Separator, Retainer, Spacer Or Materials For Use Therewith Patents (Class 429/247)
  • Patent number: 8916644
    Abstract: [Object] To provide a polypropylene resin composition for use in the formation of a microporous membrane having excellent heat resistance and strength. [Solution] A polypropylene resin composition for use in the formation of a microporous membrane according to the present invention comprises as an essential component an ultra-high-molecular-weight propylene homopolymer (A) that satisfies the following requirements (1) to (4): (1) the intrinsic viscosity [?] is 7 dl/g or more and less than 25 dl/g; (2) the mesopentad fraction ranges from 90.0% to 99.5%; (3) the melting point ranges from 153° C. to 167° C.; and (4) in an elution temperature-elution volume curve measured by temperature-rising elution fractionation (TREF), the maximum peak has a peak top temperature in the range of 116° C. to 125° C. and a half-width of 7.0° C. or less.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: December 23, 2014
    Assignees: Toray Battery Separator Film Co., Ltd, Prime Polymer Co., Ltd.
    Inventors: Satoshi Tamura, Ryoichi Tsunori
  • Publication number: 20140356730
    Abstract: The present invention provides a propylene-based resin microporous film which has excellent lithium ion permeability, can constitute a high-performance lithium ion battery, and can prevent a short circuit between a positive electrode and a negative electrode due to dendrites. The propylene-based resin microporous film of the present invention is a propylene-based resin microporous film containing micropores, wherein the degree of gas permeability is 100 to 400 s/100 mL, the standard deviation of the degree of gas permeability is 7 s/100 mL or less, the thermal shrinkage ratio during heating at 105° C. for 2 hours is 6% or less, and the standard deviation of the thermal shrinkage ratio is 1% or less.
    Type: Application
    Filed: November 22, 2012
    Publication date: December 4, 2014
    Inventor: Takahiko Sawada
  • Patent number: 8901240
    Abstract: [Object] To provide a polypropylene resin composition for use in the formation of a microporous membrane having excellent heat resistance and low thermal shrinkage ratio. [Solution] A polypropylene resin composition for use in the formation of a microporous membrane according to the present invention comprises as an essential component a propylene homopolymer (A) that satisfies the following requirements (1) to (4) and (7): (1) the intrinsic viscosity [?] is 1 dl/g or more and less than 7 dl/g; (2) the mesopentad fraction ranges from 94.0% to 99.5%; (3) the integral elution volume during heating to 100° C. is 10% or less; (4) the melting point ranges from 153° C. to 167° C.; and (7) in an elution temperature-elution volume curve, the maximum peak has a peak top temperature in the range of 105° C. to 130° C. and a half-width of 7.0° C. or less.
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: December 2, 2014
    Assignees: Mitsui Chemicals Inc., Prime Polymer Co., Ltd.
    Inventors: Satoshi Tamura, Keita Itakura, Ryoichi Tsunori, Satoshi Hashizume
  • Patent number: 8900738
    Abstract: A non-aqueous electrolyte secondary battery includes a positive electrode, a negative electrode, a separator disposed between the both electrodes, a non-aqueous electrolytic solution and an exterior member made of a laminate material and housing the positive electrode, the negative electrode, the separator and the non-aqueous electrolytic solution. A polymeric support exists between the separator and at least one of the positive electrode and the negative electrode. Also, the separator contains polyethylene as a main component and contains not more than 10% by mass of polypropylene.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: December 2, 2014
    Assignee: Sony Corporation
    Inventor: Tomoyuki Nakamura
  • Publication number: 20140342237
    Abstract: Disclosed are a separator for an electrochemical device substantially comprising inorganic particles to provide an excellent mechanical strength, an electrochemical device comprising the same, and a method of manufacturing the separator using a high internal phase emulsion (RIPE).
    Type: Application
    Filed: July 31, 2014
    Publication date: November 20, 2014
    Inventors: Jin-Woo Kim, Joo-Sung Lee, Jong-Hun Kim
  • Publication number: 20140315066
    Abstract: The invention relates to an electrolyte battery electrode component having a layer having a surface adjoined by electrolyte in the battery and provided with a fluid-conducting channel structure. In this context, it is envisaged that through the fluid-conducting structure has channels having channel depths in the range from 10 to 200 ?m and/or at least 50% of the thickness of the active layer.
