And Inorganic Material Patents (Class 429/251)
  • Patent number: 8715856
    Abstract: Disclosed is a secondary battery including a cathode, an anode, a membrane and an electrolyte, wherein the cathode contains a mixture of a first cathode material defined herein and a second cathode material selected from the group consisting of a second-(a) cathode material defined herein and a second-(b) cathode material defined herein, and a combination thereof, wherein a mix ratio of the two cathode materials (first cathode material: second cathode material) is 50:50 to 90:10, and the membrane is an organic/inorganic composite porous membrane including (a) a polyolefin-based membrane substrate and (b) an active layer in which one or more areas selected from the group consisting of the surface of the substrate and a portion of pores of the substrate are coated with a mixture of inorganic particles and a binder polymer, wherein the active layer has a structure in which the inorganic particles are interconnected and fixed through a binder polymer and porous structures are formed by the interstitial volume bet
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: May 6, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Seungeun Choi, Eunyoung Goh, Hyang Mok Lee, Heegyoung Kang, Sangbaek Ryu, Kiwoong Kim
  • Patent number: 8703343
    Abstract: In a lithium secondary battery provided by the present invention, the layer density on a side facing a protective layer (46) in a negative electrode active material layer (44) and/or positive electrode active material layer where the protective layer is formed, the protective layer containing an insulating filler and a binder, is higher than the layer density in a central portion and a side facing a current collector (42) in the negative electrode active material layer and/or positive electrode active material layer where the protective layer is formed.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: April 22, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Hiroaki Ikeda
  • Patent number: 8697290
    Abstract: Electrodes with a multilayer or monolayer composite separator are described. The multilayer composite separator comprises multiple individual composite separator layers. Each individual composite separator layer comprises inorganic particulate material(s) and organic polymer(s) with different inorganic particulate material/polymer weight ratios. The multilayer composite separator layer is constructed in a way such that the composite separator layer adjacent to the electrode active material contains a higher weight percentage of the inorganic particulate material and lower weight percentage of the organic polymer than the composite separator layer outermost from the electrode current collector. Laminated cells comprising a positive electrode, a negative electrode, a laminated multilayer or monolayer composite separator layer are described, wherein at least one of the electrodes has a multilayer or monolayer composite separator disposed onto the surface of the electrode.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: April 15, 2014
    Assignee: A123 Systems LLC
    Inventors: Susan J. Babinec, Gregory B. Less, Dave Vieau
  • Patent number: 8597819
    Abstract: A separator for an electrochemical cell, comprising (A) a flexible perforate support, and (B) a porous ceramic material which fills the perforations in the support and is suitable for receiving an ion-conducting electrolyte, wherein the porous ceramic material comprises a first porous layer which is characterized by an average pore size and also at least one second porous layer for contacting with an electrode, the second porous layer having an average pore size which is smaller than the average pore size of the first porous layer.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: December 3, 2013
    Assignee: Evonik Degussa GmbH
    Inventors: Volker Hennige, Christian Hying, Gerhard Hoerpel, Petr Novak, Jens Vetter
  • Patent number: 8597836
    Abstract: An object of this invention is to improve battery performance such as a rate capability of a nonaqueous electrolyte solution secondary battery using a separator constituting a thermoplastic resin-based porous film containing a filler. This invention provides a nonaqueous electrolyte solution secondary battery separator which is formed from a porous film containing a thermoplastic resin and a filler contained in the thermoplastic resin and has a content of chlorine of 10 ppm or less or a content of iron of 100 ppm or less as well as relates to a nonaqueous electrolyte solution secondary battery using this separator.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: December 3, 2013
    Assignees: Mitsubishi Chemical Corporation, Mitsubishi Plastics, Inc.
