And Inorganic Material Patents (Class 429/251)
  • Patent number: 10644290
    Abstract: Disclosed is a separator for an electrochemical device. The separator includes a non-woven web substrate, wherein at least one surface of the non-woven web substrate includes an electrode reactive layer formed by carbonization of the non-woven web substrate from the surface of the non-woven web substrate to a predetermined depth, and the electrode reactive layer is disposed at the outermost side of at least one surface of both surfaces of the separator.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: May 5, 2020
    Assignee: LG Chem, Ltd.
    Inventors: Taek-Gyoung Kim, Kwon-Nam Sohn, Eun-Kyu Her, Bu-Gon Shin, Doo-Kyung Yang
  • Patent number: 10522806
    Abstract: A composition for a non-aqueous secondary battery functional layer contains a binder and inorganic particles including a sulfonate group. A non-aqueous secondary battery includes a functional layer for a non-aqueous secondary battery that is formed using this composition for a non-aqueous secondary battery functional layer.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: December 31, 2019
    Assignee: ZEON CORPORATION
    Inventors: Hiromi Takamatsu, Yuuki Ohkubo, Yujiro Toyoda
  • Patent number: 10497987
    Abstract: The present invention relates to a production method of an electrode for a secondary battery which has an electrode laminated assembly that has a configuration in which electrodes and a separator are laminated. An insulating member is formed on border portion (4) between an application portion and a non-application portion by attaching insulating solution (40a) which contains a solid insulating material to border portion (4) and then solidifying the insulating solution (40a).
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: December 3, 2019
    Assignee: Envision AESC Energy Devices Ltd.
    Inventor: Tetsuya Sato
  • Patent number: 10490845
    Abstract: A battery includes an electrolytic solution, the electrolytic solution includes an unsaturated cyclic ester carbonate represented by the following Formula (1), where X is a divalent group in which m-number of >C=CR1R2 and n-number of >CR3R4 are bonded in any order; each of R1 to R4 is one of a hydrogen group, a halogen group, a monovalent hydrocarbon group, a monovalent halogenated hydrocarbon group, a monovalent oxygen-containing hydrocarbon group, and a monovalent halogenated oxygen-containing hydrocarbon group; any two or more of the R1 to the R4 are allowed to be bonded to one another; and m and n satisfy m?1 and n?0, wherein a content of the unsaturated cyclic ester carbonate in the electrolytic solution is 5 wt % or less, wherein the electrolyte solution further includes one or more of propionate, halogenated ester carbonate, dioxane, sultone, and nitrile.
    Type: Grant
    Filed: May 3, 2019
    Date of Patent: November 26, 2019
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Masayuki Ihara, Tadahiko Kubota
  • Patent number: 10454142
    Abstract: An enhanced solid state battery cell is disclosed. The battery cell can include a first electrode, a second electrode, and a solid state electrolyte layer interposed between the first electrode and the second electrode. The battery cell can further include a resistive layer interposed between the first electrode and the second electrode. The resistive layer can be electrically conductive in order to regulate an internal current flow within the battery cell. The internal current flow can result from an internal short circuit formed between the first electrode and the second electrode. The internal short circuit can be formed from the solid state electrolyte layer being penetrated by metal dendrites formed at the first electrode and/or the second electrode.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: October 22, 2019
    Assignee: American Lithium Energy Corporation
    Inventor: Jiang Fan
  • Patent number: 10403863
    Abstract: The present invention relates to a packaging for a cable-type secondary battery extending longitudinally, comprising: a hollow metal foil layer; a first polymer resin layer formed on one surface of the metal foil layer; and a second polymer resin layer formed on the other surface of the metal foil layer, and a cable-type secondary battery comprising the packaging. The packaging of the present invention comprises a metal foil layer to prevent the contamination of an electrolyte in the cable-type battery and prevent the deterioration of battery performances, and also maintain the mechanical strength of the cable-type battery.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: September 3, 2019
    Assignee: LG Chem, Ltd.