    Type: Application
    Filed: April 12, 2012
    Publication date: October 23, 2014
    Applicant: KARLSRUHER INSTITUT FUR TECHNOLOGIE
    Inventors: Wilhelm Pfleging, Robert Kohler, Johannes Proll
  • Patent number: 8859129
    Abstract: A separator for an energy storage cell that is provided by a microporous web that includes an irreversible porosity-controlling agent a method for changing an operating characteristic of an energy storage cell.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: October 14, 2014
    Assignee: MP Assets Corporation
    Inventors: George H Brilmyer, Robert A. Wimberly
  • Publication number: 20140287327
    Abstract: The present invention provides a method of coating a substrate for a lithium secondary battery with inorganic particles, comprising charging the inorganic particles to form charged inorganic particles; transferring the charged inorganic particles on the substrate for a lithium secondary battery to form a coating layer; and fixing the coating layer with heat and pressure. Such a coating method according to one embodiment of the present invention uses electrostatic force without the addition of a solvent, and therefore, non use of a solvent can result in cost-reducing effects since there is no burden on the handling and storing of the solvent, and since a drying procedure after slurry coating is not needed, it allows for the preparation of a lithium secondary battery in a highly effective and rapid manner.
    Type: Application
    Filed: June 9, 2014
    Publication date: September 25, 2014
    Inventors: Joo-Sung Lee, Jong-Hun Kim, Jeong-Min Ha, Bo-Kyung Ryu, Jin-Woo Kim
  • Publication number: 20140272542
    Abstract: Energy storage devices including at least one energy storage cell having molecular sieves to mitigate a sensitivity of the storage cell to water contamination that may degrade performance of an electrolyte associated with the energy storage cell.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 18, 2014
    Applicant: COOPER TECHNOLOGIES COMPANY
    Inventor: COOPER TECHNOLOGIES COMPANY
  • Publication number: 20140272599
    Abstract: The capability of directly gelling an electrolyte within a lithium ion (or similar type) battery cell through the reaction of the electrolyte solution with a present battery separator is provided. Such a procedure results generally from the presence of suitable nanofibers within the battery separator structure that exhibit the potential for swelling in the presence of a suitable electrolyte formulation. In this manner, the capability of providing an entrenched gel within the battery separator for longer term viability and electrical generation is possible without externally gelling the electrolyte prior to battery cell introduction. The method of use of such a resultant battery, as well as the battery including such an automatic gelling battery separator/electrolyte combination, are also encompassed within this invention.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Inventor: Brian G. Morin
  • Patent number: 8835058
    Abstract: A porous polymer battery separator is provided that includes variable porosity along its length. Such battery separators can increase the uniformity of the current density within electrochemical battery cells that may normally experience higher current density and higher temperatures near their terminal ends than they do near their opposite ends. By disposing a variable porosity separator between the electrodes of an electrochemical cell such that its terminal end has a lower porosity than its opposite end, the transport of ions, such as lithium ions, through the separator can be more restricted in normally high current regions and less restricted in normally low current regions, thereby increasing the overall uniformity of current density within the battery cell. Variable porosity battery separators may be produced by a dry-stretching process or by a wet process.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: September 16, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Hamid G. Kia, Xiaosong Huang, Mark W. Verbrugge
  • Patent number: 8822082
    Abstract: A separator for an electrochemical device of the present invention includes a porous film including: a filler; an organic binder; and at least one resin selected from resin A that has a melting point of 80 to 140° C. and resin B that absorbs a non-aqueous electrolyte and swells upon heating and whose swelling degree increases with increasing temperature, and the filler contains boehmite having a secondary particle structure in which primary particles are connected.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: September 2, 2014
    Assignee: Hitachi Maxwell, Ltd.
    Inventors: Hideaki Katayama, Yoshinori Sato, Toshihiro Abe, Nobuaki Matsumoto
  • Publication number: 20140242470
    Abstract: An adhesive resin composition for a secondary battery for bonding a separator for a secondary battery and an electrode for a secondary battery, wherein the composition comprises an adhesive resin having a unit derived from an aromatic vinyl monomer and having a glass transition temperature of 25° C. or lower.
