Carbide-, Nitride-, Or Sulfide-containing Layer Patents (Class 428/698)
  • Publication number: 20140212672
    Abstract: A one-dimensional conductive nanomaterial-based conductive film having the conductivity thereof enhanced by a two-dimensional nanomaterial in which the conductive film includes a substrate, a one-dimensional conductive nanomaterial layer formed on the substrate, and a two-dimensional nanomaterial layer formed on the one-dimensional conductive nanomaterial layer, wherein the one-dimensional conductive nanomaterial layer includes a one-dimensional conductive nanomaterial formed of at least one selected from a carbon nanotube, a metal nanowire, and a metal nanorod, and the two-dimensional nanomaterial layer includes a two-dimensional nanomaterial formed of at least one selected from graphene, boron nitride, tungsten oxide (WO3), molybdenum sulfide (MoS2), molybdenum telluride (MoTe2), niobium diselenide (NbSe2), tantalum diselenide (TaSe2), and manganese dioxide (MnO2).
    Type: Application
    Filed: April 2, 2014
    Publication date: July 31, 2014
    Applicant: Korea Electrotechnology Research Institute
    Inventors: Joong-tark Han, Geon-woong Lee, Hee-jin Jeong, Seung-yol Jeong, Jun-suk Kim
  • Patent number: 8791389
    Abstract: An electric arc welding wire having an outer cylindrical surface and an electrically conductive layer on the surface wherein the layer comprises an alloy of copper with the copper content being about 60% to about 90% by weight of said alloy. Furthermore, the layer can be made thin with a thickness of less than about 0.50 microns while using essentially pure copper.
    Type: Grant
    Filed: January 25, 2006
    Date of Patent: July 29, 2014
    Assignee: Lincoln Global, Inc.
    Inventors: Matthew J. James, Teresa A. Melfi
  • Patent number: 8790783
    Abstract: Certain example embodiments relate to a coated article including at least one infrared (IR) reflecting layer of a material such as silver or the like in a low-E coating, and methods of making the same. In certain cases, at least one layer of the coating is of or includes nickel and/or titanium (e.g., NixTiyOz). The provision of a layer including nickel titanium and/or an oxide thereof may permit a layer to be used that has good adhesion to the IR reflecting layer, and reduced absorption of visible light (resulting in a coated article with a higher visible transmission). When a layer including nickel titanium oxide is provided directly over and/or under the IR reflecting layer (e.g., as a barrier layer), this may result in improved chemical and mechanical durability. Thus, visible transmission may be improved if desired, without compromising durability; or, durability may simply be increased.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: July 29, 2014
    Assignee: Guardian Industries Corp.
    Inventors: Richard Blacker, Marcus Frank, Muhammad Imran
  • Publication number: 20140204508
    Abstract: A housing includes a substrate, a transition layer disposed on the substrate, and a color layer disposed on the transition layer. The transition layer is a layer of titanium-nitride and M-nitride, wherein the M is chromium, aluminum, or silicon. The color layer is a titanium-aluminum-nitride layer. The color layer provides the appearance of enamel on the exterior of the housing. The transition layer enhances the hardness of the housing. An electronic device using the housing is also described.
    Type: Application
    Filed: June 11, 2013
    Publication date: July 24, 2014
    Inventor: CHUN-JIE ZHANG
  • Patent number: 8784977
    Abstract: A cubic boron nitride sintered substrate has a coating with lower and upper layers. The upper layer has an average layer thickness of 0.5 to 3.0 ?m and is formed from a compound of a compositional formula M?, where M represents one or more of Ti, V, Zr, Nb, Mo, Al, Si, and ? is one or more of C, N, B and O. The lower layer has an average thickness of 0.5 to 3.0 ?m and has alternated first and second thin layers. The first thin layer is formed from a compound with compositional formula (Ti(1-x)Lx)?, where L is one or more of Al, B and Si, and ? is C or N, or both. The second thin layer is formed with compositional formula (Al(1-y)Jy)?, where J represents one or more of Ti, V, Cr, Zr, Nb and Mo, and ? is C or N, or both.
