    Assignee: Nisshin Steel Co., Ltd.
    Inventors: Kouichiro Ueda, Shigeyasu Morikawa, Tadashi Nakano, Yasumi Ariyoshi, Keiji Izumi, Masanori Matsuno, Hirofumi Taketsu
  • Patent number: 6544659
    Abstract: The object of the present invention is to provide a coated steel having an ability to form a high corrosion-resistant rust layer in an early stage even in a severely corrosive environment, for example one with a high amount of atmospheric salinity, by applying a surface treatment which is economical and easily applied onto surfaces of a weather resistant steel and normal steel or surfaces of rust layers over these steels. A surface of a steel or a surface of a rust layer over a steel is coated with an organic resin paint comprising, by weight, 0.2 to 60% of the total with a composition of (i) 0.1-30% calcium oxide, (ii) a metal sulfate whose solubility is 1 g or more in 100 g of water at 5 degrees C and (iii) at least one or more kind(s) of phosphoric acid, the dried coating film having a thickness between 1 &mgr;m and 200 &mgr;m.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: April 8, 2003
    Inventor: Masato Yamashita
  • Patent number: 6537686
    Abstract: A magnetic recording medium is provided with a dual layer protective overcoat system comprising a SiN corrosion barrier layer, as at a thickness of about 25Å to about 50 Å, and a protective carbon-containing overcoat layer thereon, as at a thickness of about 25 Å to about 50 Å,. The SiN layer effectively prevents or significantly reduces Co and Ni diffusion to the medium surface. Embodiments include magnetic recording media comprising a SiN corrosion barrier layer over a magnetic layer and a protective layer of amorphous hydrogenated carbon, amorphous nitrogenated carbon, amorphous hydrogen-nitrogenated carbon, ion-beam deposited carbon or cathodic-arc-deposited carbon on the SiN corrosion barrier layer, with solid and mobile lube layers are sequentially deposited on the protective carbon layer.
    Type: Grant
    Filed: March 27, 2000
    Date of Patent: March 25, 2003
    Assignee: Seagate Technology LLC
    Inventor: Ga-Lane Chen
  • Publication number: 20030054188
    Abstract: A composite material has SiC produced by preliminarily sintering a porous body having a coefficient of thermal expansion lower than the coefficient of thermal expansion of copper to construct a network therein, the SiC being impregnated with a copper alloy. The copper alloy comprises copper and one or more additive elements which are prepared to impart a coefficient of thermal conductivity of 160 W/mK or higher to the composite material. The additive elements comprise up to 5% of at least one element selected from Be, Al, Si, Mg, Ti, Ni, Bi, Te, Zn, Pb, Sn, and mish metal, and also contains unavoidable impurities and gas components.
    Type: Application
    Filed: September 18, 2002
    Publication date: March 20, 2003
    Applicant: NGK Insulators, Ltd.
    Inventors: Shuhei Ishikawa, Tsutomu Mitsui, Ken Suzuki, Nobuaki Nakayama, Hiroyuki Takeuchi, Seiji Yasui
  • Publication number: 20030054194
    Abstract: An environmentally resistant coating comprising silicon, titanium, chromium, and a balance of niobium and molybdenum for turbine components formed from molybdenum silicide-based composites. The turbine component may further include a thermal barrier coating disposed upon an outer surface of the environmentally resistant coating comprising zirconia, stabilized zirconia, zircon, mullite, and combinations thereof. The molybdenum silicide-based composite turbine component coated with the environmentally resistant coating and thermal barrier coating is resistant to oxidation at temperatures in the range from about 2000° F. to about 2600° F. and to pesting at temperatures in the range from about 1000° F. to about 1800° F.
    Type: Application
    Filed: September 24, 2002
    Publication date: March 20, 2003
    Inventors: Ji-Cheng Zhao, Bernard Patrick Bewlay, Melvin Robert Jackson
  • Patent number: 6534196
    Abstract: The present invention relates to articles, having an extended useful life, which are used in contact with high temperature molten aluminum or molten zinc baths. One aspect of the invention encompasses articles, such as bearings, bushings, couplings or rollers, used in contact with molten aluminum or molten zinc which is coated with a high density coating consisting of a metal selected from Groups Vb, VIb, or VIIb metals (preferably molybdenum or tungsten), in pure or alloyed form. These coatings generally have a thickness of from about 0.06 to about 0.30 inch. Another aspect of the present invention encompasses a roll for guiding steel strip through a high temperature aluminizing bath, which utilizes a multi-layer structure, the first primer layer being a Group Vb, VIb or VIIb metal, preferably tungsten or molybdenum (in pure or alloyed form), the second layer comprising MCrAlY in which M is either nickel or cobalt, and the third layer comprising a refractory metal oxide of Al, Zr, Si or Cr.
    Type: Grant
    Filed: February 26, 2001
    Date of Patent: March 18, 2003
    Assignee: Cincinnati Thermal Spray
    Inventor: Robert K. Betts