Oxide-containing Component Patents (Class 428/632)
  • Publication number: 20020081449
    Abstract: An article is coated with a multi-layer coating having the appearance of nickel. The coating comprises a polymeric basecoat layer on the surface of said article, vapor deposited on the polymeric layer, a stack layer comprised of alternating layers of refractory metal compound or refractory metal alloy compound alternating with refractory metal or refractory metal alloy, and vapor deposited on said stack layer a refractory metal or refractory metal alloy nitride color layer where the nitrogen content of said nitride is from about 6 to about 45 atomic percent.
    Type: Application
    Filed: December 21, 2000
    Publication date: June 27, 2002
    Inventor: Guocun Chen
  • Publication number: 20020081436
    Abstract: An article is coated with a multi-layer color and protective coating. The coating comprises a polymeric basecoat layer on the surface of said article and vapor deposited on the polymeric layer a refractory metal compound or refractory metal alloy compound color and protective layer.
    Type: Application
    Filed: December 21, 2000
    Publication date: June 27, 2002
    Inventors: Dimitris Katsamberis, John G. Finch, Joseph A. Elmer, Patrick A. Sullivan
  • Publication number: 20020081450
    Abstract: An article is coated with a multi-layer protective and decorative coating. The coating comprises a polymeric basecoat layer on the surface of said article, vapor deposited on the polymeric layer a stack layer comprised of alternating layers of refractory metal compound or refractory metal alloy compound alternating with refractory metal or refractory metal alloy, and vapor deposited on said stack layer a refractory metal compound or refractory metal alloy compound color layer.
    Type: Application
    Filed: December 21, 2000
    Publication date: June 27, 2002
    Inventors: Dimitris Katsamberis, John G. Finch, Joseph A. Elmer, Patrick A. Sullivan
  • Patent number: 6410153
    Abstract: A nickel based single crystal superalloy comprising 6-11 wt % cobalt, 4.7-5.7 wt % chromium, 2.4-3.0 wt % molybdenum, 3.0-3.8 wt % tungsten, 3.0-3.8 wt % rhenium, 5.5-7.0 wt % aluminium, 5.0-6.0 wt % tantalum, 0.5-1.0 wt % niobium, 0-0.2 wt % hafnium, 0-150 ppm carbon, 0-100 ppm yttrium, 0-100 ppm lanthanum, 0-5 ppm sulphur and the balance nickel plus incidental impurities. The nickel based single crystal superalloy is suitable for use as a gas turbine engine turbine blade or turbine vane. It is of particular use on cooled turbine blades and turbine vanes which have ceramic thermal barrier coatings, because the superalloy is compatible with the ceramic thermal barrier coating to minimize spalling. The superalloy has lower density than other second generation single crystal superalloys but similar creep strength and oxidation resistance.
    Type: Grant
    Filed: February 14, 2000
    Date of Patent: June 25, 2002
    Assignee: Rolls-Royce plc
    Inventors: Robert W Broomfield, Colin N Jones
  • Patent number: 6399182
    Abstract: A substrate for a microelectronic package comprising a substrate that has grooves on a surface for bonding. A method for preparing a substrate for bonding comprising forming a grooved surface in the substrate for accepting a die for bonding, wherein the grooves are of sufficient size to provide a substantially uniform die bond, but no so large as to nullify the thermal path to the underlying substrate.
    Type: Grant
    Filed: April 12, 2000
    Date of Patent: June 4, 2002
    Assignee: CMC Wireless Components, Inc.
    Inventors: Erich K. Rubel, Jonathan H. Harris, Gabriel M. Carrasco
  • Patent number: 6391475
    Abstract: A nickel-base superalloy substrate has an overlying protective coating including a modified aluminum-containing protective layer. The modified aluminum-containing protective layer is formed of nickel, aluminum, calcium in an amount of from about 50 to about 300 parts per million by weight, and, optionally, elements interdiffused into the modified aluminum-containing protective layer from the substrate. Magnesium or barium may be used instead of or in addition to the calcium. A ceramic layer may overlie the modified aluminum-containing protective layer.
    Type: Grant
    Filed: March 10, 2000
    Date of Patent: May 21, 2002
    Assignee: General Electric Company
    Inventors: Irene T. Spitsberg, David J. Wortman, Jon C. Schaeffer, Joseph D. Rigney
  • Publication number: 20020058152
    Abstract: A multi-layered structure material composed of a substrate of heat resistance material and a plurality of metal layers formed on at least one surface of the substrate through a pin-holeless intermediate metal layer of melting ppoint lower than that of the metal layers.