    Type: Grant
    Filed: June 22, 2009
    Date of Patent: July 22, 2014
    Assignee: Tungaloy Corporation
    Inventor: Hiroyuki Miura
  • Patent number: 8784986
    Abstract: A coated article includes a substrate and a Si—B—C—N ceramic coating deposited on the substrate by magnetron sputtering process. The Si—B—C—N ceramic coating is an amorphous coating, the weight of elemental Si in the coating is between about 30 wt % and about 60 wt % of the total weight of Si, B, C and N, the weight of elemental B in the coating is between about 10 wt % and about 20 wt % of the total weight of Si, B, C and N, the weight of elemental C in the coating is between about 10 wt % and about 20 wt % of the total weight of Si, B, C and N, the weight of elemental N in the coating is between about 20 wt % and about 30 wt % of the total weight of Si, B, C and N.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: July 22, 2014
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Juan Zhang
  • Patent number: 8778491
    Abstract: A coated article is described. The coated article includes a substrate, a titanium bonding layer, a titanium-chromium alloy transition layer, and a titanium-chromium-nitrogen hard layer formed thereon, and in that order. The titanium bonding layer is a titanium layer. The titanium-chromium alloy transition layer is a titanium-chromium alloy layer. The titanium-chromium-nitrogen hard layer is a titanium-chromium-nitrogen layer. The titanium bonding layer, titanium-chromium alloy transition layer, and the titanium-chromium-nitrogen hard layer are formed by ion beam assisted sputtering.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: July 15, 2014
    Assignees: Shenzhen Futaihong Precision Industry Co., Ltd., FIH (Hong Kong) Limited
    Inventors: Chwan-Hwa Chiang, Jia-Lin Chen, Yi-Jun Huang, Hai-Bo Pan, Xu Li
  • Publication number: 20140193637
    Abstract: Cutting tool has a substrate and a multilayer coating deposited by PVD. The coating comprises a base layer of one or more identical or different layers of a nitride or carbonitride which contains at least aluminium (Al) and a chromium-containing, oxidic functional layer. Attachment of the chromium-containing functional layer is improved by an intermediate layer of one or more oxides or oxide nitrates of the metals Al, Cr, Si, and/or Zr provided between the base layer and the functional layer. The intermediate layer has a cubic structure and the chromium-containing functional layer is selected from chromium oxide (Cr2O3), chromium oxynitride, aluminium-chromium oxide (AlCr)2O3, aluminium-chromium oxynitride or a mixed oxide or mixed oxynitride of aluminium, chromium and further metals of (AlCrMe1, Men)2 oxide or (AlCrMe1, Men)2 oxynitride, where Me . . . Men means one or more further metals, selected from Hf, Y, Zr and Ru, and wherein the functional layer has a rhombohedral structure.
    Type: Application
    Filed: September 5, 2012
    Publication date: July 10, 2014
    Applicant: WALTER AG
    Inventors: Veit Schier, Wolfgang Engelhart
  • Publication number: 20140193623
    Abstract: A surface-coated cutting tool according to the present invention is a surface-coated cutting tool including a base material and a coating film formed on the base material, wherein the coating film includes at least a wear-resistant layer and an adhesion-resistant layer, the wear-resistant layer has a multilayer structure in which an A layer of a nitride containing Ti and Al as well as a B layer of a nitride containing Al and Cr are alternately stacked, and has a cubic crystal structure, and the adhesion-resistant layer is located at an outermost surface of the coating film, is composed of a nitride expressed by (AlaCrbTi1-a-b)N (wherein a+b<0.99, b>0.01, and 0.2b+0.7<a), and has a wurtzite-type crystal structure.
    Type: Application
    Filed: June 24, 2013
    Publication date: July 10, 2014
    Inventors: Makoto Setoyama, Akihiko Shibata, Yinxue Xiao, Akira Kobayashi
  • Patent number: 8771552
    Abstract: A group III nitride crystal substrate is provided in which a uniform distortion at a surface layer of the crystal substrate represented by a value of |d1 ?d2 |/d2 obtained from a plane spacing d1 at the X-ray penetration depth of 0.3 ?m and a plane spacing d2 at the X-ray penetration depth of 5 ?m is equal to or lower than 1.9 ×10?3, and the main surface has a plane orientation inclined in the <10-10> direction at an angle equal to or greater than 10° and equal to or smaller than 80° with respect to one of (0001) and (000-1) planes of the crystal substrate. A group III nitride crystal substrate suitable for manufacturing a light emitting device with a blue shift of an emission suppressed, an epilayer-containing group III nitride crystal substrate, a semiconductor device and a method of manufacturing the same can thereby be provided.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: July 8, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Keiji Ishibashi, Yusuke Yoshizumi
  • Patent number: 8765091
    Abstract: This invention relates to a method for the manufacture of monolithic ingot of silicon carbide comprising: i) introducing a mixture comprising polysilicon metal chips and carbon powder into a cylindrical reaction cell having a lid; ii) sealing the cylindrical reaction cell of i); iii) introducing the cylindrical reaction cell of ii) into a vacuum furnace; iv) evacuating the furnace of iii); v) filling the furnace of iv) with a gas mixture which is substantially inert gas to near atmospheric pressure; vi) heating the cylindrical reaction cell in the furnace of v) to a temperature of from 1600 to 2500° C.; vii) reducing the pressure in the cylindrical reaction cell of vi) to less than 50 torr but not less than 0.05 torr; and viii) allowing for substantial sublimation and condensation of the vapors on the inside of the lid of the cylindrical reaction cell of vii).