    Inventors: Yo-Han Kwon, Je-Young Kim, Sang-Hun Kim, Sang-Wook Woo
  • Patent number: 10396403
    Abstract: The present disclosure provides an electrochemical energy storage device, which comprises a cell, an electrolyte and a package. The electrochemical energy storage device further comprises a binding material positioned between the cell and the package. The binding material comprises an adhesive layer and a covering layer. The adhesive layer is directly or indirectly adhered and positioned on an outer surface of the cell, and a surface of the adhesive layer which is far away from the cell is an adhesive surface; the covering layer is positioned on the adhesive surface of the adhesive layer, the covering layer is dissolved or swollen into the electrolyte in whole or in part so as to expose the adhesive surface of the adhesive layer, therefore the adhesive layer can make the cell adhered with the package. The covering layer is a polar molecule, the polar molecule comprises one or more selected from the group consisting of —F, —CO—NH—, —NH—CO—NH—, and —NH—CO—O—.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: August 27, 2019
    Assignees: DONGGUAN AMPEREX TECHNOLOGY LIMITED, NINGDE AMPEREX TECHNOLOGY LIMITED
    Inventors: Jinzhen Bao, Honggang Yu, Hongxin Fang, Chao Yang, Zheng Cao
  • Patent number: 10305079
    Abstract: The present invention provides a method for manufacturing a separator, comprising the steps of (S1) preparing a porous planar substrate having multiple pores; (S2) coating a coating solution obtained by dissolving a binder polymer in a solvent and dispersing inorganic particles therein on the porous substrate to form a porous coating layer and drying the porous coating layer; and (S3) applying a binder solution on the surface of the dried porous coating layer to form an adhesive layer, wherein the binder solution has a surface energy of at least 10 mN/m higher than that of the porous coating layer and a contact angle of the binder solution to the surface of the porous coating layer maintained at 80° or more for 30 seconds. In accordance with the present invention, a separator capable of obtaining sufficient adhesion force with minimizing the amount of an adhesive used for the adhesion with an electrode, and minimizing the deterioration of battery performances can be easily manufactured.
    Type: Grant
    Filed: July 23, 2013
    Date of Patent: May 28, 2019
    Assignees: LG Chem, Ltd., TORAY INDUSTRIES, INC.
    Inventors: Jeong-Min Ha, Joo-Sung Lee, Jin-Woo Kim, Jong-Hun Kim, Sun-Mi Jin, Bo-Kyung Ryu
  • Patent number: 10254043
    Abstract: Provided herein is a method of drying an electrode assembly of lithium-ion battery, comprising drying the electrode assembly in two successive stages under vacuum at elevated temperature; filling the oven with hot, dry air or inert gas; repeating the steps of vacuum drying and gas filling several times. The method disclosed herein is particularly suitable for drying electrode assemblies using aqueous binders.
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: April 9, 2019
    Assignee: GRST International Limited
    Inventors: Kam Piu Ho, Ranshi Wang, Peihua Shen
  • Patent number: 10224527
    Abstract: A non-aqueous electrolyte secondary battery of the invention has a power generating element with a single-cell layer which comprises a positive electrode including a positive electrode active material layer formed on a surface of a positive electrode collector, a negative electrode including a negative electrode active material layer formed on a surface of a negative electrode collector and a separator disposed between the positive electrode the negative electrode and containing a non-aqueous electrolyte, in which a value RA (=Rzjis (2)/Rzjis(1)) for the ratio between the surface roughness (Rzjis(1)) of the surface of the negative electrode active material layer on the side in contact with the separator and the surface roughness (Rzjis(2)) of the surface of the separator on the side in contact with the negative electrode active material layer is 0.15 to 0.85.
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: March 5, 2019
    Assignee: NISSAN MOTOR CO., LTD.
    Inventor: Miyuki Terado
  • Patent number: 10158111
    Abstract: A preparation method of a separator according to the present disclosure includes preparing an aqueous slurry including inorganic particles, a binder polymer, and an aqueous medium, and coating the aqueous slurry on at least one surface of a porous polymer substrate to form an organic-inorganic composite porous coating layer, wherein capillary number of the aqueous slurry has a range between 0.3 and 65.
    Type: Grant
    Filed: April 1, 2015
    Date of Patent: December 18, 2018
    Assignees: LG CHEM, LTD., TORAY BATTERY SEPARATOR FILM CO., LTD.
    Inventors: Joo-Sung Lee, Sun-Mi Jin
  • Patent number: 10079379
    Abstract: The present invention relates to a layer disposed between a positive electrode and a negative electrode, which is a layer containing particles and a resin material, and having a porous structure with a heat capacity per unit area of 0.0001 J/Kcm2 or more and a heat capacity per unit volume of 3.0 J/Kcm3 or less.
    Type: Grant
    Filed: March 18, 2014
    Date of Patent: September 18, 2018
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Kazuhito Hatta, Toshitsugu Ono
  • Patent number: 10079410
    Abstract: An electrical device is provided. The electrical device includes a pulse generator configured to generate a first pulse. The electrical device also includes a battery. The battery includes a first conductive electrode configured to receive the first pulse from the pulse generator, a second conductive electrode coupled to the first conductive electrode, and a dielectric separator element coupled to the first conductive electrode and the second conductive electrode and configured to provide a second pulse. The second pulse is based on the first pulse and based on the electrical properties of the dielectric separator element. The electrical device also includes a controller coupled to the pulse generator and the dielectric separator element. The controller is configured to compare the first pulse with the second pulse.