    Type: Application
    Filed: November 16, 2001
    Publication date: May 16, 2002
    Applicant: Araco Kabushiki Kaisha
    Inventor: Hiroyuki Morita
  • Patent number: 6387527
    Abstract: A method for applying at least one bond coating on a surface of a metal-based substrate is described. A foil of the bond coating material is first attached to the substrate surface and then fused thereto, e.g., by brazing. The foil is often initially prepared by thermally spraying the bond coating material onto a removable support sheet, and then detaching the support sheet. Optionally, the foil may also include a thermal barrier coating applied over the bond coating. The substrate can be a turbine engine component.
    Type: Grant
    Filed: October 4, 1999
    Date of Patent: May 14, 2002
    Assignee: General Electric Company
    Inventors: Wayne Charles Hasz, Marcus Preston Borom
  • Patent number: 6387538
    Abstract: A surface-treated sheet for fuel tanks includes a cold-rolled steel sheet with a low carbon content, a zinc or zinc-based alloy plating layer formed on the steel sheet, and a chromate film coated on the zinc or zinc-based alloy plating layer. The chromate film is formed from a chromate solution. The chromate solution includes a subject solution and an aqueous silane solution in an amount ranging from 5 to 50% by weight of the subject solution. The subject solution contains a chrome aqueous solution where the concentration of chrome is in the range of 5-50 g/l and the ratio of trivalent chrome to the chrome content is in the range of 0.4 to 0.8.
    Type: Grant
    Filed: May 8, 2000
    Date of Patent: May 14, 2002
    Assignee: Pohang Iron & Steel Co., Ltd.
    Inventors: Jae-Ryung Lee, Sang-Geol No, Soo-Hyoun Cho, Youn-Kyun Song, Sam-Kyu Chang
  • Patent number: 6387541
    Abstract: A titanium aluminide turbine blade (10) includes an aerofoil (12), a platform (14) and a root (16). A protective coating (2) is applied to the aerofoil (12) and the platform (14) of the turbine blade (10). The protective coating (2) comprises austenitic stainless steel. A chromium oxide layer (22) is formed on the protective coating (2). The protective coating (20) and chromium oxide layer (22) provides oxidation and sulphidation resistance for the titanium aluminide article (10).
    Type: Grant
    Filed: April 24, 2000
    Date of Patent: May 14, 2002
    Assignee: Rolls-Royce plc
    Inventors: Simon Gray, Clive B. Ponton, Michael H. Jacobs, Hugh E. Evans
  • Patent number: 6383359
    Abstract: Provided are a substrate with a zinc oxide layer, in which at least a zinc oxide layer is provided on a support substrate, wherein the zinc oxide layer comprises a zinc oxide layer having the c axis perpendicular to the support substrate and a zinc oxide layer having the c axis slantindicular to the support substrate in the order from the side of the support substrate; and a photovoltaic device in which a semiconductor layer is formed on the substrate with the zinc oxide layer. Thus provided is the inexpensive photovoltaic device with excellent reflective performance and optical confinement effect and with high photoelectric conversion efficiency.
    Type: Grant
    Filed: April 3, 2001
    Date of Patent: May 7, 2002
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kozo Arao, Hideo Tamura, Noboru Toyama, Yuichi Sonoda, Yusuke Miyamoto
  • Patent number: 6383656
    Abstract: A preform for metal matrix composite material comprising: inorganic particles, small-diameter inorganic fibers, and large-diameter inorganic fibers. An average particle diameter of the inorganic particles is 1 to 50 &mgr;m. An average fiber diameter of the small-diameter inorganic fibers is 2 to 5 &mgr;m, and an average fiber length of the small-diameter inorganic fibers is 10 to 200 &mgr;m. An average fiber diameter of the large-diameter inorganic fibers is 4 to 20 &mgr;m, and an average fiber length of the large-diameter inorganic fibers is 10 to 200 &mgr;m. The small-diameter inorganic fibers catch and disperse the inorganic particles in a process of forming a formed body, and the large-diameter inorganic fibers create voids in cooperation with the small-diameter inorganic fibers in the process of forming the formed body.
    Type: Grant
    Filed: June 9, 2000
    Date of Patent: May 7, 2002
    Assignees: Nichias Corporation, Mitsubishi Jidosha Kogyo Kabushiki Kaisha
    Inventors: Koichi Kimura, Mitsushi Wadasako, Koji Iwata, Kazumi Kaneda, Tsuyoshi Kobayashi, Takahiro Iida, Toshiro Shimamoto, Susumu Kawamoto, Syunsuke Yabuuchi
  • Patent number: 6376091
    Abstract: An article includes a substrate and a composite material bonded to the substrate. The composite material includes a matrix consisting of a metallic alloy having a solidus temperature of at least about 700° C. and a plurality of unstabilized zirconium oxide particles distributed throughout the metallic alloy. The article is prepared by combining a precursor of the metallic alloy and the mass of unstabilized zirconium oxide powder to form a mixture, and applying the mixture as a heterogeneous composite material to a substrate to form the article. The step of applying occurs at an application temperature of greater than the solidus temperature of the metallic alloy.