    Inventors: Satoshi Nakashima, Yasushi Usami, Kazutaka Sakaki
  • Patent number: 8592072
    Abstract: A battery separator (13) of the present invention includes a porous film (12) serving as a substrate and a crosslinked polymer layer (11) supported on the porous film (12). The crosslinked polymer layer (11) contains a crosslinked polymer and inorganic particles, and is non-porous. The crosslinked polymer is obtained by reacting a reactive polymer having a functional group in its molecule with a polyfunctional compound reactive with the functional group so as to crosslink at least a part of the reactive polymer. A lithium ion secondary battery of the present invention includes a positive electrode (14), a negative electrode (15), the battery separator (13) of the present invention disposed between the positive electrode (14) and the negative electrode (15), and a non-aqueous electrolyte solution. The battery separator (13) is disposed so that the porous film (12) faces the negative electrode (15) and the crosslinked polymer layer (11) faces the positive electrode (14).
    Type: Grant
    Filed: September 7, 2009
    Date of Patent: November 26, 2013
    Assignee: Nitto Denko Corporation
    Inventors: Hiroyoshi Take, Shunsuke Noumi, Chiharu Odane, Takuji Shintani
  • Patent number: 8592070
    Abstract: A lithium rechargeable battery including a cathode, an anode, a separator for separating the cathode from the anode, and a non-aqueous electrolyte is provided. Each of the cathode and the anode includes an electrode collector and an electrode active material layer formed on the electrode collector. The separator comprises a porous membrane including a ceramic material and a binder. The peel strength of the electrode active material layer to the electrode collector is greater than the peel strength of the porous membrane to the electrode collector. Particularly, the peel strength of the active material layer to the electrode collector is 2 gf/mm or higher when measured before battery assembly, and the peel strength of the porous membrane to the electrode collector is 0.2 gf/mm or higher when measured before battery assembly.
    Type: Grant
    Filed: August 22, 2006
    Date of Patent: November 26, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventor: Jinhee Kim
  • Patent number: 8592089
    Abstract: A microporous polyethylene battery separator material (212), for use in a flooded-cell type lead-acid battery, benefits from increased porosity, enhanced wettability, and exceptionally low electrical resistance when an electrolyte-soluble pore former is employed in the manufacturing process. The pore former (210) is soluble in electrolytic fluid and therefore dissolves in-situ in sulfuric acid during battery assembly. The dissolution of the pore former leaves behind additional, larger voids (220) in the separator material and thereby enhances ionic diffusion and improves battery performance.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: November 26, 2013
    Assignee: Amtek Research International, LLC
    Inventors: Chi Thuong-Le La, Robert R. Waterhouse, Richard W. Pekala
  • Patent number: 8592088
    Abstract: An electrode assembly for a battery that can improve safety of the ceramic layer and increase lifetime capacity and high rate charge/discharge capacity and low temperature charge/discharge capacity of the electrode assembly. The electrode assembly having a porous ceramic layer coated on at least one surface of the positive electrode plate or the negative electrode plate to prevent an electrical short between the positive electrode plate and the negative electrode plate, where a main peak of pore size of the ceramic layer is in the range of 20 nm to 80 nm, and a secondary battery including the electrode assembly.
    Type: Grant
    Filed: January 2, 2008
    Date of Patent: November 26, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventor: Jinhee Kim
  • Publication number: 20130302702
    Abstract: The object of an exemplary embodiment of the invention is to provide a separator for an electric storage device which has small heat shrinkage in a high-temperature environment, and in which the increase of the battery temperature can be suppressed. An exemplary embodiment of the invention is a separator for an electric storage device, which comprises a cellulose derivative represented by a prescribed formula. The separator for an electric storage device can be obtained, for example, by treating a cellulose separator containing cellulose with a halogen-containing carboxylic acid or a halogen-containing alcohol.
