Organic Material Patents (Class 429/249)
  • Patent number: 8748036
    Abstract: A negative electrode active material of a non-aqueous secondary battery of the present invention includes a first active material, a second active material, and a third active material. The first active material is a carbon material having a D/G ratio of 0.15 or less, where G represents the peak intensity observed in a Raman spectrum from 1578 to 1592 cm?1 and D represents the peak intensity observed in a Raman spectrum from 1349 to 1353 cm?1 of Raman spectroscopy. The D50 of the second active material is 10 ?m or less. The second active material includes at least one of a first carbon material having the D/G ratio of 0.2 to 2.0 and a second carbon material having the D/G ratio of 1.0 to 2.0. The D50 of the third active material is 5 ?m or less. The third active material contains silicon and oxygen as constituent elements.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: June 10, 2014
    Assignee: Hitachi, Ltd.
    Inventor: Takashi Konishi
  • Patent number: 8741489
    Abstract: Disclosed are a separator for lithium ion secondary batteries, having an inorganic layer formed from inorganic particles, characterized in that the inorganic particles have a particle diameter distribution in which the 50% cumulative particle diameter D50 is in the range of 100 nm to 500 nm, the 10% cumulative particle diameter D10 is 0.5D50 or more, and the 90% cumulative particle diameter D90 is 2D50 or less; a method for manufacturing the separator; and a lithium ion secondary battery using the separator. When the separator is used, there can be produced a lithium ion secondary battery in which a short circuit caused by contraction or melting can be definitely prevented, as well as the current density applied to the electrodes during charging and discharging is uniform so that charging and discharging can be efficiently achieved.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: June 3, 2014
    Assignee: Japan Vilene Company, Ltd.
    Inventors: Hiroshi Ohnishi, Te Hyon Cho, Yuka Kondo, Yoshikazu Miyata, Tatsuo Nakamura, Hiroaki Yamazaki, Masanao Tanaka
  • Publication number: 20140147726
    Abstract: In a porous membrane for a secondary battery including non-conductive particles and a water-soluble polymer, as the water-soluble polymer, a copolymer including 15% to 50% by weight of an ethylenically unsaturated carboxylic acid monomer unit, 30% to 80% by weight of a (meth)acrylic acid ester monomer unit, and 0.5% to 10% by weight of a fluorine-containing (meth)acrylic acid ester monomer unit is used.
    Type: Application
    Filed: July 5, 2012
    Publication date: May 29, 2014
    Applicant: ZEON CORPORATION
    Inventor: Yujiro Toyoda
  • Patent number: 8735000
    Abstract: The present invention relates to a porous membrane containing cellulose fibers, wherein the cellulose fibers contain 5% by weight or more of cellulose fibers with a diameter of 1 ?m or more, relative to the total weight of the cellulose, and the porous membrane has a tensile strength of 50 N·m/g or more, and/or has a tear strength of 0.40 kN/m or more. The porous membrane according to the present invention can provide a separator for electrochemical devices with superior properties, at a reasonable cost.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: May 27, 2014
    Assignee: Tokushu Tokai Paper Co., Ltd.
    Inventors: Masanori Imai, Satoshi Nemoto
  • Publication number: 20140141337
    Abstract: An insulating (nonconductive) microporous polymeric battery separator comprised of a single layer of enmeshed microfibers and nanofibers is provided. Such a separator accords the ability to attune the porosity and pore size to any desired level through a single nonwoven fabric. Through a proper selection of materials as well as production processes, the resultant battery separator exhibits isotropic strengths, low shrinkage, high wettability levels, and pore sizes related directly to layer thickness. The overall production method is highly efficient and yields a combination of polymeric nanofibers within a polymeric microfiber matrix and/or onto such a substrate through high shear processing that is cost effective as well. The separator, a battery including such a separator, the method of manufacturing such a separator, and the method of utilizing such a separator within a battery device, are all encompassed within this invention.
    Type: Application
    Filed: November 20, 2012
    Publication date: May 22, 2014
    Inventor: Brian G. Morin
  • Publication number: 20140141314
    Abstract: A porous membrane for a secondary battery including non-conductive particles and a binder for a porous membrane, wherein the non-conductive particles are spherical polymer particles having a rough surface, the particles satisfy the expression 1.2?(SB)/(SD)?5.0 (1) (wherein SB represents an actual specific surface area of the particles and SD means a theoretical specific surface area of the particles), an arithmetic average of shape factor of the particles is 1.20 or less, and the particles include 50% by weight or more of a polyfunctional (meth)acrylic monomer unit; a method for producing the same; and an electrode, a separator and a battery having the same.