    Type: Grant
    Filed: August 29, 2000
    Date of Patent: April 23, 2002
    Assignee: Amorphous Technologies International
    Inventor: Gerald A. Croopnick
  • Patent number: 6372357
    Abstract: An external component of an endoscope includes an aluminum alloy base member whose surface is subjected to anodic oxidation, and thereafter, is subjected to an electrolytic deposition thereon.
    Type: Grant
    Filed: September 21, 2000
    Date of Patent: April 16, 2002
    Assignee: Asahi Kogaku Kogyo Kabushiki Kaisha
    Inventors: Shinji Hayakawa, Rensuke Adachi, Kunitoshi Ikeda, Masanao Abe
  • Patent number: 6372364
    Abstract: A thin film product having a nanostructured surface, a laminate product including the thin film and a temporary substrate opposite the nanostructured surface, a laminate product including the thin film and a final substrate attached to the nanostructured surface and a method of producing the thin film products. The thin film is particularly useful in the electronics industry for the production of integrated circuits, printed circuit boards and EMF shielding. The nanostructured surface includes surface features that are mostly smaller than one micron, while the dense portion of the thin film is between 10-1000 nm. The thin film is produced by coating a temporary substrate (such as aluminum foil) with a coating material (such as copper) using any process. One such method is concentrated heat deposition or a combustion, chemical vapor deposition process.
    Type: Grant
    Filed: August 18, 1999
    Date of Patent: April 16, 2002
    Assignee: MicroCoating Technologies, Inc.
    Inventors: Andrew T. Hunt, Henry A. Luten, III
  • Publication number: 20020041974
    Abstract: An article is coated with a multi-layer coating comprising a nickel layer, a refractory metal layer, and a refractory metal compound layer. The coating is decorative and also provides abrasion protection and corrosion protection.
    Type: Application
    Filed: November 5, 2001
    Publication date: April 11, 2002
    Inventors: Richard P. Welty, Patrick Jonte, Carl W. Trendelman
  • Publication number: 20020038813
    Abstract: Provided is a composite member comprising a ceramic base and a metallic member which are bonded to each other. An active metal foil is disposed on the surface of the ceramic base and a solder material comprising Au or a solder material comprising an Au-Ag alloy is disposed on the active metal foil, the active metal foil and the solder material are heated to form a bonding layer, the metallic member is disposed on the surface of the bonding layer, and these are pressed and heated to bond the bonding layer and the metallic member through solid phase bonding. Since in this composite member the bonding layer and the metallic member are bonded by solid phase bonding, the composite members can be effectively inhibited from breakage caused by residual stress at the time of bonding and, besides, is excellent in thermal cycle characteristics and thermal shock characteristics.
    Type: Application
    Filed: July 19, 2001
    Publication date: April 4, 2002
    Applicant: NGK Insulators, Ltd.
    Inventor: Masayuki Shinkai
  • Patent number: 6365284
    Abstract: Disclosed are compositions of matter which include a thin metallic and/or metallic oxide, nitride, carbide, silicide, boride, or sulfide coating disposed directly upon a polymeric substrate, in the absence of a carrier layer for the thin coating. Also disclosed are methods to make the composition and an apparatus to practice the method.
    Type: Grant
    Filed: June 4, 1999
    Date of Patent: April 2, 2002
    Assignee: Crown Operations International, Ltd.
    Inventor: Curtis J. Liposcak
  • Patent number: 6365281
    Abstract: A turbine component, such as a turbine blade having a metal substrate (22) is coated with a metal MCrAlY alloy layer (24) and then a thermal barrier layer (20) selected from LaAlO3, NdAlO3, La2Hf2O7, Dy3Al5O12, HO3Al3O12, ErAlO3, GdAlO3, Yb2Ti2O7, LaYbO3, Gd2Hf2O7 or Y3Al5O12.
    Type: Grant
    Filed: September 24, 1999
    Date of Patent: April 2, 2002
    Assignee: Siemens Westinghouse Power Corporation
    Inventors: Ramesh Subramanian, Stephen M. Sabol, John G. Goedjen, Kelly M. Sloan, Steven J. Vance
  • Patent number: 6355356
    Abstract: A metal article which includes a protective coating system is described. The coating system includes a braze alloy layer and a plasma-sprayed bond coat. The bond coat may lie on top of the braze alloy layer, or the braze alloy layer may lie on top of the bond coat. In the case of a porous bond coat, partial or complete densification of the bond coat is sometimes carried out. Densification is achieved by heat treating the article, so that the braze alloy material migrates into the pores of the bond coat to a selected thickness. Related processes are also described.