    Type: Application
    Filed: September 24, 2012
    Publication date: August 28, 2014
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventor: Toshihiko Ogata
  • Patent number: 8815433
    Abstract: Disclosed is a method for manufacturing a separator. The method includes (S1) preparing a porous planar substrate having a plurality of pores, (S2) preparing a slurry containing inorganic particles dispersed therein and a polymer solution including a first binder polymer and a second binder polymer in a solvent, and coating the slurry on at least one surface of the porous substrate, (S3) spraying a non-solvent incapable of dissolving the second binder polymer on the slurry, and (S4) simultaneously removing the solvent and the non-solvent by drying. According to the method, a separator with good bindability to electrodes can be manufactured in an easy manner. In addition, problems associated with the separation of inorganic particles in the course of manufacturing an electrochemical device can be avoided.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: August 26, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Joo-Sung Lee, Jang-Hyuk Hong, Jong-Hun Kim, Bo-Kyung Ryu
  • Patent number: 8808902
    Abstract: An electrode assembly and a secondary battery including the same. The electrode assembly includes: a positive electrode plate including a positive electrode active material applied to a positive electrode collector; a negative electrode plate including a negative electrode active material applied to a negative electrode collector; a separator disposed between the positive electrode plate and the negative electrode plate; and a ceramic layer disposed on a portion of the positive or negative electrode plate, adjacent to an outer surface of the electrode assembly. The positive electrode plate, the negative electrode plate, ceramic layer, and the separator are wound together. The ceramic layer prevents a short-circuit between the positive electrode plate and the negative electrode plate, and extends along between about 40% and 90% of the length of the positive or negative electrode plate, from a winding end thereof.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: August 19, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Hyorim Bak, Youngchurl Chang
  • Patent number: 8808923
    Abstract: Disclosed is a separator for a non-aqueous electrolyte secondary battery, the separator including a biaxially-oriented polyolefin porous film including extended-chain crystals and folded-chain crystals, wherein the extended-chain crystals and the folded-chain crystals form a shish-kebab structure. The average distance between the extended-chain crystals adjacent to each other is 1.5 ?m or more and less than 11 ?m, and the average distance between the folded-chain crystals adjacent to each other is 0.3 ?m or more and less than 0.9 ?m. A heat resistant porous film may be laminated on the polyolefin porous film. The heat resistant porous film includes a resin having heat resistance or a melting point higher than a melting point of the polyolefin porous film.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: August 19, 2014
    Assignee: Panasonic Corporation
    Inventors: Yasushi Nakagiri, Yasuyuki Shibano, Norihiro Yamamoto
  • Publication number: 20140220410
    Abstract: A battery cell separator includes a body having front and rear sides for being stacked against respective battery cells. The body has a cross-section between the front and rear sides. The cross-section may have a saw-wave pattern, a square-wave pattern, or a sine-wave pattern.
    Type: Application
    Filed: April 10, 2014
    Publication date: August 7, 2014
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Patrick Daniel MAGUIRE, Saravanan PARAMASIVAM, James George GEBBIE
  • Patent number: 8795863
    Abstract: Provided is a technology for detecting abnormal temperature rise of a battery regardless of the number of batteries, and preventing a trouble caused by abnormal temperature rise. A battery production facility (30) for producing a secondary battery (1) comprises an abnormality detector (40) for detecting abnormal state (especially, abnormal temperature rise) of a plurality of secondary batteries (1, 1, . . . ), and a detector (45) for generating a control signal in order to take a predetermined step according to the detection result from the abnormality detector (40).
    Type: Grant
    Filed: January 8, 2009
    Date of Patent: August 5, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yoichi Naruse, Hiroyasu Kado
  • Patent number: 8790818
    Abstract: A multi-functional, laminated composite comprises a plurality of cloth layers (3) penetrated by an infused matrix, wherein at least one cell (1) for energy storage is supported by and integrally built up from at least one of the cloth layers (3), the cell (1) being embedded in the matrix. The cell may comprise first and second electrodes (6,7) separated by a porous, separator layer (2) that has a liquid electrolyte-permeable, matrix-free intra-electrode region to which the electrolyte (2?) may be added before or after resin infusion to activate the cell. The structural composite may have integrated energy storage comprising a lithium-ion rechargeable cell, optionally of printed construction.