    Type: Application
    Filed: June 29, 2012
    Publication date: May 22, 2014
    Applicant: ZEON CORPORATION
    Inventor: Takuya Kaneda
  • Publication number: 20140134498
    Abstract: A separator medium for electrochemical cells that contains at least one nonwoven sheet of polymeric fibers. The nonwoven sheet has a surface area of about 0.5 to about 1.5 m2/g and has a maximum pore size that is equal to or more than 2.5 times the mean flow pore size and more than 11 times the minimum pore size. The sheet may be sulfonated to a level of 0.67% and demonstrates superior tensile properties after sulfonation and relative to previously known separators.
    Type: Application
    Filed: November 13, 2013
    Publication date: May 15, 2014
    Applicant: E I DU PONT DE NEMOURS AND COMPANY
    Inventors: HYUN SUNG LIM, PANKAJ ARORA
  • Publication number: 20140134497
    Abstract: Soy protein and carbohydrate containing binder compositions are described. The binder compositions may include a carbohydrate, a nitrogen-containing compound, and a soy protein. The binder compositions may also optionally include thickening agents such as modified celluloses and polysaccharides.
    Type: Application
    Filed: November 13, 2012
    Publication date: May 15, 2014
    Applicant: JOHNS MANVILLE
    Inventors: Uranchimeg Lester, Kiarash Alavi Shooshtari, Jawed Asrar, Zhihua Guo, Mingfu Zhang
  • Publication number: 20140131268
    Abstract: The present invention pertains to a process for the manufacture of a porous membrane, said process comprising the following steps: (i) providing a composition [composition (F)] comprising: —at least one fluoropolymer [polymer (F)] comprising recurring units derived from at least one (meth)acrylic monomer (MA) having formula (I) wherein: —R1, R2 and R3, equal to or different from each other, are independently selected from a hydrogen atom and a C1-C3 hydrocarbon group, and —RX is a hydrogen atom or a C1-C5 hydrocarbon moiety comprising at least one functional group selected from a hydroxyl, a carboxyl, an epoxide, an ester and an ether group, and —at least one poly(alkylene oxide) (PAO); (ii) processing said composition (F) to provide a film; (iii) treating the film so obtained with an aqueous composition to provide said porous membrane.
    Type: Application
    Filed: June 15, 2012
    Publication date: May 15, 2014
    Applicant: SOLVAY SPECIALTY POLYMERS ITALY S.P.A.
    Inventors: Julio A. Abusleme, Anna Maria Bertasa, Regis Faig, Marco Miele, Stefano Mortara
  • Patent number: 8722253
    Abstract: A lithium ion secondary battery containing a pair of electrodes facing each other, and a separator interposed between the electrodes, wherein at least one of the electrodes has a protecting layer, an active-material containing layer, and a collector sequentially from the separator. The protecting layer contains a silicone resin particle having at least one structural unit represented by RSiO1.5 and R2SiO, where R represents an alkyl group having 1 to 6 carbon atoms or a phenyl group.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: May 13, 2014
    Assignee: TDK Corporation
    Inventors: Kiyonori Hinoki, Kazutoshi Emoto, Haruka Nishimura, Masahiro Saegusa
  • Patent number: 8715856
    Abstract: Disclosed is a secondary battery including a cathode, an anode, a membrane and an electrolyte, wherein the cathode contains a mixture of a first cathode material defined herein and a second cathode material selected from the group consisting of a second-(a) cathode material defined herein and a second-(b) cathode material defined herein, and a combination thereof, wherein a mix ratio of the two cathode materials (first cathode material: second cathode material) is 50:50 to 90:10, and the membrane is an organic/inorganic composite porous membrane including (a) a polyolefin-based membrane substrate and (b) an active layer in which one or more areas selected from the group consisting of the surface of the substrate and a portion of pores of the substrate are coated with a mixture of inorganic particles and a binder polymer, wherein the active layer has a structure in which the inorganic particles are interconnected and fixed through a binder polymer and porous structures are formed by the interstitial volume bet
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: May 6, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Seungeun Choi, Eunyoung Goh, Hyang Mok Lee, Heegyoung Kang, Sangbaek Ryu, Kiwoong Kim
  • Patent number: 8709647
    Abstract: An electrochemical device includes a first electrode in electrical communication with a first current collector, a second electrode in electrical communication with a second current collector and a crosslinked solid polymer in contact with the first and second electrodes. At least one of the first and second electrodes includes a network of electrically connected particles comprising an electroactive material, and the particles of one electrode exert a repelling force on the other electrode when the first and second electrodes are combined with an uncrosslinked precursor to the solid polymer.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: April 29, 2014
    Assignee: A123 Systems LLC
    Inventors: Antoni S. Gozdz, Richard K. Holman, Andrew L. Loxley, Ronnie Wilkins
  • Patent number: 8697290
    Abstract: Electrodes with a multilayer or monolayer composite separator are described. The multilayer composite separator comprises multiple individual composite separator layers. Each individual composite separator layer comprises inorganic particulate material(s) and organic polymer(s) with different inorganic particulate material/polymer weight ratios. The multilayer composite separator layer is constructed in a way such that the composite separator layer adjacent to the electrode active material contains a higher weight percentage of the inorganic particulate material and lower weight percentage of the organic polymer than the composite separator layer outermost from the electrode current collector. Laminated cells comprising a positive electrode, a negative electrode, a laminated multilayer or monolayer composite separator layer are described, wherein at least one of the electrodes has a multilayer or monolayer composite separator disposed onto the surface of the electrode.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: April 15, 2014