    Type: Application
    Filed: February 21, 2012
    Publication date: November 14, 2013
    Applicant: NEC CORPORATION
    Inventor: Kazuaki Matsumoto
  • Patent number: 8580433
    Abstract: The present invention provides a novel titanium-based composite oxide being usable as an electrode material for a lithium secondary battery and having a high capacity and an excellent cycle stability, a method for producing the same and a lithium secondary battery using the titanium-based composite oxide. Disclosed is a compound obtained by compositing titanium oxide with elements other than titanium, specifically a titanium-based composite oxide wherein the relevant chemical formula is Ti(1-x)MxOy, M is the element Nb or the element P, or a combination of these two elements in an optional ratio therebetween, x is such that 0<x<0.17, y is such that 1.8?y?2.1, x is the sum of Nb and P when M is a combination of the element Nb and the element P, and the present invention provides a lithium secondary battery using as an electrode the titanium-based composite oxide.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: November 12, 2013
    Assignee: Titan Kogyo Kabushiki Kaisha
    Inventors: Kiyoshi Nakahara, Nobuyuki Hashimoto, Toshimasa Seki
  • Publication number: 20130295441
    Abstract: Provide is a separator for a power storage device, which reliably prevents short circuits between positive and negative electrode layers while maintaining the permeating ions function, and effectively suppresses shrinkage, and a power storage device using the separator. The separator is composed of a composite material including inorganic microparticles and an organic binder, the composite material has a pigment volume concentration of 55% or more, and the inorganic microparticles have an average particle size in the range of 0.2 to 3.0 ?m, and a general particle shape index in the range of 0.50 to 0.85. The composite material can have a pigment volume concentration in the range of 55 to 80%, or 55 to 65%.
    Type: Application
    Filed: July 11, 2013
    Publication date: November 7, 2013
    Inventors: Norihiro Yoshikawa, Ichiro Nakamura, Hisao Kawamura
  • Patent number: 8574769
    Abstract: A separator includes a separator body and a first film. The separator body is formed by mixing and solidifying a first material and a second material and then removing the first material by an alkaline liquid etching process. The separator body has a plurality of irregular holes formed corresponding to the removed first material. The first film is disposed on one side of the separator body.
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: November 5, 2013
    Assignees: Prologium Technology Co., Ltd., Prologium Holding Inc.
    Inventor: Szu-Nan Yang
  • Patent number: 8568930
    Abstract: In a lithium ion battery, one or more chelating agents may be attached to a microporous polymer separator for placement between a negative electrode and a positive electrode or to a polymer binder material used to construct the negative electrode, the positive electrode, or both. The chelating agents may comprise, for example, at least one of a crown ether, a podand, a lariat ether, a calixarene, a calixcrown, or mixtures thereof. The chelating agents can help improve the useful life of the lithium ion battery by complexing with unwanted metal cations that may become present in the battery's electrolyte solution while, at the same time, not significantly interfering with the movement of lithium ions between the negative and positive electrodes.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: October 29, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Ion C. Halalay, Timothy J. Fuller, Lijun Zou, Stephen J. Harris
  • Publication number: 20130280584
    Abstract: To provide a secondary battery porous membrane which is produced using a slurry for secondary battery porous membranes having excellent coatability and excellent dispersibility of insulating inorganic particles and is capable of improving the cycle characteristics of a secondary battery that is obtained using the secondary battery porous membrane, said secondary battery porous membrane having high flexibility and low water content and being capable of preventing particle fall-off. [Solution] A slurry for secondary battery porous membranes of the present invention is characterized by containing: insulating inorganic particles, each of which has a surface functional group that is selected from the group consisting of an amino group, an epoxy group; a mercapto group and an isocyanate group; a binder which has a reactive group that is crosslinkable with the surface functional group; and a solvent.
    Type: Application
    Filed: November 30, 2011
    Publication date: October 24, 2013
    Applicant: ZEON CORPORATION
    Inventor: Taku Matsumura
  • Publication number: 20130266872
    Abstract: The present invention provides a separator for use in an alkaline electrochemical cell comprising a polymer material and an inert filler comprising zirconium oxide. Examples of polymer materials useful in this invention include ABS polymer material, halogenated alkylene polymer material, and PE polymer material.