    Type: Grant
    Filed: December 11, 2009
    Date of Patent: July 29, 2014
    Assignee: Qinetiq Limited
    Inventors: Fazlil Ahmode Coowar, Mark Andrew French, Gary Owen Mepsted, Christopher Douglas James Spooner
  • Patent number: 8785031
    Abstract: The present invention provides a polymer electrolyte fuel cell separator made of pure titanium or a titanium alloy superior in contact resistance with carbon paper and a method of production of the same, that is, a separator having a surface layer part to which conductive compound particles are affixed, characterized in that the surface oxide has a thickness of 3 to 15 nm in range, an average carbon concentration in a range from an outermost surface, including the oxide layer, to a depth of 100 nm is 0.02 to 6 at %, and the conductive compound particles have an average particle size of 0.01 to 20 ?m. Further, the method of production of the present invention is characterized by forming, blast treating a surface of the formed article by particles comprised of conductive compound particles of an average particle size of 0.01 to 20 ?m covering a surface of superhard core particles, impregnating it by a nitric acid aqueous solution of a concentration of 15 to 71 mass % and a temperature of 40 to 100° C.
    Type: Grant
    Filed: June 15, 2007
    Date of Patent: July 22, 2014
    Assignee: Nippon Steel Sumitomo Metal Corporation
    Inventors: Michio Kaneko, Kazuhiro Takahashi, Kiyonori Tokuno, Hiroshi Kihira, Wataru Hisada
  • Publication number: 20140193716
    Abstract: The disclosure relates, in one aspect, to porous solid-state films with controlled pore structures obtained by laser perforation. A thin laser-perforated film can comprise a slab defining a plurality of pores distributed in a predetermined arrangement, the plurality of pores having a distribution of sizes bound by a predetermined magnitude. In an aspect, the plurality of pores are formed in the slab with a laser having a wavelength less than about 400 nm and the slab has a transmission of the laser light of equal to or less than about 70% measured at a thickness of the slab of 100 micrometer or less.
    Type: Application
    Filed: January 9, 2014
    Publication date: July 10, 2014
    Inventors: Roy Martinus Adrianus L'Abee, Tony Farrell
  • Patent number: 8771879
    Abstract: A lithium-sulfur battery is disclosed in one embodiment of the invention as including an anode containing lithium and a cathode comprising elemental sulfur. The cathode may include at least one solvent selected to at least partially dissolve the elemental sulfur and Li2Sx. A substantially non-porous lithium-ion-conductive membrane is provided between the anode and the cathode to keep sulfur or other reactive species from migrating therebetween. In certain embodiments, the lithium-sulfur battery may include a separator between the anode and the non-porous lithium-ion-conductive membrane. This separator may prevent the lithium in the anode from reacting with the non-porous lithium-ion-conductive membrane. In certain embodiments, the separator is a porous separator infiltrated with a lithium-ion-conductive electrolyte.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: July 8, 2014
    Assignee: Ceramatec, Inc.
    Inventors: John Howard Gordon, John Joseph Watkins
  • Patent number: 8765307
    Abstract: A stacked nonaqueous electrolyte battery, a method of manufacturing the battery, and a stacking apparatus for the battery are provided. The stacked nonaqueous electrolyte battery includes a plurality of electrode bodies alternately stacked, each of the electrode bodies including an anode and a cathode laminated through a separator. The separator has a raised edge portion leading along an edge portion of one of the anode and the cathode, and the raised edge portions of the plurality of the separators overlap one another.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: July 1, 2014
    Assignee: Sony Corporation
    Inventor: Takashi Komiya
  • Patent number: 8758925
    Abstract: Provided is a battery system in which an interior part of a battery structure includes phase-change particles including a capsule and phase-change materials. The phase-change materials have a high latent heat of phase change at a specific temperature, and are encapsulated in the capsule. The capsule is made of an inert material. The battery system in accordance with the present invention can prolong a service life of the battery by inhibiting temperature elevation inside the battery under normal operating conditions without substantial effects on size, shape and performance of the battery, and further, can inhibit the risk of explosion resulting from a sharp increase in temperature inside the battery under abnormal operating conditions, thereby contributing to battery safety.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: June 24, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Seungdon Choi, Hong-Kyu Park
  • Publication number: 20140162110
    Abstract: A single fiber layer structure of micron or nano fibers, and a multi-layer structure of micron and nano fibers are provided. The single fiber layer structure of micron fibers comprises a web of micron fibers and an impregnating resin, and has a pore size of 1 nm-500 nm. The web of micron fibers is formed by plural interweaved micron fibers (D?1 ?m). The single fiber layer structure of nano fibers comprises a web of nano fibers formed by plural interweaved nano fibers (D<1 ?m). The multi-layer structure of micron and nano fibers comprises a web of interweaved micron fibers, a web of nano fibers formed by plural nano fibers interweaved on the web of micron fibers, a mixture layer formed by parts of the interweaved nano and micron fibers, and a resin at least impregnating the mixture layer and parts of the micron fibers of the web of micron fibers.