    Assignee: A123 Systems LLC
    Inventors: Susan J. Babinec, Gregory B. Less, Dave Vieau
  • Patent number: 8685571
    Abstract: A separator of a molten salt battery made of a porous resin sheet. The separator is improved in wettability to a molten salt by giving hydrophilicity to the resin sheet. In the case of a fluororesin sheet, the sheet is impregnated with water, and irradiated with ultraviolet rays so that C—F bonds in the fluororesin are cleaved and the resultant reacts with water to generate hydrophilic groups, such as OH groups, in each surface layer thereof. The separator gains hydrophilicity through the hydrophilic groups. The separator made of the resin can be made into a bag form. In a molten salt battery having the bag-form separator, the growth of a dendrite is prevented.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: April 1, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Atsushi Fukunaga, Shoichiro Sakai, Chihiro Hiraiwa, Koji Nitta, Masatoshi Majima, Shinji Inazawa
  • Patent number: 8673478
    Abstract: An electrochemical device having a liquid electrolyte which includes a protic solvent, an anode electrode disposed in contact with the liquid electrolyte, and a cathode electrode disposed in contact with the liquid electrolyte. A membrane which interrupts the transport of ions between the electrodes at a predetermined temperature is disposed in the liquid electrolyte between the anode electrode and the cathode electrode. In this way, electrochemical devices such as batteries, fuel cells, electrolyzers, and sensors, which may overheat during use and cause a fire or explosion, are precluded from overheating.
    Type: Grant
    Filed: February 5, 2007
    Date of Patent: March 18, 2014
    Assignee: Gas Technology Institute
    Inventor: Qinbai Fan
  • Publication number: 20140072878
    Abstract: The present invention relates to a process for preparing a separator for an electrochemical device, including the steps of: applying a slurry including at least cellulose fibers and a hydrophilic pore former with a boiling point of 180° C. or more onto a substrate; drying the slurry to form a sheet on the substrate; and separating the sheet from the substrate to obtain a separator, wherein the separator has a volume resistivity of 1500 ?·cm or less determined by alternate current with a frequency of 20 kHz in which the separator is impregnated with a 1 mol/LiPF6/propylene carbonate solution. The present invention can provide a separator for electrochemical devices which has superior separator properties such as low inner resistivity for electrochemical devices, has high lithium shielding properties that cannot be exerted by non-woven fabrics, paper or the like, and can be prepared at a reasonable cost.
    Type: Application
    Filed: October 12, 2012
    Publication date: March 13, 2014
    Applicant: TOKUSHU TOKAI PAPER CO., LTD.
    Inventors: Satoshi Nemoto, Yoshiharu Machii, Eri Murakami
  • Patent number: 8651286
    Abstract: Provided are spunbond polyester mats using an improved curable composition. Such curable composition comprises the reaction product of an aldehyde or ketone and an amine salt of an inorganic acid. The composition when applied to spunbond polyester continuous filaments is cured to form a water-insoluble polymer binder which exhibits good adhesion and thermodimensional stability.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: February 18, 2014
    Assignee: Johns Manville
    Inventors: Kiarash Alavi Shooshtari, James Patrick Hamilton, Jawed Asrar
  • Patent number: 8652686
    Abstract: A composite solid electrolyte includes a monolithic solid electrolyte base component that is a continuous matrix of an inorganic active metal ion conductor and a filler component used to eliminate through porosity in the solid electrolyte. In this way a solid electrolyte produced by any process that yields residual through porosity can be modified by the incorporation of a filler to form a substantially impervious composite solid electrolyte and eliminate through porosity in the base component. Methods of making the composites are also disclosed. The composites are generally useful in electrochemical cell structures such as battery cells and in particular protected active metal anodes, particularly lithium anodes, that are protected with a protective membrane architecture incorporating the composite solid electrolyte.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: February 18, 2014
    Assignee: PolyPlus Battery Company
    Inventors: Steven J. Visco, Lutgard C. De Jonghe, Yevgeniy S. Nimon
  • Publication number: 20140045070
    Abstract: Electrochemical cell comprising (A) at least one anode as component (A), (B) at least one cathode as component (B), (C) at least one non-aqueous electrolyte as component (C), (D) at least one separator positioned between anode (A) and cathode (B), as component (D), characterized in that separator (D) is manufactured from at least one polyimide selected from branched condensation products of (a) at least one polycarboxylic acid having at least 3 COOH groups per molecule or an anhydride or ester thereof, and (b) and at least one compound, selected from (b1) at least one polyamine having on average more than two amino groups per molecule and (b2) at least one polyisocyanate having on average more than two isocyanate groups per molecule.