    Type: Grant
    Filed: October 8, 2008
    Date of Patent: July 1, 2014
    Assignee: Dow Corning Corporation
    Inventors: Mark Loboda, Seung Ho Park, Victor Torres
  • Patent number: 8763883
    Abstract: A method for assembling at least two parts made of silicon carbide-based materials by non-reactive brazing is disclosed. The two parts are contacted with a non-reactive brazing composition. The assembly formed by the parts and the brazing composition is heated to a brazing temperature sufficient to melt the brazing composition. The parts and the brazing composition are cooled so that, after solidification of the brazing composition, a moderately refractory joint is formed. The non-reactive brazing composition is a binary alloy composed, in mass percentages, of about 46% to 99% silicon and 54% to 1% neodymium.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: July 1, 2014
    Assignee: Commissariat à l'énergie atomique et aux énergies alternatives
    Inventors: Valérie Chaumat, Jean-François Henne
  • Patent number: 8765268
    Abstract: A coated article includes a substrate, a composite layer formed on the substrate, and a chromium-oxygen-nitrogen layer formed on the composite layer. The composite layer includes a plurality of nickel-aluminum-holmium layers and a plurality of iridium layers. Each nickel-aluminum-holmium layer interleaves with one iridium layer. A method for making the coated article is also described.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: July 1, 2014
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Cheng-Shi Chen, Cong Li
  • Patent number: 8765272
    Abstract: A cermet has a hard phase which contains W and nitrogen, and includes at least one selected from a carbide, nitride and carbonitride of a metal having Ti as a main component, and a binder phase having an iron group metal as a main component. A W amount contained in the whole cermet is 5 to 40% by weight, an interfacial phase including a complex carbonitride with a larger W amount than a W amount of the hard phase being present between grains of the hard phase, and when a W amount contained in the interfacial phase based on the whole metal element is represented by Wb (atomic %), and a W amount contained in the hard phase based on the whole metal element is represented by Wh (atomic %), then, an atomic ratio of Wb to Wh (Wb/Wh) is 1.7 or more. The cermet is excellent in fracture resistance and wear resistance.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: July 1, 2014
    Assignee: Tungaloy Corporation
    Inventors: Keitaro Tamura, Daisuke Takesawa, Hiroki Hara, Kozo Kitamura, Yasuro Taniguchi, Koji Hayashi, Akihiro Matsumoto, Sung-Pyo Cho
  • Patent number: 8758907
    Abstract: Provided is a surface coated cutting tool in which a hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting processes. In the surface coated cutting tool having the hard coating layer including a lower layer (Ti compound layer) and an upper layer (Al2O3 layer) formed by vapor-deposition on the surface of the cutting tool body constituted by a WC-based cemented carbide or TiCN-based cermet, the ratio b/a of the number a of crystal grains in the Ti compound layer present in the interface to which the lower layer and the upper layer are adjacent to the number b of crystal grains in the Al2O3 layer is 4?b/a?20, and, furthermore, the average grain diameter of crystal grains in the Ti compound layer immediately below the Al2O3 layer is 0.5 ?m or less.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: June 24, 2014
    Assignee: Mitsubishi Materials Corporation
    Inventors: Makoto Igarashi, Kohei Tomita, Eiji Nakamura, Akira Osada
  • Patent number: 8758890
    Abstract: A coated cutting tool includes a substrate and a PVD coating having an outermost zone C being a nitride, carbide, boride, or mixtures thereof, of Si and at least two additional elements selected from Al, Y, and groups 4, 5 or 6 of the periodic table and zone C is free from a compositional gradient of an average content of Si. Zone C has a laminar, aperiodic, multilayered structure with alternating individual layers X and Y having different compositions from each other. The coating further includes a zone A closest to the substrate, a transitional zone B, where zone A is essentially free from Si, zone B includes a compositional gradient of the average content of Si, and where the average content of Si is increasing towards zone C.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: June 24, 2014
    Assignee: Sandvik Intellectual Property AB
    Inventors: Johan Böhlmark, Helen Blomqvist
  • Publication number: 20140162130
    Abstract: The present invention is directed to compositions comprising free standing and stacked assemblies of two dimensional crystalline solids, and methods of making the same.