    Type: Grant
    Filed: October 21, 2014
    Date of Patent: September 18, 2018
    Assignee: LOCKHEED MARTIN CORPORATION
    Inventors: James L. Lee, Edward Henry Allen
  • Patent number: 10033070
    Abstract: The invention relates to a biaxially oriented, single or multilayer porous film comprising at least one porous layer, said layer containing at least one propylene polymer, wherein (i) the porosity of the porous film is 30% to 80%, and (ii) the permeability of the porous film is <1000 s (Gurley value). The invention is characterized in that (iii) the porous film is provided with a partially inorganic, preferably ceramic lamination, and (iv) in that the laminated porous film has a Gurley value of <1200 s. The invention further relates to a method for producing such a film, and to the use thereof in high-energy or high-performance systems, in particular in lithium batteries, lithium ion batteries, lithium polymer batteries, and alkaline earth batteries.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: July 24, 2018
    Assignee: Treofan Germany GmbH & Co. KG
    Inventors: Detlef Busch, Bertram Schmitz, Dominic Klein
  • Patent number: 10026941
    Abstract: A separator 1 for a nonaqueous electrolyte secondary battery, includes a resin-made substrate (2) and a porous heat resistance layer (4) disposed on the substrate. The porous heat resistance layer includes an inorganic filler (6) and hollow bodies (7). The hollow body includes a shell portion and a hollow portion. The shell portion is formed of an acryl resin. The hollow portion is formed inside the shell portion. An opening portion extending through the shell portion to spatially interconnect the hollow portion and the outside of the shell portion is formed in the shell portion.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: July 17, 2018
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroya Umeyama, Tatsuya Hashimoto, Yusuke Fukumoto, Keisuke Ohara, Kouichi Toriyama
  • Patent number: 9972861
    Abstract: The present disclosure provides a sheet-form electrode for a secondary battery, comprising a current collector; an electrode active material layer formed on one surface of the current collector; and a first porous supporting layer formed on the electrode active material layer. The sheet-form electrode for a secondary battery according to the present disclosure has supporting layers on at least one surface thereof to exhibit surprisingly improved flexibility and prevent the release of the electrode active material layer from a current collector even if intense external forces are applied to the electrode, thereby preventing the decrease of battery capacity and improving the cycle life characteristic of the battery.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: May 15, 2018
    Assignee: LG Chem, Ltd.
    Inventors: Yo-Han Kwon, Hye-Ran Jung, Eun-Kyung Kim, Je-Young Kim, Hyo-Mi Kim
  • Patent number: 9966605
    Abstract: A non-aqueous electrolyte secondary battery can efficiently discharge the gas generated to the outside of the electrode and exhibits a low decrease in battery capacity even when used for a long period of time in the case of using an aqueous binder as the binder of a negative electrode active material. The non-aqueous electrolyte secondary battery has a positive electrode active material layer is formed on a surface of a positive electrode current collector, a negative electrode active material layer is formed on a surface of a negative electrode current collector, and a separator, wherein the density of the negative electrode active material layer is from 1.3 to 1.6 g/cm3, the negative electrode active material layer contains an aqueous binder, and the surface center line average roughness (Ra) of a surface on a separator side of the negative electrode active material layer is from 0.5 to 1.0 ?m.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: May 8, 2018
    Assignees: Nissan Motor Co., Ltd., Automotive Energy Supply Corporation
    Inventors: Ryuuta Yamaguchi, Takashi Honda, Kousuke Hagiyama, Ikuma Matsuzaki, Takeshi Miyamoto, Osamu Shimamura, Keisuke Matsumoto
  • Patent number: 9960418
    Abstract: Provided is a cathode active material including lithium transition metal oxide particles and composite particles, wherein the composite particles include any one selected from the group consisting of yttria stabilized zirconia (YSZ), gadolinia-doped ceria (GDC), lanthanum strontium gallate magnesite (LSGM), lanthanum strontium manganite (LSM), and nickel (Ni)—YSZ, or a mixture of two or more thereof, and the cathode active material includes the composite particles having a single-phase peak when analyzed by X-ray diffraction (XRD). A cathode active material according to an embodiment of the present invention may not only minimize the reduction in capacity or output of a secondary battery, but may also further improve life characteristics.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: May 1, 2018
    Assignee: LG Chem, Ltd.