    Type: Application
    Filed: May 15, 2012
    Publication date: February 13, 2014
    Applicant: BASF SE
    Inventors: Anna Mueller-Cristadoro, Helmut Moehwald, Bernd Bruchmann, Raimund Pietruschka, Ingrid Haupt
  • Publication number: 20140045096
    Abstract: Solid-state separator for electrochemical systems, wherein the solid-state separator consists of a plurality of ion-conducting solid-state segments, and the individual solid-state segments are connected by means of a deformable, electrically insulating material.
    Type: Application
    Filed: February 7, 2012
    Publication date: February 13, 2014
    Applicant: FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    Inventors: Thomas Berger, Markus Hagen
  • Publication number: 20140038026
    Abstract: An electrochemical energy store including a cathode space, an anode space, at least one electrolyte solution, the electrolyte solution being in the cathode space and in the anode space, and at least one separator, to separate the cathode space from the anode space. The separator includes a diaphragm, and the diaphragm has a permeability to molecules smaller than or equal to 250 Dalton, the diaphragm having a valence-dependent permeability to the molecules. In addition, also described is a separator for the electrochemical energy store, a method for manufacturing a diaphragm for the separator, and the use of the electrochemical energy store in an electrical device. The long-term stability of the electrochemical energy store may be increased by the present system.
    Type: Application
    Filed: July 31, 2013
    Publication date: February 6, 2014
    Applicant: Robert Bosch GmbH
    Inventor: Ulrich HASENKOX
  • Publication number: 20140030606
    Abstract: The method for producing a separator for an electrochemical device of the present invention includes: obtaining a separator forming composition, wherein the separator forming composition contains a resin raw material including a monomer or an oligomer, a solvent (a) capable of dissolving the resin raw material; and a solvent (b) capable of causing the resin raw material to agglomerate by solvent shock, and Vsb/Vsa as a ratio between the volume Vsa of the solvent (a) and the volume Vsb of the solvent (b) is 0.04 to 0.2; applying the composition to a substrate; irradiating with energy rays a coating of the applied composition to form a resin (A) having a crosslinked structure; and drying the coating after the formation of the resin (A) to form pores. The separator for an electrochemical device of the present invention is produced by the production method of the present invention.
    Type: Application
    Filed: March 12, 2012
    Publication date: January 30, 2014
    Applicant: HITACHI, LTD.
    Inventors: Eri Kojima, Takahiro Furutani, Toshiyuki Watanabe, Kunihiko Koyama
  • Publication number: 20140017571
    Abstract: Representative embodiments provide a liquid or gel separator utilized to separate and space apart first and second conductors or electrodes of an energy storage device, such as a battery or a supercapacitor. A representative liquid or gel separator comprises a plurality of particles, typically having a size (in any dimension) between about 0.5 to about 50 microns; a first, ionic liquid electrolyte; and a polymer. In another representative embodiment, the plurality of particles comprise diatoms, diatomaceous frustules, and/or diatomaceous fragments or remains. Another representative embodiment further comprises a second electrolyte different from the first electrolyte; the plurality of particles are comprised of silicate glass; the first and second electrolytes comprise zinc tetrafluoroborate salt in 1-ethyl-3-methylimidalzolium tetrafluoroborate ionic liquid; and the polymer comprises polyvinyl alcohol (“PVA”) or polyvinylidene fluoride (“PVFD”).
    Type: Application
    Filed: August 9, 2012
    Publication date: January 16, 2014
    Applicant: NTHDEGREE TECHNOLOGIES WORLDWIDE INC.
    Inventors: Vera Nicholaevna Lockett, Mark D. Lowenthal, Neil O. Shotton, William Johnstone Ray, Theodore I. Kamins
  • Publication number: 20140011093
    Abstract: The present invention relates to a composition for preparing a separator for an electrochemical device, a method preparing a separator for an electrochemical device, and an electrochemical device having a separator prepared therefrom, more particularly, a composition for preparing a separator for an electrochemical device, comprising a polyolefin, a first diluent, and a second diluent, wherein an interaction energy between the first diluent and the second diluent is in the range of 2 to 3.5 cal/cm3, a method preparing a separator for an electrochemical device using the composition, and an electrochemical device having a separator prepared therefrom. In accordance with the present invention, the pore size of a polyolefin separator can be suitably controlled into a size desired by a user, and the high-temperature stability and mechanical property of the separator can be remarkably improved, thereby enhancing the life time and stability of an electrochemical device having the same.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 9, 2014
    Applicant: LG CHEM, LTD.