    Type: Application
    Filed: December 3, 2013
    Publication date: June 12, 2014
    Applicant: DREXEL UNIVERSITY
    Inventors: MICHEL W. BARSOUM, YURY GOGOTSI, MICHAEL NAGUIB ABDELMALAK, OLHA MASHTALIR
  • Patent number: 8748016
    Abstract: The invention relates to coated bodies made of metal, hard metal, cermet or ceramic material, coated with a single- or multi-layer coating system containing at least one hard material composite coating, and to a method for coating such bodies. The aim of the invention is to develop a coating system for such bodies, which is single- or multi-layered and comprises at least one hard material composite coating, which contains cubic TiAlCN and hexagonal AlN as the main phases and is characterized by a composite structure having a smooth, homogeneous surface, high oxidation resistance and high hardness. The aim includes the development of a method for cost-effectively producing such coatings. The hard material composite coating according to the invention contains cubic TiAlCN and hexagonal AlN as main phases, wherein the cubic TiAlCN is microcrystalline fcc-Ti1-xAlxCyNz where x>0.75, y=0 to 0.25 and z=0.75 to 1 having a crystallite size of ?=0.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: June 10, 2014
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Ingolf Endler, Mandy Hoehn
  • Patent number: 8747990
    Abstract: A coated tool is excellent in adhesiveness of film, wear resistance, crater resistance and chipping resistance. The coated tool has a substrate and a coating coated on the surface thereof, at least one layer of the coating being an ?-type aluminum oxide film, an average film thickness of the ?-type aluminum oxide film being about 0.5 to about 10 ?m, an average grain size of the ?-type aluminum oxide film being about 0.5 to about 1.5 ?m, and a texture coefficient TCA(012) of (012) plane of the ?-type aluminum oxide film and a texture coefficient TCA(104) of (104) plane of the ?-type aluminum oxide film satisfying TCA(104)/TCA(012)?2.0.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: June 10, 2014
    Assignee: Tungaloy Corporation
    Inventor: Yohei Sone
  • Patent number: 8748006
    Abstract: The invention relates to a slide bearing composite material having at least one carrier layer and a sintered bearing metal layer. The sintered bearing metal layer is designed in at least one layer region as a gradient layer.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: June 10, 2014
    Assignee: Federal-Mogul Wiesbaden GmbH
    Inventors: Holger Schmitt, Thomas Enghof, Daniel Meister
  • Patent number: 8741428
    Abstract: A surface-coated cutting tool according to the present invention includes a base material and a coating film formed on the base material. The coating film includes at least one TiCN layer. The TiCN layer has a columnar crystal region. The columnar crystal region is characterized by having a composition of TiCxNy(in which 0.65?x/(x+y)?0.90), having a (422) plane having a plane spacing of 0.8765 ? to 0.8790 ? and having TC (220) showing a maximum value in an orientation index TC (hkl).
    Type: Grant
    Filed: July 4, 2011
    Date of Patent: June 3, 2014
    Assignee: Sumitomo Electric Hardmetal Corp.