    Inventors: Ick Soon Kwak, Seung Beom Cho, Hwa Seok Chae, Yeo June Yoon
  • Patent number: 9954210
    Abstract: A method for manufacturing a separator includes (S1) preparing a porous substrate having pores, (S2) coating at least one surface of the porous substrate with a first solvent, (S3) coating the first solvent with a slurry containing inorganic particles dispersed therein and formed by dissolving a binder polymer in a second solvent, (S4) drying the first and second solvents simultaneously to form a porous organic-inorganic composite layer on the porous substrate. Since the phenomenon that the pores of the porous substrate are closing by the binder polymer is minimized, it is possible to prevent the resistance of the separator from increasing due to the formation of the porous organic-inorganic composite layer.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: April 24, 2018
    Assignees: LG Chem, Ltd., TORAY INDUSTRIES, INC.
    Inventors: Joo Sung Lee, Jang-Hyuk Hong, Jong-Hun Kim
  • Patent number: 9893358
    Abstract: A binder composition for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery including the same. The binder composition includes lithium polyacrylate and a solvent and has a viscosity of about 500 cps to about 5000 cps.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: February 13, 2018
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Chang-Ui Jeong, Byung-Joo Chung, Nam-Seon Kim, Yang-soo Kim, Kwang-Sik Choi
  • Patent number: 9786888
    Abstract: A separator is provided and includes a functional resin layer containing a resin material and an inorganic oxide filler, having a porous interconnected structure in which many pores are mutually interconnected and having a contact angle against an electrolytic solution of not more than 11 degrees.
    Type: Grant
    Filed: January 6, 2011
    Date of Patent: October 10, 2017
    Assignee: Sony Corporation
    Inventors: Yukako Teshima, Atsushi Kajita, Kensuke Yamamoto, Masatake Hayashi
  • Patent number: 9595745
    Abstract: A nonaqueous electrolyte secondary battery 100 according to this invention includes a positive electrode 10, a negative electrode 20, a separator 40 interposed between the positive electrode 10 and the negative electrode 20, and a nonaqueous electrolyte solution. A porous heat-resistant layer 42 is additionally provided between the separator 40 and at least one electrode from among the positive electrode 10 and the negative electrode 20. The porous heat-resistant layer 42 includes hollow particles 44 made of an inorganic material, and a binder 46.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: March 14, 2017
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tomoyoshi Ueki, Harunari Shimamura, Yusuke Fukumoto
  • Patent number: 9484157
    Abstract: Disclosed is a solid electrolyte for a dye-sensitized solar cell, which includes a three-dimensional porous thin film made of a hydrophilic polymer material, and a dye-sensitized solar cell using the same. More particularly, the present invention provides a high-efficient dye-sensitized solar cell, in which polymer nanofibers having high specific surface area are used in an electrolyte layer to effectively induce an increase in photocurrent, thereby increasing the amount of electrolyte impregnated. When the porous film prepared by the method of the present invention is used as a solid electrolyte for a dye-sensitized solar cell, a process of forming an electrolyte inlet and sealing the inlet is not required, which simplifies the entire process, compared to an existing dye-sensitized solar cell using a liquid electrolyte.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: November 1, 2016
    Assignee: Hyundai Motor Company
    Inventors: Yong-Jun Jang, Sang-Hak Kim, Won-Jung Kim, Yong-Gu Kim, Mi-Yeon Song, In-Woo Song, Ji-Yong Lee, Ki-Chun Lee
  • Patent number: 9472808
    Abstract: In a method for manufacturing a functional layer for a lithium cell, e.g., a protective layer for a lithium metal anode, the functional layer being lithium-ion conductive and including particles of at least one ceramic material, the particles of the at least one ceramic material being applied to a carrier by deposition.
    Type: Grant
    Filed: December 15, 2014
    Date of Patent: October 18, 2016
    Assignee: ROBERT BOSCH GMBH
    Inventors: Christine Engel, Michael Butzin, Martin Tenzer, Jean Fanous
  • Patent number: 9356273
    Abstract: A nonaqueous electrolyte secondary battery includes a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode. The separator includes a substrate layer and a surface layer formed on at least one principal plane of the substrate layer, the surface layer contains polyvinylidene fluoride and an inorganic material particle, and an amount of deformation against pressure of the surface layer is larger than that of the substrate layer.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: May 31, 2016
    Assignee: Sony Corporation
    Inventor: Hironori Sato
  • Patent number: 9293783
    Abstract: The present disclosure provides a sheet-form electrode for a secondary battery, comprising a current collector; an electrode active material layer formed on one surface of the current collector; a conductive layer formed on the electrode active material layer and comprising a conductive material and a binder; and a first porous supporting layer formed on the conductive layer. The sheet-form electrode for a secondary battery according to the present disclosure has supporting layers on at least one surfaces thereof to exhibit surprisingly improved flexibility and prevent the release of the electrode active material layer from a current collector even if intense external forces are applied to the electrode, thereby preventing the decrease of battery capacity and improving the cycle life characteristic of the battery.