    Type: Grant
    Filed: November 23, 1999
    Date of Patent: March 12, 2002
    Assignee: General Electric Company
    Inventor: Wayne Charles Hasz
  • Publication number: 20020028344
    Abstract: A product which is to be exposed to a hot gas and has a thermal barrier layer, such as a component for hot gas ducts (turbine blades, heat shields, etc.), has a metallic base body made of a superalloy based on nickel, cobalt or iron. An adhesion promoter layer also serves to form aluminum oxide/chromium oxide. A thermal barrier layer is formed of a ternary or pseudoternary oxide having a pyrochlore or perovskite structure. The oxide is stable with respect to phase between room temperature and melting temperature even in the absence of a phase stabilizer. A process is provided for producing components of that type by atmospheric plasma spraying or electron beam PVD methods.
    Type: Application
    Filed: September 13, 2001
    Publication date: March 7, 2002
    Inventor: Wolfram Beele
  • Patent number: 6348273
    Abstract: A bonding method for bonding one member having a dented portion and a second different member having an engaging protruding portion with an adhesive composition having a controlled coefficient of expansion and the resultant composite product. Three alternative techniques are used to first apply a hard solder in contact with a layer of fine particles between the two members. Then a final heating is applied under pressure to melt the hard solder. The resulting bonding layer bonds the two different fitting members.
    Type: Grant
    Filed: June 26, 2000
    Date of Patent: February 19, 2002
    Assignee: NGK Insulators, Ltd.
    Inventors: Takahiro Ishikawa, Masayuki Shinkai, Masahiro Kida
  • Patent number: 6346335
    Abstract: A composite material includes a structural carrier layer and a relatively thin metal foil layer separated by a release layer. The release layer, that may be an admixture of a metal such as nickel or chromium and a non-metal such as chromium oxide, nickel oxide, chromium phosphate or nickel phosphate, provides a peel strength for the metal foil layer from the carrier strip that is typically on the order of 0.1 pound per inch to 2 pounds per inch. This provides sufficient adhesion to prevent premature separation of the metal foil layer from the carrier layer, but easy removal of the carrier layer when desired. Typically, the metal foil layer is subsequently bonded to a dielectric and the carrier layer then removed. The metal foil layer is then imaged into circuit features in the manufacture of printed circuit boards and flexible circuits.
    Type: Grant
    Filed: March 10, 2000
    Date of Patent: February 12, 2002
    Assignee: Olin Corporation
    Inventors: Szuchain Chen, Julius Fister, Andrew Vacco, Nina Yukov, A. James Brock
  • Publication number: 20020009621
    Abstract: A method and resultant product are disclosed wherein a metal film is deposited by sputtering a metal cathode target in an essentially nonreactive atmosphere comprising inert gas and a reactive gas, wherein the concentration of reactive gas is sufficiently low that the sputtering is accomplished in the metallic mode, i.e. the film is deposited as metal. The metal film of the present invention is harder than a metal film sputtered in an atmosphere consisting of only inert gas. The method and resultant product may further comprise thermal oxidation of the metal film, which proceeds more efficiently than oxidation of a metal film sputtered in an atmosphere consisting of only inert gas.
    Type: Application
    Filed: July 28, 1995
    Publication date: January 24, 2002
    Inventors: JAMES J. FINELY, MEHRAN ARBAB
  • Publication number: 20020006524
    Abstract: A method of improving the oxidation and corrosion resistance of a superalloy article comprises providing a superalloy substrate having a sulphur content which is less than 0.8 ppm by weight, and depositing on the substrate a protective antioxidation coating having a sulphur content also less than 0.8 ppm by weight. A heat barrier layer may also be provided by depositing on the protective anti-oxidation coating a ceramic coating of columnar structure.
    Type: Application
    Filed: December 6, 2000
    Publication date: January 17, 2002
    Applicant: SOCIETE NATIONALE D'ETUDE ET DE CONSTRUCTION DE MOTEURS D'AVIATION "SNECMA"
    Inventors: Yann Jaslier, Alexandre Alperine Serge, Louis Leger Jacques
  • Publication number: 20020004143
    Abstract: An article includes a substrate and an adhesion layer overlying the substrate. The adhesion layer includes a first phase including particles, and a second phase including braze alloy that bonds the particles to the substrate. The article further includes a ceramic layer overlying the adhesion layer. In one embodiment, the ceramic layer is a thermal barrier coating (TBC), formed of stabilized zirconia (ZrO2).