    Type: Application
    Filed: September 16, 2011
    Publication date: October 10, 2013
    Applicant: ZPower, LLC
    Inventors: George W. Adamson, David John Scanlan, Sam Bishop, Hongxia Zhou, Ximei Sun, Biying Huang, Liang Liang
  • Patent number: 8541129
    Abstract: The present invention relates to a physicochemically-active porous membrane for electrochemical cells that purports dual functions: an electronic insulator (separator) and a unidirectional ion-transporter (electrolyte). The electrochemical cell membrane is activated for the transport of ions by contiguous ion coordination sites on the interior two-dimensional surfaces of the trans-membrane unidirectional pores. One dimension of the pore surface has a macroscopic length (1 nm-1000 ?m) and is directed parallel to the direction of an electric field, which is produced between the cathode and the anode electrodes of an electrochemical cell. The membrane material is designed to have physicochemical interaction with ions. Control of the extent of the interactions between the ions and the interior pore walls of the membrane and other materials, chemicals, or structures contained within the pores provides adjustability of the ionic conductivity of the membrane.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: September 24, 2013
    Assignee: U.S. Department of Energy
    Inventors: Rex E. Gerald, II, Katarina J. Ruscic, Devin N. Sears, Luis J. Smith, Robert J. Klingler, Jerome W. Rathke
  • Publication number: 20130240438
    Abstract: Blends comprising a sulfonated block copolymer and particulate carbon are useful materials for membranes, films and coatings in applications which require high dimensional stability, high water vapor transport, high conductivity, and low flammability. The sulfonated block copolymer comprises at least two polymer end blocks A and at least one polymer interior block B wherein each A block contains essentially no sulfonic acid or sulfonate functional groups and each B block is a polymer block containing from about 10 to about 100 mol percent sulfonic acid or sulfonate functional groups based on the number of monomer units of the B block.
    Type: Application
    Filed: March 7, 2013
    Publication date: September 19, 2013
    Applicant: KRATON POLYMERS U.S. LLC
    Inventors: Carl Lesley Willis, Kuitian Tan
  • Patent number: 8535819
    Abstract: A battery is disclosed that includes two contact areas, an electrolyte, and an electronically conductive material that, at a neutralization trip point temperature, increases electronic conductivity internal to the battery between the first contact area and the second contact area. In one embodiment, the electronically conductive material is void from being activated external to the battery. In another embodiment, the battery includes a semiconductor material that includes custom doping to provide the increased electron conductivity at the neutralization trip point temperature. In yet another embodiment, the battery includes an insulator for separating the electronically conductive material until a temperature internal to the battery reaches the neutralization trip point temperature, at which point permits the electronically conductive material to increase the electronic conductivity between the first contact area and the second contact area.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: September 17, 2013
    Assignee: Lenovo (Singapore) Pte. Ltd.
    Inventors: Bouziane Yebka, Joseph Anthony Holung, Tin-Lup Wong, Kenneth Scott Seethaler
  • Publication number: 20130236793
    Abstract: The purpose is to provide a porous polyolefin resin film which has high gas permeability and a high porosity, and which can exhibit excellent properties including break down properties when used as a separator for a non-aqueous electrolyte secondary battery. The present invention relates to a porous polyolefin resin film which is produced from a resin composition (a) containing a polyolefin resin as the main component and additionally containing organic-inorganic hybrid particles (f).
    Type: Application
    Filed: October 5, 2011
    Publication date: September 12, 2013
    Applicant: Mitsubishi Plastics, Inc.
    Inventors: Yoshihito Takagi, Takatoshi Muta, Tomoyuki Nemoto
  • Patent number: 8530097
    Abstract: A secondary battery including an electrode assembly including a positive electrode including a positive electrode active material layer, a negative electrode including a negative electrode active material layer, a separator separating the positive and negative electrodes from each other, and an electrolyte. The separator includes a porous layer comprising a ceramic material and a binder, and a polyolefin-based resin layer. The porous layer has a centerline average roughness (Ra) of 0.3 ?m to 1.5 ?m, the polyolefin-based resin layer has a porosity of 30% to 60%, and the polyolefin-based resin layer has a compressibility of 4% to 10%.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: September 10, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jin-Hee Kim, Wan-Mook Lim
  • Patent number: 8512898
    Abstract: To obtain a separator for a nonaqueous electrolyte battery that has an excellent nonaqueous electrolyte permeability into an electrode and an excellent electrolyte retentivity of the electrode and achieves a large capacity, a high energy density and a good high-temperature charge characteristic. A separator 3 used for a nonaqueous electrolyte battery is formed by disposing a porous layer 2 made of inorganic fine particles and a resin binder on a porous separator substrate 1, the resin binder is made of at least one resin selected from the group consisting of polyimide resins, polyamide resins and polyamideimide resins and the molecular chain of the resin has a halogen atom content of 10% to 30% by weight, and the content of the resin binder in the porous layer is 5% by weight or more.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: August 20, 2013
    Assignees: SANYO Electronics Co., Ltd., TORAY Industries, Inc.