    Type: Grant
    Filed: September 4, 2014
    Date of Patent: March 22, 2016
    Assignee: LG Chem, Ltd.
    Inventors: Yo-Han Kwon, Hye-Ran Jung, Eun-Kyung Kim, Je-Young Kim, Hyo-Mi Kim
  • Patent number: 9293750
    Abstract: A porous membrane contains a polyethylene resin, in a core layer, pores of sizes that are relatively larger than those of pores in each of skin layers on the opposite sides are distributed, and the skin layers on the opposite sides have substantially same pore characteristics. A method for manufacturing a porous membrane includes the steps of: obtaining a mixture of a liquid-type paraffin oil and a solid-type paraffin wax; adding the mixture to a polyethylene resin to obtain a raw material resin mixture; extruding and cooling the raw material resin mixture; stretching the raw material resin mixture; and immersing the stretched raw material resin mixture in an organic solvent to extract a mixture of the oil and the wax.
    Type: Grant
    Filed: October 5, 2012
    Date of Patent: March 22, 2016
    Assignee: W-Scope Corporation
    Inventors: Jae Won Yang, Si Ju Ryu, Seong Tae Kim, Byung Hyunn Kim, Jung Goo Park, Hee Min Cho
  • Patent number: 9293790
    Abstract: A rechargable magnesium battery having an non-aqueous electrolyte is provided. The properties of the electrolyte include high conductivity, high Coulombic efficiency, and an electrochemical window that can exceed 3.5 V vs. Mg/Mg+2. The use of the electrolyte promotes the electrochemical deposition and dissolution of Mg without the use of any Grignard reagents, other organometallic materials, tetraphenyl borate, or tetrachloroaluminate derived anions. Other Mg-containing electrolyte systems that are expected to be suitable for use in secondary batteries are also described.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: March 22, 2016
    Assignee: PELLION TECHNOLOGIES, INC.
    Inventors: Robert Ellis Doe, George Hamilton Lane, Robert E. Jilek, Jaehee Hwang
  • Patent number: 9219263
    Abstract: A center pin for a secondary battery and a secondary battery having the same, which optimizes a void volume of the secondary battery. The center pin is inserted into an electrode assembly of the secondary battery. The center pin has a longitudinal hole and includes a sealing member to seal a portion of the hole. The sealing member can include walls disposed within the center pin, to seal the portion of the hole. The sealing member can include a second center pin, which is inserted into the hole, to seal the portion of the hole.
    Type: Grant
    Filed: September 17, 2013
    Date of Patent: December 22, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventor: Hyo-Rim Bak
  • Patent number: 9070948
    Abstract: A lithium secondary battery includes a cathode, an anode, a separator interposed between the cathode and the anode, and a non-aqueous electrolytic solution obtained by dissolving lithium salt to a non-aqueous solvent. The separator includes a porous substrate having pores; and a porous coating layer located on at least one surface of the porous substrate and having inorganic particles and a binder polymer, the inorganic particles being connected and fixed to each other by means of the binder polymer, the porous coating layer having pores therein formed by interstitial volumes among the inorganic particles. The non-aqueous solvent is a high-viscous non-aqueous solvent having a viscosity of 1.4 cP or above at 25° C. This lithium secondary battery gives improved safety and excellent charging/discharging characteristics since it has the high-viscous non-aqueous solvent and the separator with good wettability against the solvent.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: June 30, 2015
    Assignee: LG CHEM, LTD.
    Inventor: Sung-Hoon Yu
  • Patent number: 9017878
    Abstract: Disclosed is an electrode whose surface includes an organic/inorganic composite porous coating layer comprising heat-absorbing inorganic particles and a binder polymer, wherein the heat-absorbing inorganic particle is at least one particle selected from the group consisting of antimony-containing compounds, metal hydroxides, guanidine-based compounds, boron-containing compounds and zinc tartrate compounds. A separator using the heat-absorbing inorganic particles as a component for forming or coating the separator, and an electrochemical device including the electrode and/or the separator are also disclosed. The separator using the heat-absorbing inorganic particles as a component for forming or coating the separator can ensure excellent thermal safety and minimizes degradation of the quality of a battery.