    Inventors: Bong-Tae KIM, Heon-Sik SONG, Cheon-Il PARK
  • Publication number: 20130344396
    Abstract: In various embodiments an improved binder composition, electrolyte composition and a separator film composition using discrete carbon nanotubes, their methods of production and utility for energy storage and collection devices, like batteries, capacitors and photovoltaics, is described. The binder, electrolyte, or separator composition can further comprise polymers. The discrete carbon nanotubes further comprise at least a portion of the tubes being open ended and/or functionalized. The utility of the binder, electrolyte or separator film composition includes improved capacity, power or durability in energy storage and collection devices. The utility of the electrolyte and or separator film compositions includes improved ion transport in energy storage and collection devices.
    Type: Application
    Filed: June 21, 2013
    Publication date: December 26, 2013
    Inventors: Clive P. Bosnyak, Kurt W. Swogger, Milos Marinkovic
  • Publication number: 20130330591
    Abstract: The present invention provides a method for producing a porous membrane. The method allows: avoidance of use of a solvent that places a large load on the environment; relatively easy control of parameters such as the porosity and the pore diameter; and high chemical stability of a resultant porous membrane. The method for producing a porous membrane of the present invention includes the steps of: preparing an epoxy resin composition containing an epoxy resin, a curing agent represented by H2N—(CH2)n—NH2 where n is an integer from 4 to 8, and a porogen; forming a cured product of the epoxy resin composition into a sheet shape or curing a sheet-shaped formed body of the epoxy resin composition, so as to obtain an epoxy resin sheet; and removing the porogen from the epoxy resin sheet by means of a halogen-free solvent.
    Type: Application
    Filed: August 15, 2013
    Publication date: December 12, 2013
    Applicant: NITTO DENKO CORPORATION
    Inventors: Yuko SAITO, Chiharu YANO, Hiroyoshi TAKE, Yosuke YAMADA, Michie SAKAMOTO, Shunsuke NOUMI, Masaya YANO
  • Publication number: 20130330633
    Abstract: The present invention provides a method for producing a separator for nonaqueous electrolyte electricity storage devices. The method allows: avoidance of use of a solvent that places a large load on the environment; relatively easy control of parameters such as the porosity and the pore diameter; and a relatively high strength of a resultant separator for nonaqueous electrolyte electricity storage devices. The present invention relates to a method for producing a separator for nonaqueous electrolyte electricity storage devices that has a thickness ranging from 5 to 50 ?m. The method includes the steps of preparing an epoxy resin composition containing a glycidylamine-type epoxy resin, a curing agent, and a porogen; forming a cured product of the epoxy resin composition into a sheet shape or curing a sheet-shaped formed body of the epoxy resin composition, so as to obtain an epoxy resin sheet; and removing the porogen from the epoxy resin sheet by means of a halogen-free solvent.
    Type: Application
    Filed: June 12, 2012
    Publication date: December 12, 2013
    Applicant: NITTO DENKO CORPORATION
    Inventors: Satoshi Ito, Chiharu Yano, Shunsuke Noumi, Yosuke Yamada
  • Publication number: 20130330637
    Abstract: The object of an exemplary embodiment of the invention is to provide a separator for an electric storage device which has small thermal shrinkage under high-temperature environment, and in which the increase of the battery temperature can be suppressed. An exemplary embodiment of the invention is a separator for an electric storage device, which comprises a cellulose derivative represented by a prescribed formula. The separator for an electric storage device can be obtained, for example, by treating a cellulose separator containing cellulose with a phosphate or a phosphite.
    Type: Application
    Filed: February 21, 2012
    Publication date: December 12, 2013
    Applicant: NEC CORPORATION
    Inventors: Kazuaki Matsumoto, Kazuhiko Inoue
  • Patent number: 8603681
    Abstract: The present invention relates to a novel porous film material which comprises at least one carbonaceous semimetal oxide phase, and to a process for production thereof. The invention also relates to the use of these porous film materials as a separator layer or for production of such separator layers in electrochemical cells, particularly in lithium cells and especially in lithium secondary cells.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: December 10, 2013
    Assignee: BASF SE
    Inventors: Nicole Hildebrandt, Arno Lange, Klaus Leitner, Phillip Hanefeld, Claudia Staudt
  • Publication number: 20130316246
    Abstract: A porous film that excels when used as a separator for a lithium-ion battery not only in separator followability to expansion and contraction of an electrode during charging and discharging, but also in charging and discharging cycle characteristics. The porous film, when the thickness of a circular region having a diameter of 10 mm as an initial thickness t0 after a load of 50 g is applied onto the circular region for 10 seconds, as a thickness t after a load of 500 g is subsequently applied onto the same region for 10 seconds, and as a thickness t1 after 10 seconds has passed after the load applied onto the same region is subsequently changed to 50 g, the thickness change rate is 10% to 50%, and the thickness (t1) recovery rate is 80% to 99.9%.
    Type: Application
    Filed: February 2, 2012
    Publication date: November 28, 2013
    Applicant: Toray Industries, Inc.