    Inventors: Yasunori Baba, Naoki Imachi, Atsushi Nakajima, Michihiko Irie, Masanori Nakamura
  • Publication number: 20130183570
    Abstract: Disclosed is an organic/inorganic composite porous film comprising: (a) inorganic particles; and (b) a binder polymer coating layer formed partially or totally on surfaces of the inorganic particles, wherein the inorganic particles are interconnected among themselves and are fixed by the binder polymer, and interstitial volumes among the inorganic particles form a micropore structure. A method for manufacturing the same film and an electrochemical device including the same film are also disclosed. An electrochemical device comprising the organic/inorganic composite porous film shows improved safety and quality.
    Type: Application
    Filed: March 5, 2013
    Publication date: July 18, 2013
    Applicant: LG CHEM, LTD.
    Inventor: LG Chem, Ltd.
  • Publication number: 20130171500
    Abstract: Provided are separators for use in batteries and capacitors comprising (a) at least 50% by weight of an aluminum oxide and (b) an organic polymer, wherein the aluminum oxide is surface modified by treatment with an organic acid to form a modified aluminum oxide, and wherein the treatment provides dispersibility of the aluminum oxide in aprotic solvents such as N-methyl pyrrolidone. Preferably, the organic acid is a sulfonic acid, such as p-toluenesulfonic acid. Also preferably, the organic polymer is a fluorinated polymer, such as polyvinylidene fluoride. Also provided are electrochemical cells and capacitors comprising such separators.
    Type: Application
    Filed: January 18, 2013
    Publication date: July 4, 2013
    Applicants: Sihl GmbH, Optodot Corporation
    Inventors: Optodot Corporation, Sihl GmbH
  • Patent number: 8470898
    Abstract: A porous thin-film polymer separator for use in a lithium ion battery may be formed by a phase separation method in which hydrophobic-treated ceramic particles are used to help induce the formation of a tortuous, interconnected network of pores coextensively across the thickness of the separator. As part of the phase separation method, a wet thin-film layer is formed from a polymer slurry that comprises a polymer solvent in which a polymer material is dissolved and the hydrophobic-treated ceramic particles are dispersed. The wet thin-film layer is subsequently exposed to a polymer non-solvent to form a solvent-exchanged thin-film precipitated polymer layer which is then heated to produce the separator.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: June 25, 2013
    Assignee: GM Global Technology Operations LLC
    Inventor: Xiaosong Huang
  • Patent number: 8455053
    Abstract: A separator which includes a covering layer in which a fine framework of polyolefin resin is coated with a glass layer and an exposed layer in which the polyolefin resin is exposed is provided. A battery is provided having a cathode and an anode, an electrolyte, and a separator where the separator has the covering layer in which the fine framework of polyolefin resin is coated with the glass layer and a method for manufacturing a separator including the step of coating a fine framework of polyolefin resin with the glass layer by applying a precursor containing viscous liquid product which contains only polysilazane compound or a mixture of viscous liquid product which contains only polysilazane compound with polycarbosilazane compound to the polyolefin resin and placing the precursor applied polyoleline resin in a water bath to dry.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: June 4, 2013
    Assignee: Sony Corporation
    Inventors: Atsushi Kajita, Yukako Teshima, Hiroshi Imoto, Takehiko Tanaka, Hiroshi Horiuchi
  • Publication number: 20130130091
    Abstract: An electricity supply element and the ceramic separator thereof are provided. The ceramic separator is adapted to separate two electrode layers of the electricity supply element for permitting ion migration and electrical separation. The ceramic separator is made of ceramic particulates and the adhesive. The adhesive employs dual binder system, which includes linear polymer and cross-linking polymer. The adhesion and heat tolerance are enhanced by the characteristic of the two type of polymers. The respective position of the two electrode layers are maintained during high operation temperature to improve the stability, and battery performance. Also, the ceramic separator enhances the ion conductivity and reduces the possibility of the micro-short to increase practical utilization.