    Type: Grant
    Filed: February 16, 2007
    Date of Patent: April 28, 2015
    Assignee: LG Chem, Ltd.
    Inventors: Seok-Koo Kim, Hyun-Min Jang, Sang-Young Lee, Jang-Hyuk Hong
  • Publication number: 20150111109
    Abstract: There is provided a multilayer porous film that includes a covering layer formed from a coating liquid on at least one surface of a porous film. The coating liquid has high stability and coatability. The covering layer does not decrease the intrinsic high air permeability of the porous film and has high heat resistance and adhesiveness. The multilayer porous film has excellent handleability as a battery separator without causing curling. The multilayer porous film includes the covering layer on at least one surface of a porous polyolefin resin film. The covering layer is formed from a coating liquid and contains a filler and a resin binder. The multilayer porous film satisfies the following conditions 1) and 2): 1) the filler has an average circularity of 0.3 or more and less than 0.
    Type: Application
    Filed: June 4, 2013
    Publication date: April 23, 2015
    Applicant: MITSUBISHI PLASTICS, INC.
    Inventors: Hiroto Yamada, Tomoyuki Nemoto
  • Patent number: 8999585
    Abstract: A nonaqueous electrolyte secondary battery includes a positive electrode, a negative electrode, a porous insulating layer, and nonaqueous electrolyte. The porous insulating layer is interposed between the positive electrode and the negative electrode. The nonaqueous electrolyte is contained at least in the porous insulating layer. The mixture layer of the positive electrode and the porous insulating layer each include a structure retainer.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: April 7, 2015
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Yukihiro Okada, Yoshiyuki Muraoka
  • Patent number: 8993646
    Abstract: A porous polymer separator for use in a lithium ion battery is formed by a temperature-induced phase separation method. The porous polymer separator includes a polymer matrix having opposed major faces and a network of pore openings that extends between the major faces and permits intrusion of a lithium-ion conducting electrolyte solution. As part of the temperature-induced phase separation method, a single phase polymer solution that includes a polymer material dissolved in a miscible mixture of a real polymer solvent and a polymer non-solvent is prepared at an elevated temperature above room temperature. A film is then formed from the single phase polymer solution and cooled to phase-separate the polymer material into a solid polymer precipitate. Additional polymer non-solvent is then used to remove the real polymer solvent from the solid polymer precipitate followed by drying.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: March 31, 2015
    Assignee: GM Global Technology Operations LLC
    Inventor: Xiaosong Huang
  • Patent number: 8986892
    Abstract: A separator includes a non-woven fabric substrate having pores, fine thermoplastic powder located inside the pores of the non-woven fabric substrate, and a porous coating layer disposed on at least one surface of the non-woven fabric substrate. The fine thermoplastic powder has an average diameter smaller than that of the pores and a melting point lower than the melting or decomposition point of the non-woven fabric substrate. The porous coating layer includes a mixture of inorganic particles and a binder polymer whose melting point is higher than the melting or decomposition point of the fine thermoplastic powder. In the porous coating layer, the inorganic particles are fixedly connected to each other by the binder polymer and the pores are formed by interstitial volumes between the inorganic particles. Previous filling of the large pores of the non-woven fabric substrate with the fine thermoplastic powder makes the porous coating layer uniform.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: March 24, 2015
    Assignee: LG Chem, Ltd.
    Inventors: Su-Jin Yoon, Pil-Kyu Park, Jong-Hun Kim, Jin-Nyoung Yoo, In-Chul Kim, Sang-Young Lee
  • Publication number: 20150079450
    Abstract: A membrane includes a porous membrane or layer made of a polymeric material having a plurality of surface treated (or coated) particles (or ceramic particles) having an average particle size of less than about 1 micron dispersed therein. The polymeric material may be selected from the group consisting of polyolefins, polyamides, polyesters, co-polymers thereof, and combinations thereof. The particles may be selected from the group consisting of boehmite (AlOOH), SiO2, TiO2, Al2O3, BaSO4, CaCO3, BN, and combinations thereof, or the particles may be boehmite. The surface treatment (or coating) may be a molecule having a reactive end and a non-polar end. The particles may be pre-mixed in a low molecular weight wax before mixing with the polymeric material. The membrane may be used as a battery separator.