    Inventors: Soichi Fujimoto, Takuya Kuma, Masatoshi Ohkura
  • Patent number: 8592074
    Abstract: An exemplary separator of the present invention includes a first layer and a second layer. The first layer has a principal body made from high fiber material. The second layer is made from chlorophyll, and is deposed on the first layer. In one embodiment, the separator comprises a third layer, where the second layer is sandwiched between the first layer and the third layer. An organic battery using the separator and a method of manufacturing the separator are also provided in the present invention.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: November 26, 2013
    Assignee: Innot Bioenergy Holding Co.
    Inventor: Chungpin Liao
  • Patent number: 8592088
    Abstract: An electrode assembly for a battery that can improve safety of the ceramic layer and increase lifetime capacity and high rate charge/discharge capacity and low temperature charge/discharge capacity of the electrode assembly. The electrode assembly having a porous ceramic layer coated on at least one surface of the positive electrode plate or the negative electrode plate to prevent an electrical short between the positive electrode plate and the negative electrode plate, where a main peak of pore size of the ceramic layer is in the range of 20 nm to 80 nm, and a secondary battery including the electrode assembly.
    Type: Grant
    Filed: January 2, 2008
    Date of Patent: November 26, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventor: Jinhee Kim
  • Patent number: 8592089
    Abstract: A microporous polyethylene battery separator material (212), for use in a flooded-cell type lead-acid battery, benefits from increased porosity, enhanced wettability, and exceptionally low electrical resistance when an electrolyte-soluble pore former is employed in the manufacturing process. The pore former (210) is soluble in electrolytic fluid and therefore dissolves in-situ in sulfuric acid during battery assembly. The dissolution of the pore former leaves behind additional, larger voids (220) in the separator material and thereby enhances ionic diffusion and improves battery performance.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: November 26, 2013
    Assignee: Amtek Research International, LLC
    Inventors: Chi Thuong-Le La, Robert R. Waterhouse, Richard W. Pekala
  • Patent number: 8592073
    Abstract: A flat-plate battery is provided in the present invention. The flat-plate battery includes a negative-electrode layer, a first separator, a chlorophyll layer, a second separator, a positive-electrode layer, an upper plate and a lower plate. The negative-electrode layer, the first separator, the chlorophyll layer, the second separator and the positive-electrode layer are stacked together in sequence, and then are sandwiched between the upper plate and the lower plate. The flat-plate battery of the present invention can store hydrogen by the chlorophyll of the chlorophyll layer to generate electricity. Thus, the manufacturing process of the flat-plate battery is simple and economical, and only natural and non-toxic substances are used. Unlike the manufacturing process of conventional batteries, the manufacturing process of the flat-plate battery of the present invention will not cause environmental pollution even when the battery is discarded after use.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: November 26, 2013
    Assignee: Innot Bioenergy Holding Co.
    Inventor: Chungpin Liao
  • Publication number: 20130302695
    Abstract: The invention relates to a foil which includes polymeric fibres, the polymeric fibres of which are interwelded, more particularly heat welded, solvent welded, cold welded, ultrasonically welded and/or at least partly interfused or positively or nonpositively interconnected at the crossing points between the pores at least, a process for production thereof, and also use thereof.
    Type: Application
    Filed: December 22, 2011
    Publication date: November 14, 2013
    Applicant: Evonik Degussa GmbH
    Inventors: Ekkehard Beer, Michael Kube, Matthias Pascaly
  • Publication number: 20130302694
    Abstract: The invention relates to particulate aminoplastic material composed of at least one aminoplastic, where the specific surface area of the particles is from 1 to 500 m2/g, and the average diameter of the particles is from 5 to 500 ?m. The invention further relates to a process for producing said particulate aminoplastic material, to a molding which comprises particulate aminoplastic material, and also to a production process for the molding, and to the use of the particulate aminoplastic material and of the molding, for example as plastics membrane in batteries.
    Type: Application
    Filed: April 4, 2013
    Publication date: November 14, 2013
    Applicant: BASF SE
    Inventors: Rebekka von Benten, Matthias Schade, Günter Scherr, Miran Yu
  • Patent number: 8574767
    Abstract: Thin-film electrodes and battery cells, and methods of fabrication. A thin film electrode may be fabricated from a non-metallic, non-conductive porous support structure having pores with micrometer-range diameters. The support may include a polymer film. A first surface of the support is metalized, and the pores are partially metallized to create metal tubes having a thickness within a range of 50 to 150 nanometers, in contact with the metal layer. An active material is disposed within metalized portions of the pores. An electrolyte is disposed within non-metalized portions of the pores. Active materials may be selected to create an anode and a cathode. Non-metalized surfaces of the anode and cathode may be contacted to one another to form a battery cell, with the non-metalized electrolyte-containing portions of the anode facing the electrolyte-containing portions of the cathode pores. A battery cell may be fabricated as, for example, a nickel-zinc battery cell.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: November 5, 2013
    Assignee: The Johns Hopkins University
    Inventors: Rengaswamy Srinivasan, Jeffrey P. Maranchi, Lance M. Baird, Ryan M. Deacon, Arthur S. Francomacaro, Paul J. Biermann, Craig B. Leese, Gary E. Peck
  • Patent number: 8574769
    Abstract: A separator includes a separator body and a first film. The separator body is formed by mixing and solidifying a first material and a second material and then removing the first material by an alkaline liquid etching process. The separator body has a plurality of irregular holes formed corresponding to the removed first material. The first film is disposed on one side of the separator body.