    Type: Application
    Filed: January 12, 2013
    Publication date: May 23, 2013
    Inventor: Prologium Holding Inc.
  • Publication number: 20130115484
    Abstract: A lithium ion secondary battery is provided. The battery comprises: an electrolytic solution; a negative electrode comprising a negative electrode active material; a positive electrode comprising a positive electrode active material, and a heat-resistant layer comprising a metal fluoride.
    Type: Application
    Filed: October 9, 2012
    Publication date: May 9, 2013
    Applicant: JOHNSON CONTROLS TECHNOLOGY LLC
    Inventor: JOHNSON CONTROLS TECHNOLOGY LLC
  • Publication number: 20130115519
    Abstract: Provided is a separator for a rechargeable lithium battery including a porous support including a polymer derived from polyamic acid or a polymer derived from polyimide, wherein the polyamic acid and the polyimide include a repeating unit prepared from aromatic diamine including at least one ortho-positioned functional group relative to an amine group and dianhydride.
    Type: Application
    Filed: June 14, 2011
    Publication date: May 9, 2013
    Applicant: ICUF-HYU (Industry-University Cooperation Foundati Hanyang Unversity
    Inventors: Young Moo Lee, So Young Lee, Na Rae Kang, Jung Hoon Kim, Nurasyikin Misdan, Yang-Kook Sun, Hun-Gi Jung
  • Patent number: 8426053
    Abstract: Disclosed is a method for manufacturing a separator. The method includes (S1) preparing a slurry containing inorganic particles dispersed therein and a solution of a binder polymer in a solvent, and coating the slurry on at least one surface of a porous substrate to form a first porous coating layer, and (S2) electroprocessing a polymer solution on the outer surface of the first porous coating layer to form a second porous coating layer. The first porous coating layer formed on at least one surface of the porous substrate is composed of a highly thermally stable inorganic material to suppress short-circuiting between an anode and a cathode even when an electrochemical device is overheated. The second porous coating layer formed by electroprocessing improves the bindability of the separator to other base materials of the electrodes.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: April 23, 2013
    Assignee: LG Chem, Ltd.
    Inventors: Joo-Sung Lee, Byoung-Jin Shin, Jong-Hun Kim
  • Patent number: 8420248
    Abstract: An electrode assembly and a secondary battery including the same. The electrode assembly includes: a positive electrode plate including a positive electrode active material applied to a positive electrode collector; a negative electrode plate including a negative electrode active material applied to a negative electrode collector; a separator disposed between the positive electrode plate and the negative electrode plate; and a ceramic layer disposed on a portion of the positive or negative electrode plate, adjacent to an outer surface of the electrode assembly. The positive electrode plate, the negative electrode plate, ceramic layer, and the separator are wound together. The ceramic layer prevents a short-circuit between the positive electrode plate and the negative electrode plate, and extends along between about 40% and 90% of the length of the positive or negative electrode plate, from a winding end thereof.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: April 16, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Hyorim Bak, Youngchurl Chang
  • Patent number: 8409746
    Abstract: Disclosed is an organic/inorganic composite porous film comprising: (a) inorganic particles; and (b) a binder polymer coating layer formed partially or totally on surfaces of the inorganic particles, wherein the inorganic particles are interconnected among themselves and are fixed by the binder polymer, and interstitial volumes among the inorganic particles form a micropore structure. A method for manufacturing the same film and an electrochemical device including the same film are also disclosed. An electrochemical device comprising the organic/inorganic composite porous film shows improved safety and quality.
    Type: Grant
    Filed: September 1, 2005
    Date of Patent: April 2, 2013
    Assignee: LG Chem, Ltd.