    Type: Application
    Filed: September 17, 2014
    Publication date: March 19, 2015
    Inventors: C. Glen Wensley, Lie Shi
  • Patent number: 8980461
    Abstract: The present disclosure relates to a separator and a lithium secondary battery including the same. The separator comprises a polyethylene-based powder or a polypropylene-based powder provided on or in the base film, wherein the polyethylene-based powder or the polypropylene-based powder is different from the base film.
    Type: Grant
    Filed: May 4, 2011
    Date of Patent: March 17, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Seonghoon Han, Changbum Ahn
  • Publication number: 20150064572
    Abstract: Provided are separators for use in an electrochemical cell comprising (a) an inorganic oxide and (b) an organic polymer, wherein the inorganic oxide comprises organic substituents. Also provided are electrochemical cells comprising such separators.
    Type: Application
    Filed: November 6, 2014
    Publication date: March 5, 2015
    Inventors: Steven Allen Carlson, Ifenna Kingsley Anakor, Greg Robert Farrell
  • Publication number: 20150064538
    Abstract: In various embodiments an improved binder composition, electrolyte composition and a separator film composition using discrete carbon nanotubes. Their methods of production and utility for energy storage and collection devices, like batteries, capacitors and photovoltaics, is described. The binder, electrolyte, or separator composition can further comprise polymers. The discrete carbon nanotubes further comprise at least a portion of the tubes being open ended and/or functionalized. The utility of the binder, electrolyte or separator film composition includes improved capacity, power or durability in energy storage and collection devices. The utility of the electrolyte and or separator film compositions includes improved ion transport in energy storage and collection devices.
    Type: Application
    Filed: June 21, 2013
    Publication date: March 5, 2015
    Inventors: Clive P. Bosnyak, Kurt W. Swogger, Milos Marinkovic
  • Patent number: 8956761
    Abstract: The present invention provides an electrochemical cell comprising an anodic current collector in contact with an anode. A cathodic current collector is in contact with a cathode. A solid electrolyte thin-film separates the anode and the cathode.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: February 17, 2015
    Assignee: Oerlikon Advanced Technologies AG
    Inventors: Glyn Jeremy Reynolds, Robert Mamazza, Jr.
  • Patent number: 8951676
    Abstract: An electrolyte for use in electrochemical cells is provided. The properties of the electrolyte include high conductivity, high Coulombic efficiency, and an electrochemical window that can exceed 3.5 V vs. Mg/Mg+2. The use of the electrolyte promotes the electrochemical deposition and dissolution of Mg without the use of any Grignard reagents, other organometallic materials, tetraphenyl borate, or tetrachloroaluminate derived anions. Other Mg-containing electrolyte systems that are expected to be suitable for use in secondary batteries are also described.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: February 10, 2015
    Assignee: Pellion Technologies, Inc.
    Inventors: Robert Ellis Doe, George Hamilton Lane, Robert E. Jilek, Jaehee Hwang
  • Publication number: 20150030933
    Abstract: The present invention relates to a separator for an electrochemical cell, preferably a lithium ion battery, comprising a porous layer which comprises at least one block copolymer having three or more polymer blocks and at least one aluminum oxide or hydroxide, a lithium ion battery comprising such a separator, and a method for producing such a separator.
    Type: Application
    Filed: January 21, 2013
    Publication date: January 29, 2015
    Inventors: Klaus Goetzen, Axel Niemoeller, Manfred Schaefer
  • Patent number: 8936879
    Abstract: A composite cathode active material, a cathode including the composite cathode active material, and a lithium battery including the cathode. The composite cathode active material includes: a lithium transition metal oxide; and a lithium-containing impurity on a surface of the lithium transition metal oxide. The lithium-containing impurity includes free lithium in an amount of about 0.050 wt % or less based on a total weight of the composite cathode active material, and LiOH and Li2CO3 in a mole ratio of LiOH to Li2CO3 of about 0.50 or less.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: January 20, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Myung-Hun Bae, Naoyuki Hase
  • Publication number: 20150017546
    Abstract: Formaldehyde-free binder compositions are described. The binder compositions may include a polycarboxy compound, and an organic crosslinking agent, and a polyvalent metal compound. The compositions may also optionally include a cure catalyst. In addition, composite materials are described. The composite materials may include a mat of fibers and a binder composition. The binder composition may include a polycarboxy compound, an organic crosslinking agent, and a polyvalent metal compound.