    Type: Application
    Filed: February 12, 2001
    Publication date: January 10, 2002
    Inventors: Wayne Charles Hasz, Jeffrey Allen Conner
  • Patent number: 6333118
    Abstract: A low thermal conductivity heat barrier composition, particularly for a superalloy article, is disclosed comprising a zirconia base and a dysprosium oxide having the dual function of stabilizing the zirconia and reducing the thermal conductivity thereof. Optionally, the composition also comprises a metal oxide containing a quadrivalent metallic ion selected from the group consisting of hafnium dioxide, cerium dioxide, uranium dioxide, and mixtures thereof.
    Type: Grant
    Filed: September 11, 2000
    Date of Patent: December 25, 2001
    Assignee: SNECMA Moteurs
    Inventors: Serge Alperine, Véronique Arnault, Odile Lavigne, Rémy Mevrel
  • Patent number: 6333121
    Abstract: A coated article is prepared by furnishing an nickel-base article substrate having a free sulfur content of more than 0 but less than about 1 part per million by weight. A protective layer is formed at a surface of the article substrate. The protective layer includes a platinum aluminide diffusion coating. The protective layer may be substantially yttrium-free, or have a controlled amount of yttrium. A ceramic layer may overlie the protective layer.
    Type: Grant
    Filed: June 9, 1999
    Date of Patent: December 25, 2001
    Assignee: General Electric Company
    Inventors: William S. Walston, Jon C. Schaeffer, Wendy H. Murphy
  • Patent number: 6333090
    Abstract: The present invention relates to a process for vapor-depositing zirconium dioxide on ceramic or metallic substrates, and the heat-insulating layers obtainable by such process.
    Type: Grant
    Filed: March 7, 2000
    Date of Patent: December 25, 2001
    Assignee: DLR Deutsches Zentrum fur Luft-Und Raumfahrt E.V.
    Inventors: Uwe Schulz, Claus-Jürgen Kröder, Jörg Brien, Hartmut Schurmann, Klaus Fritscher
  • Patent number: 6331199
    Abstract: A biaxially textured alloy article comprises Ni powder and at least one powder selected from the group consisting of Cr, W, V, Mo, Cu, Al, Ce, YSZ, Y, Rare Earths, (RE), MgO, CeO2, and Y2O3; compacted and heat treated, then rapidly recrystallized to produce a biaxial texture on the article. In some embodiments the alloy article further comprises electromagnetic or electro-optical devices and possesses superconducting properties.
    Type: Grant
    Filed: May 15, 2000
    Date of Patent: December 18, 2001
    Assignee: UT-Battelle, LLC
    Inventors: Amit Goyal, Robert K. Williams
  • Patent number: 6330740
    Abstract: A part is stamped from a steel sheet having a textured surface. The stamped part is coated with a zinc layer. The zinc layer is coated with a chromate conversion layer, either yellow-colored or black-colored. Preferably, the textured surface is produced by embossing the steel sheet. Alternatively, the textured surface is produced by etching, shot peening, or sand blasting the sheet steel. An exterior surface comprised of at least some of the textured surface of the part, as coated with such layers, has a finish simulating the similarly-colored, textured finish that the part would have if the part were stamped from a steel sheet so that the part would have a smooth, exterior surface and if the smooth, exterior surface were to be electrostatically coated with a black-colored, epoxy powder, which would be heat-cured.
    Type: Grant
    Filed: December 17, 1999
    Date of Patent: December 18, 2001
    Assignee: GAM Investments, L.L.C.
    Inventor: Alan C. Krempels
  • Publication number: 20010050100
    Abstract: A Cu plated ceramic substrate is used in a semiconductor. On a ceramic substrate layer, a thin-film Cr layer is put, and a thin-firm Au layer is put on the Cr layer. The Au layer is plated with Cu. By providing the Au and Cr layers between the ceramic plate and Cu layer, adhesibility is increased. A Pertier element which includes the Cu plated ceramic layer is employed in a semiconductor to absorb and generate heat efficiently.
    Type: Application
    Filed: April 11, 2001
    Publication date: December 13, 2001
    Inventors: Iwao Numakura, Noriaki Tsukada
  • Patent number: 6329074
    Abstract: This invention provides a copper foil for a printed wiring board, which comprises a copper foil, an alloy layer (A) comprising copper, zinc, tin and nickel which is formed on a surface of the copper foil, said surface to be brought into contact with a substrate for a printed wiring board, and a chromate layer which is formed on a surface of the alloy layer (A,. The copper foil for a printed wiring board has the following features: even if a printed wiring board is produced using a long-term stored copper foil, the interface between the copper foil and the substrate is only slightly corroded with chemicals; even if the copper foil contacts a varnish containing an organic acid, e.g., a varnish for an acrylic resin, in the formation of a copper-clad laminate, the bond strength is sufficient. Even if a printed circuit board made by using the copper foil is placed in a high temperature environment, e.g.