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: November 5, 2013
    Assignees: Prologium Technology Co., Ltd., Prologium Holding Inc.
    Inventor: Szu-Nan Yang
  • Publication number: 20130288132
    Abstract: This polyolefin resin porous film can be easily produced, and when used as a non-aqueous electrolyte cell separator, can suppress clogging and can evince a high cell output. The polyolefin resin porous film is a porous film having a polyolefin resin as the primary component and is characterized by the average flow diameter pressure (PAP) being 1500-2500 kPa, the bubble point pressure (PBP) being 300-1500 kPa, and the ratio (Pa/PAP) of the air permeability (Pa) and the bubble point pressure (PBP) being no greater than 0.35 sec/(100 ml·kPa).
    Type: Application
    Filed: January 23, 2012
    Publication date: October 31, 2013
    Applicant: Mitsubishi Plastics, Inc.
    Inventors: Toru Terakawa, Takeyoshi Yamada, Yasushi Usami
  • Patent number: 8568930
    Abstract: In a lithium ion battery, one or more chelating agents may be attached to a microporous polymer separator for placement between a negative electrode and a positive electrode or to a polymer binder material used to construct the negative electrode, the positive electrode, or both. The chelating agents may comprise, for example, at least one of a crown ether, a podand, a lariat ether, a calixarene, a calixcrown, or mixtures thereof. The chelating agents can help improve the useful life of the lithium ion battery by complexing with unwanted metal cations that may become present in the battery's electrolyte solution while, at the same time, not significantly interfering with the movement of lithium ions between the negative and positive electrodes.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: October 29, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Ion C. Halalay, Timothy J. Fuller, Lijun Zou, Stephen J. Harris
  • Publication number: 20130280616
    Abstract: The present invention relates to a porous membrane containing cellulose fibers, wherein the cellulose fibers contain 5% by weight or more of cellulose fibers with a diameter of 1 ?m or more, relative to the total weight of the cellulose fibers, the mode diameter (maximal frequency) of the pore distribution determined by the mercury penetration method is less than 0.3 ?m, the air resistance per thickness of 10 ?m is from 20 to 600 seconds, and the porous membrane has a volume resistivity of 1500 ?·cm or less determined by alternate current with a frequency of 20 kHz in which the porous membrane is impregnated with 1 mol/LiPF6/propylene carbonate solution. The porous membrane according to the present invention can provide a separator for electrochemical devices with superior properties at a reasonable cost.
    Type: Application
    Filed: October 12, 2012
    Publication date: October 24, 2013
    Applicant: Tokushu Tokai Paper Co., Ltd.
    Inventors: Yoshiharu Machii, Satoshi Nemoto, Yohta Mori
  • Publication number: 20130280615
    Abstract: The present invention relates to a porous membrane containing cellulose fibers, wherein the cellulose fibers contain 5% by weight or more of cellulose fibers with a diameter of 1 ?m or more, relative to the total weight of the cellulose, and the porous membrane has a tensile strength of 50 N·m/g or more, and/or has a tear strength of 0.40 kN/m or more. The porous membrane according to the present invention can provide a separator for electrochemical devices with superior properties, at a reasonable cost.
    Type: Application
    Filed: October 12, 2012
    Publication date: October 24, 2013
    Applicant: Tokushu Tokai Paper Co., Ltd.
    Inventors: Masanori Imai, Satoshi Nemoto
  • Publication number: 20130280584
    Abstract: To provide a secondary battery porous membrane which is produced using a slurry for secondary battery porous membranes having excellent coatability and excellent dispersibility of insulating inorganic particles and is capable of improving the cycle characteristics of a secondary battery that is obtained using the secondary battery porous membrane, said secondary battery porous membrane having high flexibility and low water content and being capable of preventing particle fall-off. [Solution] A slurry for secondary battery porous membranes of the present invention is characterized by containing: insulating inorganic particles, each of which has a surface functional group that is selected from the group consisting of an amino group, an epoxy group; a mercapto group and an isocyanate group; a binder which has a reactive group that is crosslinkable with the surface functional group; and a solvent.