    Inventors: Anongsack Paseuth, Yoshio Okada, Chikako Kojima, Hideaki Kanaoka, Erika Iwai, Hiroyuki Morimoto
  • Patent number: 8741451
    Abstract: A crystal foundation having dislocations is used to obtain a crystal film of low dislocation density, a crystal substrate, and a semiconductor device. One side of a growth substrate (11) is provided with a crystal layer (13) with a buffer layer (12) in between. The crystal layer (13) has spaces (13a), (13b) in an end of each threading dislocation D1 elongating from below. The threading dislocation D1 is separated from the upper layer by the spaces (13a), (13b), so that each threading dislocation D1 is blocked from propagating to the upper layer. When the displacement of the threading dislocation D1 expressed by Burgers vector is preserved to develop another dislocation, the spaces (13a), (13b) vary the direction of its displacement. As a result, the upper layer above the spaces (13a), (13b) turns crystalline with a low dislocation density.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: June 3, 2014
    Assignee: Sony Corporation
    Inventors: Etsuo Morita, Yousuke Murakami, Goshi Biwa, Hiroyuki Okuyama, Masato Doi, Toyoharu Oohata
  • Patent number: 8741011
    Abstract: The present invention relates to a cutting tool insert comprising a body of cemented carbide, cermet, ceramics, high speed steel (HSS), polycrystalline diamond (PCD) or polycrystalline cubic boron nitride (PCBN), a hard and wear resistant coating is applied, grown by physical vapour deposition (PVD) such as cathodic arc evaporation or magnetron sputtering. Said coating comprises at least one layer of (ZrxAl1-x)N with of 0.45<x<0.85 and 0.90?y<1.30 with a thickness between 0.5 and 10 ?m. Said layer has a nanocrystalline microstructure consisting of a single cubic phase or a mixture of hexagonal and cubic phases. The insert is particularly useful in metal cutting applications generating high temperatures with improved crater wear resistance.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: June 3, 2014
    Assignee: Sandvik Intellectual Property AB
    Inventors: Mats Johansson, Lina Rogström, Lars Johnson, Magnus Odén, Lars Hultman
  • Publication number: 20140147615
    Abstract: A multilayer thermal insulation composite for fire protection applications. The composite includes a fibrous insulation layer, at least one inorganic heat absorbing layer disposed on one side of the fibrous insulation layer, and at least one superinsulation layer disposed on at least one side of the composite adjacent the heat absorbing layer or the fibrous insulation layer. The composite may further include a scrim layer comprising a high temperature resistant, flexible, woven or non-woven scrim or scrim and high temperature resistant material disposed around the multilayer thermal insulation composite partially or substantially totally encapsulating the composite. The composite is lightweight and flexible, exhibits reduced heat transfer to the cold-face, with improved thermal insulation capability.
    Type: Application
    Filed: January 30, 2014
    Publication date: May 29, 2014
    Applicant: UNIFRAX I LLC
    Inventors: Joseph A. FERNANDO, Kennth B. MILLER
  • Patent number: 8734942
    Abstract: A coated article includes a substrate, an anti-corrosion layer formed on the substrate, and a decorative layer formed on the anti-corrosion layer. The substrate is made of magnesium or magnesium alloy. The anti-corrosion layer includes a magnesium layer formed on the substrate and a magnesium oxynitride layer formed on the magnesium layer. The coated article has improved corrosion resistance.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: May 27, 2014
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Xiao-Qiang Chen
  • Patent number: 8734965
    Abstract: The present invention provides methods of preparing Group III-nitride films of controlled polarity and substrates coated with such controlled polarity films. In particular, the invention provides substrate preparation steps that optimize the substrate surface for facilitating growth of a Group III-polar film, an N-polar film, or a selectively patterned film with both a Group III-polar portion and an N-polar portion in precise positioning. The methods of the invention are particularly suited for use in CVD methods.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: May 27, 2014
    Assignee: North Carolina State University
    Inventors: Raoul Schlesser, Ramón R. Collazo, Zlatko Sitar
  • Patent number: 8734964
    Abstract: An etching resist has a first heat-generating layer, a second heat-generating layer, and a metal compound layer including a metallic oxynitride layer containing a metallic oxynitride. The first heat-generating layer, the metallic oxynitride layer, and the second heat-generating layer are directly or indirectly laminated such that the metallic oxynitride layer is positioned between the first heat-generating layer and the second heat-generating layer.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: May 27, 2014
    Assignees: National Institute of Advanced Industrial Science and Technology, Nitto Denko Corporation
    Inventors: Kazuma Kurihara, Takashi Nakano, Takayuki Shima, Junji Tominaga, Kazuya Fujioka, Ichiro Suehiro
  • Publication number: 20140141278
    Abstract: The present invention relates generally to a coated jewelry article or a coated component of a jewelry article, comprising a jewelry article or a component of a jewelry article, a first metallic coating, and a second metallic coating.
    Type: Application
    Filed: January 27, 2014
    Publication date: May 22, 2014
    Applicant: Frederick Goldman, Inc.
    Inventor: Andrew Derrig
  • Publication number: 20140141264
    Abstract: An interlayer configured for a composite substrate surface, the interlayer having a higher concentration of at least one first chemical element at the interface of the substrate surface and the innermost interlayer surface and a higher concentration of at least one second chemical element at the outermost interlayer surface is disclosed. Methods of forming the interlayer and providing functional properties to said composites are disclosed.