    Type: Application
    Filed: December 4, 2013
    Publication date: June 12, 2014
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Wan-Shu CHEN, Shu-Hui CHENG, Jung-Ching HSING, Tzu-Hsien HAN, Ming-Lung LEE
  • Patent number: 8748022
    Abstract: A pouch type battery includes an electrode assembly having a first electrode, a second electrode and a separator between the first electrode and the second electrode, the first electrode, second electrode and separator being wound together, an electrolyte, a pouch accommodating the electrode assembly and the electrolyte, and a fixing member fixing a winding end of the electrode assembly. The fixing member includes a base layer and an adhesive layer located at either side of the base layer, the fixing member making contact with external surfaces of the electrode assembly, and the base layer being a material that melts and acquires adhesiveness upon contact with the electrolyte. A portion of the base layer in contact with the electrolyte is in a melted condition and is separated from the adhesive layer.
    Type: Grant
    Filed: August 16, 2012
    Date of Patent: June 10, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Hyojung Song, Daekyu Kim
  • Patent number: 8748055
    Abstract: The present invention provides a composite separator for a polymer electrolyte membrane fuel cell (PEMFC) and a method for manufacturing the same. The inventive method involves allowing graphite foil layers to be brought into direct contact with each other when graphite foils are stacked on both sides of a carbon fiber reinforced composite material prepreg, thereby improving electrical conductivity in the thickness direction of the separator.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: June 10, 2014
    Assignees: Hyundai Motor Company, Korea Advanced Institute of Science and Technology
    Inventors: Dai Gil Lee, Ha Na Yu, Byoung Chul Kim, Bu Gi Kim, Jun Woo Lim, Jung Do Suh
  • Patent number: 8741489
    Abstract: Disclosed are a separator for lithium ion secondary batteries, having an inorganic layer formed from inorganic particles, characterized in that the inorganic particles have a particle diameter distribution in which the 50% cumulative particle diameter D50 is in the range of 100 nm to 500 nm, the 10% cumulative particle diameter D10 is 0.5D50 or more, and the 90% cumulative particle diameter D90 is 2D50 or less; a method for manufacturing the separator; and a lithium ion secondary battery using the separator. When the separator is used, there can be produced a lithium ion secondary battery in which a short circuit caused by contraction or melting can be definitely prevented, as well as the current density applied to the electrodes during charging and discharging is uniform so that charging and discharging can be efficiently achieved.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: June 3, 2014
    Assignee: Japan Vilene Company, Ltd.
    Inventors: Hiroshi Ohnishi, Te Hyon Cho, Yuka Kondo, Yoshikazu Miyata, Tatsuo Nakamura, Hiroaki Yamazaki, Masanao Tanaka
  • Patent number: 8741469
    Abstract: An electrode assembly for a secondary battery, a method of manufacturing the electrode assembly and a secondary battery having the electrode assembly. The electrode assembly includes a plurality of electrode members arranged in a stacked shape along a baseline extending in one direction and a separation unit separating two adjacent electrode members. The separation unit includes three or more separators having a same winding center.
    Type: Grant
    Filed: September 16, 2010
    Date of Patent: June 3, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Changbeom Ahn, Jeongsoon Shin, Youngbae Sohn
  • Patent number: 8741488
    Abstract: An electrode which has a Si-containing material layer and a porous film, and a lithium battery employing the same. In the electrode, the Si-containing material layer is applied on an electrode current collector and/or an electrode active material to protect the surface of the electrode current collector from oxidation. Also, the applied Si-containing material layer enhances the adhesion between the electrode current collector and the electrode active material to improve cycle life characteristics. Also, it increases the adhesion between the electrode active material and the porous film to reduce resistance, and to improve ohmic contacts and to lower the Shottkey barrier. In addition, the electrode includes the porous film functioning as a separator, and thus can provide a battery which is safe under conditions of overcharge and heat exposure without needing an additional separator.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: June 3, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jin-Hee Kim, Won-Chull Han, Jae-Yun Min
  • Publication number: 20140147710
    Abstract: Subject-matter of the invention is a separator for a lithium ion battery which separates the positive and the negative electrode of the lithium ion battery from one another and which is permeable to lithium ions, characterized in that the separator comprises at least one silica, preferably in the form of a xerogel, and at least one carbon component, as well as a lithium ion battery containing said separator.