    Type: Grant
    Filed: November 29, 1999
    Date of Patent: December 11, 2001
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Kazuhisa Fujiwara, Hiroshi Tan, Mitsuo Fujii, Masanobu Tsushima
  • Publication number: 20010049027
    Abstract: A copper foil for a TAB tape carrier, comprising (a) a copper foil having a shiny surface and a mat surface; and (b) an alloy layer comprising nickel, cobalt and molybdenum, which is formed at least on the shiny surface; a TAB carrier tape, comprising a flexible insulating film and the copper foil for a TAB tape carrier applied onto the flexible insulating film with a surface on the side of the mat surface facing the flexible insulating film; and a TAB tape carrier, which is produced from the TAB carrier tape by etching the copper foil for a TAB tape carrier to form a copper lead pattern.
    Type: Application
    Filed: April 10, 2001
    Publication date: December 6, 2001
    Inventors: Ayumi Endo, Kojiro Noda
  • Patent number: 6322904
    Abstract: A copper foil having improved resistance to abrasion damage during the manufacture of printed circuit boards has a uniform deposit of benzotriazole (BTA) or BTA derivative, optionally a mixture thereof, of at least about 5 mg/m2.
    Type: Grant
    Filed: March 20, 1997
    Date of Patent: November 27, 2001
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Makoto Dobashi, Hiroaki Kurihara, Toshiko Yokota, Hiroshi Hata, Naotomi Takahashi, Tatsuya Sudo
  • Patent number: 6319615
    Abstract: The use of a thermal spray method relates to the production of a layer (20) for a heat insulating coat of a material (10) in powder form. This material consists at least to 80 mol % of zirconium silicate ZrSiO4, in particular of the mineral zircon, and the majority of its powder particles (1) have diameters in the region between 10 and 100 &mgr;m. During the spraying on the particles are at least partially melted through in a gas flow (42) under reducing conditions and at a temperature greater than 20000° C. Method parameters, among others the dwell time of the particles in a heat imparting medium, in particular a plasma (41) or a flame, the temperature of the heat imparting medium and the momentum transferred to the particles, are chosen in such a manner that the layer (20) which is formed of the particles has a structure with lamellar elements (21).
    Type: Grant
    Filed: August 26, 1999
    Date of Patent: November 20, 2001
    Assignee: Sulzer Innotec AG
    Inventor: Franz Jansen
  • Patent number: 6319616
    Abstract: A method of forming a conductive line structure is provided. An adhesion layer is formed on a substrate surface. A seed layer is formed on the adhesion layer. A conductor is formed on the seed layer to form a partially complete structure. The partially complete structure is exposed to an electrolyte and undergoes an anodization process. At least a portion of the seed layer and a portion of the conductor are transformed to seed layer metal oxide and conductor metal oxide, respectively. At least a portion of the adhesion layer is transformed to an adhesion layer metal oxide and a further portion of the conductor is transformed to the conductor metal oxide.
    Type: Grant
    Filed: October 29, 1999
    Date of Patent: November 20, 2001
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Sergey Lopatin, Robin Cheung
  • Patent number: 6318738
    Abstract: An ice skate blade is provided which has improved fracture toughness, strength, corrosion resistance, and wear resistance, while at the same time being lighter weight than other materials of manufacture.
    Type: Grant
    Filed: June 28, 1996
    Date of Patent: November 20, 2001
    Assignee: Dynamet Technology
    Inventors: Stanley Abkowitz, Susan M. Abkowitz, Harold L. Heussi, Paul F. Weihrauch
  • Publication number: 20010038923
    Abstract: A coating system and a method for its manufacture are provided. An electrically conductive base coat and a porous overcoat lying over the base coat are arranged on a ceramic substrate. At least one additional deposited layer is arranged on the base coat in such a way that the additional layer is formed in the pores of the porous overcoat adjacent to the base coat. The additional layer is deposited either by currentless or electrolytic deposition. For electrolytic deposition of the additional layer, the ceramic substrate sintered with the base coat and the overcoat is submerged in an electrolytic bath and the base coat is connected as a cathode. The currentless deposition takes place from a solution of the metal to be deposited with the addition of a reducing agent.