    Type: Application
    Filed: November 16, 2012
    Publication date: May 22, 2014
    Applicant: THE BOEING COMPANY
    Inventor: The Boeing Company
  • Publication number: 20140141277
    Abstract: The present invention relates generally to jewelry articles comprising a substrate and a metallic, external coating.
    Type: Application
    Filed: January 27, 2014
    Publication date: May 22, 2014
    Applicant: Frederick Goldman, Inc.
    Inventor: Andrew Derrig
  • Patent number: 8728622
    Abstract: Provided is a base substrate with which a Group-III nitride crystal having a large area and a large thickness can be grown while inhibiting crack generation. A single-crystal substrate for use in growing a Group-III nitride crystal thereon, which satisfies the following expression (1), wherein Z1 (?m) is an amount of warpage of physical shape in a growth surface of the single-crystal substrate and Z2 (?m) is an amount of warpage calculated from a radius of curvature of crystallographic-plane shape in a growth surface of the single-crystal substrate: ?40<Z2/Z1<?1: Expression (1).
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: May 20, 2014
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Kenji Fujito, Yasuhiro Uchiyama
  • Patent number: 8722183
    Abstract: A coated article includes a substrate, an anti-corrosion layer formed on the substrate, and a decorative layer formed on the anti-corrosion layer. The substrate is made of magnesium or magnesium alloy. The anti-corrosion layer is a magnesium layer. The coated article has improved corrosion resistance.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: May 13, 2014
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Xiao-Qiang Chen
  • Patent number: 8722169
    Abstract: A freeze dryer shelf with opposed, parallel first and second plates is disclosed. The plates have at least one flow channel located therebetween for conveying a diathermic fluid between the plates. One of the plates has a surface treated to inhibit the sticking to the shelf of a rubber stopper pressed against that surface during the application of pressure to the stopper to push the stopper into a container.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: May 13, 2014
    Assignee: Ima Life S.r.l.
    Inventor: Jozef Antonius Willem Maria Corver
  • Patent number: 8722179
    Abstract: A substrate comprises a first mark and a second mark. The first mark comprises a first pattern with at least one mark feature formed by a first material and at least one further region formed by a second material. The first and second materials have different material characteristics with respect to a chemical-mechanical polishing process such that a step height in a direction substantially perpendicular to the surface of the substrate may be created by applying the chemical-mechanical polishing process. The second mark can be provided with a second step height by applying the chemical-mechanical polishing process. The second step height is substantially different from the first step height.
    Type: Grant
    Filed: December 12, 2006
    Date of Patent: May 13, 2014
    Assignee: ASML Netherlands B.V.
    Inventors: Richard Johannes Franciscus Van Haren, Bartolomeus Petrus Rijpers, Harminder Singh, Gerald Arthur Finken
  • Publication number: 20140127519
    Abstract: Method for performing a HIPIMS coating process, whereby a minimal distance 5 between target and substrate is reduced till achieving an essentially maximal bias current at substrate during coating process, and thereby improving considerably coating quality and increasing deposition rate in comparison with conventional HIPIMS coating processes.
    Type: Application
    Filed: April 16, 2012
    Publication date: May 8, 2014
    Applicant: OERLIKON TRADING AG, TRÜBBACH
    Inventor: Markus Lechthaler
  • Publication number: 20140127527
    Abstract: A hard alloy and a cutting tool. The hard alloy includes a hard phase and a binder phase. The hard phase includes: a main phase containing 50-70 mass % of WC, 15-30 mass % of TiCN, and 0-10 mass % of at least one kind of carbide, nitride or carbonitride of one or more non-W, non-Ti periodic table Group 4, 5 or 6 metal; a WC phase; and a composite hard phase. The binder phase includes 6 to 12 mass % of at least one of Co and Ni. The hard alloy includes a surface portion at a surface thereof, the surface portion having a WC content higher than that of an internal portion thereof. An average size of grains in the WC phase in the surface portion is larger than an average size of grains in the WC phase in the internal portion.