    Type: Application
    Filed: November 26, 2013
    Publication date: May 29, 2014
    Applicant: Li-Tec Battery GmbH
    Inventor: Tim Schaefer
  • Patent number: 8734976
    Abstract: Disclosed is a battery including a cathode in which cathode active-material coating layers provided on both surfaces of a cathode collector are longitudinally deviated from each other, and an anode having at least one anode active-material coating layer provided on an anode collector, the cathode and anode being wound to face each other with a separator interposed therebetween. At least one of a winding beginning portion and winding ending portion of the cathode is provided with a cathode uncoated part for installation of a cathode lead. An insulator tape is attached to the boundary of the cathode active-material coating layer at a position where the anode active-material coating layer faces a non-coating part of the cathode not containing the cathode active-material coating layer, achieving enhanced electrical insulation capability and consequential safety of the battery.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: May 27, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Jin Soo Lee, Kil Young Lee, Dong-Myung Kim
  • Patent number: 8728649
    Abstract: A battery system with at least one cell having an adjacent temperature-equalizing structure that is provided alternately with the cells and is designed for a medium that carries heat and/or cold to pass through. The cells are individual cells (1, 1?, 1?), and the temperature-equalizing structures are conventional corrugated board (2a, 2b, 2c, 2d, 2e, 2?a, 2?b, 2?c, 2?d, 2?e) having two cover layers and at least one corrugation arranged between them for the air to pass through.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: May 20, 2014
    Assignee: Dr. Ing. h.c. F. Porsche Aktiengesellschaft
    Inventor: Ralf Bauer
  • Publication number: 20140134496
    Abstract: An insulating (nonconductive) microporous polymeric battery separator comprised of a single layer of enmeshed microfibers and nanofibers is provided. Such a separator accords the ability to attune the porosity and pore size to any desired level through a single nonwoven fabric. Through a proper selection of materials as well as production processes, the resultant battery separator exhibits isotropic strengths, low shrinkage, high wettability levels, and pore sizes related directly to layer thickness. The overall production method is highly efficient and yields a combination of polymeric nanofibers within a polymeric microfiber matrix and/or onto such a substrate through high shear processing that is cost effective as well. The separator, a battery including such a separator, the method of manufacturing such a separator, and the method of utilizing such a separator within a battery device, are all encompassed within this invention.
    Type: Application
    Filed: November 14, 2012
    Publication date: May 15, 2014
    Inventor: Brian G. Morin
  • Patent number: 8722253
    Abstract: A lithium ion secondary battery containing a pair of electrodes facing each other, and a separator interposed between the electrodes, wherein at least one of the electrodes has a protecting layer, an active-material containing layer, and a collector sequentially from the separator. The protecting layer contains a silicone resin particle having at least one structural unit represented by RSiO1.5 and R2SiO, where R represents an alkyl group having 1 to 6 carbon atoms or a phenyl group.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: May 13, 2014
    Assignee: TDK Corporation
    Inventors: Kiyonori Hinoki, Kazutoshi Emoto, Haruka Nishimura, Masahiro Saegusa
  • Patent number: 8722256
    Abstract: Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and negative electrode layers. Thus, in such disclosed lithium-ion batteries, the electrodes and separator are made to form non-discrete (i.e., integral) thin layers. Also disclosed are methods of fabricating integrally connected, thin, multilayer lithium batteries including lithium-ion and lithium/air batteries.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: May 13, 2014
    Assignee: UT-Battelle, LLC
    Inventors: Chaitanya Kumar Narula, Jagjit Nanda, Brian L. Bischoff, Ramesh R. Bhave
  • Patent number: 8722252
    Abstract: In a sealed battery, a metal current carrying block 24A having a protrusion 24b on each of the two opposing faces is placed between positive or negative electrode substrate exposed portions that are divided into two so as to bring the protrusion 24b on each of the two opposing faces into contact with the positive or negative electrode substrate exposed portions that are stacked, a pair of electrodes 31 and 32 for resistance welding are brought into contact with positive electrode collector members 16 or negative electrode collector members that are each placed on the outermost surfaces of the positive electrode substrate exposed portions 14 or negative electrode substrate exposed portions, and resistance welding is performed with pressure applied between the pair of electrodes 31 and 32 for resistance welding.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: May 13, 2014
    Assignee: SANYO Electric Co., Ltd.