    Type: Application
    Filed: July 18, 2001
    Publication date: November 8, 2001
    Inventors: Jens Stefan Schneider, Frank Stanglmeier, Bernd Schumann
  • Publication number: 20010036560
    Abstract: An article is coated with a multi-layer coating comprising a nickel layer, a chrome layer, a refractory metal layer, preferably zirconium layer, a sandwich layer comprised of a plurality of alternating layers of a refractory metal compound and a refractory metal compound layer, preferably zirconium nitride layer, and a refractory metal oxide layer or a layer comprised of the reaction products of refractory metal, oxygen and nitrogen. The coating provides the color of polished brass to the article and also provides abrasion protection, corrosion protection, and improved acid resistance.
    Type: Application
    Filed: February 26, 2001
    Publication date: November 1, 2001
    Inventors: Richard P. Welty, John H. Petersen, Patrick Jonte, Carl W. Trendelman
  • Patent number: 6306524
    Abstract: A coating for use on a superalloy substrate comprising a diffusion barrier as an intermediate layer overlying the substrate and underlying a protective coating having a high aluminum content. The diffusion barrier layer is characterized by having low solubility for aluminum from either the substrate or the protective coating. Further, the diffusion barrier layer has low interdiffusivity for elements from the substrate and the coating, a minimal impact on the mechanical properties of the article which is coated, a minimal thermal expansion mismatch with both the substrate and the high aluminum content protective coating, and can be applied readily using existing coating application techniques. The diffusion barrier is preferably a single phase alloy or intermetallic compound.
    Type: Grant
    Filed: March 24, 1999
    Date of Patent: October 23, 2001
    Assignee: General Electric Company
    Inventors: Irene T. Spitsberg, Ramgopal Darolia, Melvin R. Jackson, Ji-Cheng Zhao, Jon C. Schaeffer
  • Patent number: 6306525
    Abstract: A thin multilayer coating having reflection properties in the infrared and/or in the solar radiation range of the low-emissivity type for windows comprises a lower dielectric antireflection treatment layer, at least one silver-based functional layer, at least one metallic protection layer adjacent to the silver layer and an upper dielectric antireflection treatment layer. The upper dielectric antireflection treatment layer comprises a lower partial layer made of SnO2, ZnO, TiO2, Bi2O3 or Al2O3 and an upper partial layer made of a mixed oxide based on zinc and aluminium, especially one having a spinel structure of the ZnAl2O4 type.
    Type: Grant
    Filed: December 11, 1998
    Date of Patent: October 23, 2001
    Assignee: Saint-Gobain Vitrage
    Inventors: Heinz Schicht, Uwe Schmidt, Wilfried Kaiser, Bodo Hryniw
  • Publication number: 20010030590
    Abstract: An Fe—B—R based permanent magnet has a metal oxide film having a thickness of 0.01 &mgr;m to 1 &mgr;m on its surface with a metal film interposed therebetween. Thus, the film is excellent in adhesion to the surface of the magnet. Even if the permanent magnet is left to stand under high-temperature and high-humidity of a temperature of 80° C. and a relative humidity of 90% for a long period of time, the magnetic characteristic of the magnet cannot be degraded. The magnet has a thermal shock resistance enough to resist even a heat cycle for a long period of time in a temperature range of −40° C. to 85° C., and can exhibit a stable high magnetic characteristic. Therefore, it is possible to produce an Fe—B—R based permanent magnet having a corrosion-resistant film free from hexa-valent chromium.
    Type: Application
    Filed: May 10, 2001
    Publication date: October 18, 2001
    Applicant: Sumitomo Special Metals Co., Ltd.
    Inventors: Takeshi Nishiuchi, Fumiaki Kikui, Kohshi Yoshimura
  • Patent number: 6303236
    Abstract: A method for manufacturing an aluminum-based composite plate is disclosed. The method comprises the step of producing an aluminum-based composite billet. The billet production step includes reducing, by magnesium nitride, an oxide-based ceramic as a porous molded body. The reduced oxide-based ceramic has improved wettability. An aluminum alloy is then caused to infiltrate into porous sections of the reduced oxide-based ceramic to thereby provide the aluminum-based composite billet. The billet is extrusion molded into a flat plate form by using an extrusion press. Plates of desired shapes are punched from the molded flat plate by using a press.
    Type: Grant
    Filed: February 11, 2000
    Date of Patent: October 16, 2001
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Yasuhiro Nakao, Hiroto Shoji, Kunitoshi Sugaya, Takashi Kato, Takaharu Echigo
  • Patent number: 6299988
    Abstract: An article comprises a silicon-containing substrate and an external environmental/thermal barrier coating. The external environmental/thermal barrier coating is permeable to diffusion of an environmental oxidant and the silicon-containing substrate is oxidizable by reaction with oxidant to form at least one gaseous product. The article comprises an intermediate layer/coating between the silicon-containing substrate and the environmental/thermal barrier coating that is oxidizable to a nongaseous product by reaction with the oxidant in preference to reaction of the silicon-containing substrate with the oxidant. A method of forming an article, comprises forming a silicon-based substrate that is oxidizable by reaction with oxidant to at least one gaseous product and applying an intermediate layer/coating onto the substrate, wherein the intermediate layer/coating is oxidizable to a nongaseous product by reaction with the oxidant in preference to reaction of the silicon-containing substrate with the oxidant.