    Type: Application
    Filed: June 27, 2012
    Publication date: May 8, 2014
    Applicant: Kyocera Corporation
    Inventors: Hideyoshi Kinoshita, Katsuhiro Hanaki, Kouji Hirosaki
  • Patent number: 8715822
    Abstract: A coated article includes a substrate, an anti-corrosion layer formed on the substrate, and a decorative layer formed on the anti-corrosion layer. The substrate is made of aluminum or aluminum alloy. The anti-corrosion layer includes an aluminum layer formed on the substrate and an aluminum oxide layer formed on the aluminum layer. The coated article has improved corrosion resistance.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: May 6, 2014
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Xiao-Qiang Chen
  • Patent number: 8715838
    Abstract: Wear resistance and chipping resistance are both highly established for a surface-coated cutting tool. The surface-coated cutting tool of the present invention includes a base material and a coat film formed on the base material. A first coat layer at a chamfer portion has residual stress that exhibits a minimal value at a depth A within 2 ?m from the surface, and that is greater than or equal to ?7 GPa and less than or equal to ?1 GPa.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: May 6, 2014
    Assignee: Sumitomo Electric Hardmetal Corp.
    Inventors: Yoshio Okada, Minoru Itoh, Hideaki Kanaoka, Chie Suzuki, Anongsack Paseuth
  • Patent number: 8715537
    Abstract: This invention relates to compounds and compositions used to prepare semiconductor and optoelectronic materials and devices. This invention provides a range of compounds, compositions, materials and methods directed ultimately toward photovoltaic applications, as well as devices and systems for energy conversion, including solar cells. In particular, this invention relates to molecular precursor compounds, precursor materials and methods for preparing photovoltaic layers and thin films thereof.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: May 6, 2014
    Assignee: Precursor Energetics, Inc.
    Inventors: Kyle L. Fujdala, Wayne A. Chomitz, Zhongliang Zhu, Matthew C. Kuchta
  • Patent number: 8715803
    Abstract: A method of producing a ceramic weld, including identifying a ceramic first surface and a ceramic second surface to be bonded together, maintaining a non-oxidizing atmosphere over the first and second surfaces, and engaging the first and second surfaces to define a joint. An arc is generated between an electrode and the joint to create a liquid phase, and the liquid phase is cooled to yield a solid fusion layer, wherein the first and second surfaces are joined in the fusion layer.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: May 6, 2014
    Inventors: Gregory Eugene Hilmas, William Gene Fahrenholtz, Jeremy Lee Watts, Harlan James Brown-Shaklee
  • Patent number: 8709547
    Abstract: The invention relates to the use of a super-slippery thin-layer film or coating for enhancing the lubrication capacity of a part to be subjected to great friction and wear. The film of the invention for improving the lubrication capacity of parts to be subjected to important friction and wear includes at least: a layer (3) of a hard material selected from titanium nitride (TiN), chromium nitride (CrN), titanium carbide (TiC), chromium carbide (CrC), tungsten carbide (W2C) and tungsten carbide-carbon composites (WC/C), alumina (AI2O3), molybdenum sulphide (MoS2), and materials of the hydrogenated amorphous carbon type (a: CH), the layer including on one surface thereof a series of dips and protrusions; and a layer (4) of an oleophilic material. The invention can particularly be used in the field of mechanics.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: April 29, 2014
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Cedric Ducros, Jerome Gavillet
  • Patent number: 8709593
    Abstract: A coated article is described. The coated article includes an aluminum or aluminum alloy substrate and a corrosion resistant layer formed on the substrate. The corrosion resistant layer is a compound silicon-titanium-nitrogen layer. A method for making the coated article is also described.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: April 29, 2014
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Nan Ma
  • Patent number: 8709583
    Abstract: The invention concerns a cutting tool comprising a main body and a multi-layer coating applied thereto. To provide improved cutting tools which have increased resistance to comb cracking, tribochemical wear and cratering caused thereby the main body comprises a hard metal which includes 5 to 8% by weight of Co, 0 to 2% by weight of TaC, 0 to 1% by weight of NbC and 89 to 95% by weight of WC with a mean grain size of 1 to 5 ?m, and the coating has a first layer of TiAlN having a layer thickness of 1 to 5 ?m, and a second layer of aluminum oxide having a layer thickness of 1 to 4 ?m, wherein the coating further additionally includes on the second layer of aluminum oxide n alternately mutually superposedly applied layers of TiAlN and layers of aluminum oxide respectively having a layer thickness of 0.1 to 0.5 ?m, wherein n relates to each individual layer and is an even number of 0 to 10, and wherein the total layer thickness of the coating is 2 to 16 ?m and the coating is produced in the PVD process.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: April 29, 2014
    Assignee: Walter AG
    Inventors: Veit Schier, Jörg Drobniewski
  • Patent number: 8709594