    Inventors: Takenori Kimura, Taiki Kamifuji, Kousuke Yamamoto, Yoshinori Yokoyama
  • Patent number: 8715862
    Abstract: A lithium secondary battery includes a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, a separator separating the positive electrode from the negative electrode, and an electrolyte. The negative electrode active material includes a graphite core particle, at least one metal particle located on the graphite core particle, and a polymer film coating the graphite core particle and the at least one metal particle. The polymer includes a polyimide- or polyacrylate-based polymer.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: May 6, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Cheol-Hee Hwang, Bong-Chull Kim, Jong-Chan Kim, Se-Ho Park, Na-Rae Won
  • Patent number: 8715848
    Abstract: An electrode assembly (30) is formed by combining a positive electrode plate (14), a separator (15), and a negative electrode plate (18), and the electrode assembly (30) was wound. An insulating member (21) having a hollow portion (22) is placed on the positive electrode plate (14), the negative electrode plate (18), or the separator (15) before the end of the winding step so that the insulating member (21) is incorporated inside the outermost of the electrode assembly (30) and into a corner portion (31) of the electrode assembly (30) in the winding direction. After a winding end portion (32) of the electrode assembly (30) is fixed, the hollow portion (22) is broken. Thereby, a space (20) resulting from the hollow portion (22) is formed inside the outermost of the electrode assembly (30).
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: May 6, 2014
    Assignee: Panasonic Corporation
    Inventors: Kunihiko Mineya, Katsumi Kashiwagi
  • Patent number: 8715849
    Abstract: The invention relates to a microporous membrane which comprises polyethylene, the microporous membrane having a differential pore volume curve with an area under the curve over the range of pore diameters of from about 100 nm to about 1,000 nm that is 25% or more of a total area under the curve over the range of pore diameters of from about 10 nm to about 1,000 nm.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: May 6, 2014
    Assignee: Toray Battery Separator Film Co., Ltd.
    Inventors: Kotaro Takita, Shintaro Kikuchi
  • Patent number: 8709637
    Abstract: An electrode assembly for a secondary battery and a method of manufacturing the same are disclosed. An electrode assembly comprises: a plurality of separator members formed by winding a central separator member, wherein the central separator member is a predeterminated portion of the separator; and a plurality of electrode members positioned between each of the separator members; wherein the separator including the plurality of separator members and the central separator member is one of the plurality of separator members, and wherein both opposite ends of the central separator member is curved in opposite directions, respectively.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: April 29, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Changbum Ahn, Jeongsoon Shin, Youngbae Sohn
  • Patent number: 8709639
    Abstract: A rechargeable battery that includes: an electrode assembly generating a current; a case accommodating the electrode assembly therein; and a cap assembly coupled to the case so as to be electrically connected with the electrode assembly. The electrode assembly includes a first electrode, a separator, and a second electrode that are sequentially stacked, and the separator includes a main body part disposed between the first and second electrodes and protrusions formed that protrude from the main body part to the side of at least one of an end portion of the first electrode and an end portion of the second electrode.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: April 29, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jun-Sik Kim, Tae-Keun Kim, Sae-Weon Roh, Sung-Soo Kim
  • Patent number: 8697290
    Abstract: Electrodes with a multilayer or monolayer composite separator are described. The multilayer composite separator comprises multiple individual composite separator layers. Each individual composite separator layer comprises inorganic particulate material(s) and organic polymer(s) with different inorganic particulate material/polymer weight ratios. The multilayer composite separator layer is constructed in a way such that the composite separator layer adjacent to the electrode active material contains a higher weight percentage of the inorganic particulate material and lower weight percentage of the organic polymer than the composite separator layer outermost from the electrode current collector. Laminated cells comprising a positive electrode, a negative electrode, a laminated multilayer or monolayer composite separator layer are described, wherein at least one of the electrodes has a multilayer or monolayer composite separator disposed onto the surface of the electrode.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: April 15, 2014
    Assignee: A123 Systems LLC
    Inventors: Susan J. Babinec, Gregory B. Less, Dave Vieau
  • Publication number: 20140099556
    Abstract: Embodiments of solid-state batteries, battery components, and related construction methods are described. The components include one or more embodiments of a low melt temperature electrolyte bonded solid-state rechargeable battery electrode and one or more embodiments of a composite separator having a low melt temperature electrolyte component. Embodiments of methods for fabrication of solid-state batteries and battery components are described. These methods include co-extrusion, hot pressing and roll casting.