    Type: Application
    Filed: September 24, 2014
    Publication date: January 15, 2015
    Inventor: Mingfu Zhang
  • Patent number: 8932767
    Abstract: A nonaqueous electrolyte lithium secondary battery obtained by the present invention has a separator and a porous layer which contains an inorganic filler and a binder and which is formed on the separator, wherein a thickness of the separator ranges from 12 ?m to 18 ?m, a porosity of the separator ranges from 52% to 67%, a thickness of the porous layer ranges from 3 ?m to 15 ?m, a porosity of the porous layer ranges from 44% to 70%, and the porous layer-attached separator exhibits a film resistance equal to or lower than 1.35 ?·cm2 when impregnated with an electrolyte solution.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: January 13, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tomoyoshi Ueki, Harunari Shimamura, Yusuke Fukumoto
  • Patent number: 8932766
    Abstract: A method is disclosed for producing elements ultra-low diameter, ultra-high aspect ratio nanowires. A hierarchical template with ordered and arrayed nanopores either freestanding or on a support material is provided. The template can be pre-shaped. Optionally, one or more compounds can be layered within the nanopores to reduce the diameters thereof. The template is filled with material to form a nanostructure array configured as ultra-low diameter, ultra-high aspect ratio nanowires with a diameter of less than 10 nm. The optional layering is self-initiated by selectively adjusting pH of a coating material. The nanostructure array may be supported in a lower thermal conductivity material. The method can be used to produce elements that function as a phonon-confined thermoelectric device, a photovoltaic device and a battery.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: January 13, 2015
    Assignee: Mainstream Engineering Corporation
    Inventor: Justin J. Hill
  • Patent number: 8932746
    Abstract: A separator for non-aqueous rechargeable lithium batteries and a non-aqueous rechargeable lithium battery including the separator are provided. The separator includes a separator body and a composite including an organic compound and an inorganic compound supporting the separator body, where the organic compound has a higher melting point than that of the material composing the separator body, and the inorganic compound includes an element selected from the group consisting of 1A, 2A, 3A, 4A, 3B, and 5B elements from the periodic table, and combinations thereof, and at least one moiety selected from the group consisting of oxides, hydroxides, carbonates, phosphates, sulfates, nitrates, alkoxides, and combinations thereof.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: January 13, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Hideaki Maeda, Masaki Koike, Hironari Takase, Geun-Bae Kim
  • Patent number: 8916644
    Abstract: [Object] To provide a polypropylene resin composition for use in the formation of a microporous membrane having excellent heat resistance and strength. [Solution] A polypropylene resin composition for use in the formation of a microporous membrane according to the present invention comprises as an essential component an ultra-high-molecular-weight propylene homopolymer (A) that satisfies the following requirements (1) to (4): (1) the intrinsic viscosity [?] is 7 dl/g or more and less than 25 dl/g; (2) the mesopentad fraction ranges from 90.0% to 99.5%; (3) the melting point ranges from 153° C. to 167° C.; and (4) in an elution temperature-elution volume curve measured by temperature-rising elution fractionation (TREF), the maximum peak has a peak top temperature in the range of 116° C. to 125° C. and a half-width of 7.0° C. or less.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: December 23, 2014
    Assignees: Toray Battery Separator Film Co., Ltd, Prime Polymer Co., Ltd.
    Inventors: Satoshi Tamura, Ryoichi Tsunori
  • Patent number: 8901240
    Abstract: [Object] To provide a polypropylene resin composition for use in the formation of a microporous membrane having excellent heat resistance and low thermal shrinkage ratio. [Solution] A polypropylene resin composition for use in the formation of a microporous membrane according to the present invention comprises as an essential component a propylene homopolymer (A) that satisfies the following requirements (1) to (4) and (7): (1) the intrinsic viscosity [?] is 1 dl/g or more and less than 7 dl/g; (2) the mesopentad fraction ranges from 94.0% to 99.5%; (3) the integral elution volume during heating to 100° C. is 10% or less; (4) the melting point ranges from 153° C. to 167° C.; and (7) in an elution temperature-elution volume curve, the maximum peak has a peak top temperature in the range of 105° C. to 130° C. and a half-width of 7.0° C. or less.
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: December 2, 2014
    Assignees: Mitsui Chemicals Inc., Prime Polymer Co., Ltd.
    Inventors: Satoshi Tamura, Keita Itakura, Ryoichi Tsunori, Satoshi Hashizume
  • Patent number: 8883347
    Abstract: This is to provide an all solid state secondary battery which can be produced by an industrially employable method capable of mass-production and has excellent secondary battery characteristics.
    Type: Grant
    Filed: February 13, 2007
    Date of Patent: November 11, 2014
    Assignee: Namics Corporation
    Inventors: Mamoru Baba, Shoichi Iwaya, Hitoshi Masumura, Hiroshi Sato, Hiroshi Sasagawa, Noriyuki Sakai, Takayuki Fujita