    Abstract: A coated article includes a substrate, a bonding layer formed on the substrate, an anti-corrosion layer formed on the bonding layer. The substrate is made of aluminum or aluminum alloy. The bonding layer is a silicon layer. The anti-corrosion layer is a silicon nitride layer. The coated article has improved corrosion resistance.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: April 29, 2014
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Xiao-Qiang Chen
  • Patent number: 8703294
    Abstract: The present invention provides a functionally graded bioactive glass/ceramic composite structure or bioactive glass/ceramic/bioactive glass sandwich structure for use in such applications as damage resistant, ceramic dental implants, immediate tooth replacement, endodontic posts, orthopedic prostheses, orthopedic stems, bone substitutes, bone screws, plates, and anchors, nonunion defects repair, alveolar ridge augmentation, missing small bone parts (e.g. fingers, toes, etc), maxilla facial reconstruction, spinal fusion, and scaffolds for bone regeneration, comprising a residual bioactive glass or glass-ceramic layer at all accessible surfaces, followed by an underlying graded glass-ceramic layer, and then an dense interior ceramic. Further, the invention provides methods for making the same structure.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: April 22, 2014
    Assignee: New York University
    Inventors: Yu Zhang, Racquel Legeros, Jae-Won Kim
  • Patent number: 8703306
    Abstract: A method of cleaning and coating at least one surface of a container for storing a medicament or other ingestible non-pharmaceutical product, the method comprising the steps of using a water-based cleaning composition in conjunction with a water-based crosslinked acrylic resin containing coating material. The process makes the cleaning and coating technology consistent with present environmental regulations and workplace safety requirements, including control of emissions of volatile organic compounds (VOCs). Further, the concentration of extractible organic compounds has been reduced to the lowest practical level. The process is also applicable to other substrates where it is desired to have low-extractable organics and high adhesion of the subsequently applied coating.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: April 22, 2014
    Assignee: Presspart GmbH & Co. KG
    Inventors: Joseph H. Groeger, Hans-Jurgen Neugebauer, Christoph Schulte
  • Patent number: 8703287
    Abstract: A coated article includes a substrate, an anti-corrosion layer formed on the substrate, and a decorative layer formed on the anti-corrosion layer. The substrate is made of aluminum or aluminum alloy. The anti-corrosion layer includes an aluminum-copper alloy layer formed on the substrate and an aluminum nitride layer formed on the aluminum-copper alloy layer. The coated article has good corrosion resistance.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: April 22, 2014
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Xiao-Qiang Chen
  • Publication number: 20140106177
    Abstract: A friction stir welding tool of the present invention is used for friction stir welding, and includes: a base material; and a coating layer formed on a surface of at least a portion of the base material that is to be caused to contact workpieces during friction stir welding, the coating layer containing cubic WC1-x.
    Type: Application
    Filed: February 25, 2013
    Publication date: April 17, 2014
    Inventors: Yoshiharu Utsumi, Hideki Moriguchi
  • Patent number: 8697024
    Abstract: A precursor formulation of a silicon carbide material that includes a ceramic material and a boron-11 compound. The ceramic material may include silicon and carbon and, optionally, oxygen, nitrogen, titanium, zirconium, aluminum, or mixtures thereof. The boron-11 compound may be a boron-11 isotope of boron oxide, boron hydride, boron hydroxide, boron carbide, boron nitride, boron trichloride, boron trifluoride, boron metal, or mixtures thereof. A material for use in a nuclear reactor component is also disclosed, as are such components, as well as a method of producing the material.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: April 15, 2014
    Assignee: COI Ceramics, Inc.
    Inventors: Timothy E. Easler, Andrew Szweda, Eric Stein
  • Patent number: RE44870
    Abstract: A body such as a cutting tool coated with refractory single- or multilayers, wherein specific layers are characterized by a controlled microstructure and phase composition with crystal planes preferably grown in a preferential direction with respect to the surface of the coated body. The coating includes one or several refractory layers of which at least one layer is a dense, fine-grained layer of ?-Al2O3 preferably textured in the (104) direction. The coated tool exhibits excellent surface finish and shows much improved wear and toughness properties compared to prior art objects when used for machining steel, cast iron and, particularly, when machining nodular cast iron. REEXAMINATION RESULTS The questions raised in reexamination proceedings Nos. 90/009,410 and 90/009,666, filed May 5, 2009 and Feb. 24, 2010 respectively, have been considered, and the results thereof are reflected in this reissue patent which constitutes the reexamination certificate required by 35 U.S.C. 307 as provided in 37 CFR 1.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: April 29, 2014
    Assignee: Sandvik Intellectual Property AB
    Inventor: Bjorn Ljungberg