    Type: Application
    Filed: March 14, 2013
    Publication date: April 10, 2014
    Applicant: MICROSOFT CORPORATION
    Inventors: Lonnie G. Johnson, David K. Johnson
  • Patent number: 8691418
    Abstract: This document discusses, among other things, an insulative member that is configured around a cathode, and methods and assemblies incorporation the insulative member. In an example, the insulative members protect the edge of the cathode material from damage, prevents the migration of cathode material into contact with an anode, or prevents a metal substrate in the cathode from shorting against an adjacent anode.
    Type: Grant
    Filed: May 31, 2005
    Date of Patent: April 8, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Benjamin J. Haasl, James P. Rohl, Michael J. O'Phelan
  • Patent number: 8679676
    Abstract: Provided is a non-aqueous electrolyte secondary battery which has excellent high-temperature cycle characteristics, while maintaining the shutdown response speed of the separator and the overcharge characteristics after many repeated cycles at high temperatures. The battery uses a non-aqueous electrolyte containing a carboxylic acid ester and a nitrile compound, and a separator having a porosity of 28 to 54% and an air permeability of 86 to 450 secs/dl.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: March 25, 2014
    Assignee: SANYO Electric Co., Ltd.
    Inventor: Kentaro Takahashi
  • Patent number: 8673478
    Abstract: An electrochemical device having a liquid electrolyte which includes a protic solvent, an anode electrode disposed in contact with the liquid electrolyte, and a cathode electrode disposed in contact with the liquid electrolyte. A membrane which interrupts the transport of ions between the electrodes at a predetermined temperature is disposed in the liquid electrolyte between the anode electrode and the cathode electrode. In this way, electrochemical devices such as batteries, fuel cells, electrolyzers, and sensors, which may overheat during use and cause a fire or explosion, are precluded from overheating.
    Type: Grant
    Filed: February 5, 2007
    Date of Patent: March 18, 2014
    Assignee: Gas Technology Institute
    Inventor: Qinbai Fan
  • Patent number: 8669010
    Abstract: A nonaqueous secondary battery comprises a positive electrode, a negative electrode and a separator interposed between the positive electrode and the negative electrode, wherein at least one of the positive electrode and the negative electrode is provided with a current collector composed of a film-like or fibrous resin layer having a conductive layer on both sides, and the separator has a higher thermal deformation temperature than the resin layer.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: March 11, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Naoto Torata, Kazuo Yamada, Satoshi Okano, Naoto Nishimura
  • Publication number: 20140065463
    Abstract: A separator for a rechargeable lithium battery including a tungsten-doped vanadium oxide (VO2) phase transition material and the rechargeable lithium battery including the separator. Here, an explosion possibility of the rechargeable lithium battery including the separator may be prevented and delayed when the battery is excessively heated.
    Type: Application
    Filed: January 8, 2013
    Publication date: March 6, 2014
    Applicant: SAMSUNG SDI CO., LTD.
    Inventor: SAMSUNG SDI CO., LTD.
  • Publication number: 20140057154
    Abstract: In one embodiment, battery separator for a lead acid battery includes a gel impregnated nonwoven. The nonwoven includes an acid dissolvable fiber and a non-acid dissolvable fiber. The gel may have a basis weight in a range of about 20-160% of the nonwoven's basis weight. In another embodiment, battery separator for a lead acid battery includes a microporous membrane with the gel impregnated nonwoven adhered thereto.
    Type: Application
    Filed: August 22, 2013
    Publication date: February 27, 2014
    Applicant: Daramic, LLC
    Inventor: John R. Timmons