    Type: Grant
    Filed: April 26, 1999
    Date of Patent: October 9, 2001
    Assignee: General Electric Company
    Inventors: Hongyu Wang, Krishan Lal Luthra
  • Patent number: 6291083
    Abstract: A Ni plating layer 3, a Cu plating layer 11, a Zn—Ni alloy plating layer 4 and a chromate layer 5 are formed sequentially in that order on the outer surface of a steel base 2. The Cu plating layer 11 interposed between the Ni plating layer and the Zn—Ni plating layer seals up pinholes in the Ni plating layer and enhances the sacrificial corroding action of the Zn—Ni alloy plating layer.
    Type: Grant
    Filed: January 24, 2000
    Date of Patent: September 18, 2001
    Assignee: Sanoh Kogyo Kabushiki Kaisha
    Inventor: Shizuo Wada
  • Patent number: 6287710
    Abstract: A process for growing a crystalline oxide epitaxially upon the surface of a Group IV semiconductor, as well as a structure constructed by the process, is described. The semiconductor can be germanium or silicon, and the crystalline oxide can generally be represented by the formula (AO)n(A′BO3)m in which “n” and “m” are non-negative integer repeats of planes of the alkaline earth oxides or the alkaline earth-containing perovskite oxides. With atomic level control of interfacial thermodynamics in a multicomponent semiconductor/oxide system, a highly perfect interface between a semiconductor and a crystalline oxide can be obtained.
    Type: Grant
    Filed: August 28, 2000
    Date of Patent: September 11, 2001
    Assignee: UT-Battelle, LLC
    Inventors: Rodney A. McKee, Frederick J. Walker, Matthew F. Chisholm
  • Patent number: 6287704
    Abstract: A chromium(VI)-free, chromium(III)-containing and substantially coherent conversion layer on zinc or zinc alloys presenting, even in the absence of further components such as silicate, cerium, aluminum and borate, a corrosion protection of approx. 100 to 1000 h in the salt spray test according to DIN 50021 SS or ASTM B 117-73 until first attack according to DIN 50961 Chapter 10; being clear, transparent and substantially colorless and presenting multi-colored iridescence; having a layer thickness of approx. 100 nm to 1000 nm; and being hard, adhering well and being resistant to wiping.
    Type: Grant
    Filed: March 29, 1999
    Date of Patent: September 11, 2001
    Assignee: Surtec Produkte und System fur die Oberflachenbehandlung GmbH
    Inventors: Patricia Preikschat, Rolf Jansen, Peter Hulser
  • Patent number: 6284389
    Abstract: Composite materials are composed of a primary metallic base material, such as a titanium metallic material, metallurgically bonded to one or more secondary materials having desirable thermal conductivity properties and having a coefficient of thermal expansion (“CTE”) that generally matches the CTE of the primary metallic material. An exemplary composite material is composed of a titanium primary material metallurgically bonded to a secondary metal matrix composite material having a high thermal conductivity, such as aluminum silicon carbide. Methods for manufacturing such composite materials are disclosed.
    Type: Grant
    Filed: April 30, 1999
    Date of Patent: September 4, 2001
    Assignee: Pacific Aerospace & Electronics, Inc.
    Inventors: Herman L. Jones, Edward A. Taylor
  • Patent number: 6284390
    Abstract: A thermal barrier coating system for a superalloy substrate is disclosed. The superalloy is preferably of the type that is capable of forming an adherent alumina layer. A bond coat is applied to a local area of the substrate, so that a portion of the substrate remains exposed. The localized area is defined to be the area(s) at which a TBC typically fails first, e.g., the leading and trailing edges of an airfoil, or other area. An alumina layer is formed on the remaining portion of the substrate, and also on the bond coat. A ceramic layer is then applied on the alumina layer. Even if the ceramic material is removed, the localized bond coat remains, and reduces the rate at which the underlying substrate oxidizes. A coated article is also disclosed, as is a system that utilizes a conventional superalloy and aluminide coating with the localized bond coat.
    Type: Grant
    Filed: June 12, 1998
    Date of Patent: September 4, 2001
    Assignee: United Technologies Corporation
    Inventors: Sudhangshu Bose, Dinesh K. Gupta, Jeanine D. Marcin, Nicholas E. Ulion