    Type: Application
    Filed: November 30, 2011
    Publication date: October 24, 2013
    Applicant: ZEON CORPORATION
    Inventor: Taku Matsumura
  • Publication number: 20130273421
    Abstract: A secondary battery porous membrane, manufactured by a slurry for secondary battery porous membrane, which is superior in coating priority and dispersibility of non-conductive organic particles, which improves cycle characteristic of the obtained secondary battery, which has high flexibility and can prevent powder falls, and which has less content of moisture amount; and non-conductive organic particles, which can be suitably used as a secondary battery porous membrane and has less content of metallic foreign particles. The slurry for secondary battery porous membrane comprises; a binder including a polymerized unit of vinyl monomer having a hydrophilic acid group, a non-conductive organic particle having a functional group, cross-linkable with the hydrophilic acid group and a solvent.
    Type: Application
    Filed: October 7, 2011
    Publication date: October 17, 2013
    Applicant: ZEON CORPORATION
    Inventors: Taku Matsumura, Takuya Kaneda, Yasuhiro Wakizaka
  • Patent number: 8557423
    Abstract: Disclosed is a battery including a cathode in which cathode active-material coating layers provided on both surfaces of a cathode collector are longitudinally deviated from each other, and an anode having at least one anode active-material coating layer provided on an anode collector, the cathode and anode being wound to face each other with a separator interposed therebetween. At least one of a winding beginning portion and winding ending portion of the cathode is provided with a cathode uncoated part for installation of a cathode lead. An insulator tape is attached to the boundary of the cathode active-material coating layer at a position where the anode active-material coating layer faces a non-coating part of the cathode not containing the cathode active-material coating layer, achieving enhanced electrical insulation capability and consequential safety of the battery.
    Type: Grant
    Filed: January 28, 2009
    Date of Patent: October 15, 2013
    Assignee: LG Chem, Ltd.
    Inventors: Jin Soo Lee, Kil Young Lee, Dong Myung Kim
  • Patent number: 8557444
    Abstract: This invention provides a multi-layer article comprising a first electrode material, a second electrode material, and a porous separator disposed between and in contact with the first and the second electrode materials, wherein the porous separator comprises a nanoweb consisting essentially of a plurality of nanofibers of a fully aromatic polyimide. Also provided is a method for preparing the multi-layer article, and an electrochemical cell employing the same. A multi-layer article comprising a polyimide nanoweb with enhanced properties is also provided.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: October 15, 2013
    Assignee: E I du Pont de Nemours and Company
    Inventors: Pankaj Arora, Stephane Francois Bazzana, T. Joseph Dennes, Eric P. Holowka, Lakshmi Krishnamurthy, Stephen Mazur, Glen E. Simmonds
  • Publication number: 20130266873
    Abstract: To provide a secondary battery porous membrane that has superior heat resistance and flexibility and contributes to improvements in battery cycle characteristics. Also provided is a secondary battery having high cycle characteristics that uses this porous membrane. [Solution] This secondary battery porous membrane contains nonconductive particles and a binder. The binder is characterized by being formed from a polymer containing a nitrile group, a novel group, and a C4+ straight-chain alkylene structural unit in the same molecule and the nitrile group content in the polymer constituting the binder being 1-25% by mass, with the iodine value of the polymer being 0 mg/100 mg-30 mg/100 mg.
    Type: Application
    Filed: October 28, 2011
    Publication date: October 10, 2013
    Applicant: ZEON CORPORATION
    Inventors: Takuya Ishii, Takuya Kaneda
  • Publication number: 20130252067
    Abstract: A method is presented for producing polyolefin microporous membranes which are superior in thermal stability and are particularly useful as a separator for a lithium ion battery. A process including a first step of melting polyolefini resin and mixing together at least melted polyolefin resin, organosiloxane particles including a polysiloxane cross-linked structure and having a spherical or golfball shape with an average particle diameter of 0.01-10 ?m and a plasticizer to obtain a melted mixture, a second step of molding this mixture and biaxially stretching molded product to obtain a stretched film and a third step of extracting and removing the plasticizer from the stretched film is carried out, if a membrane having a single film layer is to be produced, to obtain this single film layer and, if a membrane having two or more laminated film layer is to be produced, to obtain the film layers on both outsides.
    Type: Application
    Filed: May 24, 2013
    Publication date: September 26, 2013
    Inventor: Ippei Noda
  • Patent number: 8541138
    Abstract: The present invention describes an improved membrane for Redox Flow Batteries, in particular for Vanadium Redox Batteries and energy storage systems and applications employing the Vanadium Redox Cells and Batteries. Redox Flow Batteries involve the use of two redox couple electrolytes separated by an ion exchange membrane that is the most important cell component.
    Type: Grant
    Filed: June 19, 2006
    Date of Patent: September 24, 2013
    Assignee: Newsouth Innovations PTY Limited
    Inventors: George Christopher Kazacos, Nicholas Michael Kazacos
  • Publication number: 20130244119
    Abstract: A separator for a lithium ion battery, characterized in that same comprises graphene.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 19, 2013
    Applicant: Li-Tec Battery GmbH
    Inventor: Tim Schaefer