    Inventors: Hyun Hang Yong, Sang Young Lee, Seok Koo Kim, Soon Ho Ahn, Jung Don Suk
  • Publication number: 20130078526
    Abstract: A production method for producing a separator for an electrochemical device including the steps of: applying, to a base material, a separator forming composition containing a monomer or an oligomer and a solvent; irradiating the thus formed coating with an energy ray to form a resin (A) having a cross-linked structure; and drying the coating after formation of the resin (A) to form pores, wherein, as a solvent of the separator forming composition, a solvent (a) having a solubility parameter (SP value) of 8.1 or more and less than 8.9 is used, or a solvent (b) having an SP value of 7 or more and 8 or less and a solvent (c) having an SP value of 8.9 or more and 9.9 or less are used in combination. A separator for an electrochemical device produced by the production method, and an electrochemical device of the invention including the separator.
    Type: Application
    Filed: March 12, 2012
    Publication date: March 28, 2013
    Inventors: Eri Kojima, Takahiro Furutani, Toshiyuki Watanabe, Kunihiko Koyama
  • Patent number: 8399133
    Abstract: An electrode assembly of a secondary battery includes a cathode including a cathode active material layer, an anode including an anode active material layer, and a ceramic coating layer formed on at least one of surfaces of the cathode and anode that face each other. The ceramic coating layer includes a ceramic powder and a binder. The specific surface area of the ceramic powder is more than 1.5 m2/g and less than 15.0 m2/g, and, in the particle size distribution of the ceramic powder, the D10 value is more than 0.05 ?m and the D90 value is less than 3.0 ?m.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: March 19, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventor: Jinhee Kim
  • Patent number: 8377546
    Abstract: A plastics electrode material includes a mixture having a nitrogen-containing conductive polymer and a conductive carbon material mixed with the polymer. The polymer is polyquinoline, polyphenylquinoxaline, polycarbazole, polypyridine, polypyrrole, polyaniline or polyindole. The conductive carbon material is 1% to 40% by weight of the mixture. The mixture is activated by a 0.2 M to 5 M proton-containing acidic electrolytic solution. The present invention further comprises second cells using the plastics electrode material. Because the conductive carbon material and high concentration acidic electrolytic solution are added to the polymer, the plastics electrode material has a high conductivity. Thus, the secondary cells have a high efficiency of charging and discharging and a long cyclic life.
    Type: Grant
    Filed: September 8, 2008
    Date of Patent: February 19, 2013
    Assignee: Silver H-Plus Technology Co., Ltd.
    Inventors: Chen-Chun Chuang, Ching-Yun Hsu, Li-Hsiang Perng
  • Patent number: 8372544
    Abstract: A non-aqueous electrolyte secondary battery is provided that remarkably improves battery reliability by quickly lowering the potential of the positive electrode while preventing separator shrinkage at high temperatures. A separator has on its surface a shrinkage-prevention-layer formed portion (3a), in which a layer for preventing separator shrinkage is formed, and a shrinkage-prevention-layer unformed portion (3b), in which the layer for preventing separator shrinkage is not formed. A positive electrode current collector and a negative electrode current collector respectively have a positive electrode current collector exposed portion (1b) and a negative electrode current collector exposed portion (2b). The shrinkage-prevention-layer unformed portion (3b) of the separator is disposed at a region where the current collector exposed portions (1b, 2b) face each other.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: February 12, 2013
    Inventors: Yasunori Baba, Naoki Imachi, Takeshi Ogasawara
  • Patent number: 8367251
    Abstract: A secondary battery capable of improving the cycle characteristics is provided. The secondary battery includes a cathode, an anode, and an electrolytic solution. The anode has an anode current collector, an anode active material layer that is provided on the anode current collector, and contains an anode active material containing at least one of a simple substance of silicon, an alloy of silicon, a compound of silicon, a simple substance of tin, an alloy of tin, and a compound of tin, and a coat that is provided on the anode active material layer, and contains an ionic polymer containing lithium.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: February 5, 2013
    Assignee: Sony Corporation
    Inventors: Toru Odani, Hiroyuki Yamaguchi, Masayuki Ihara, Tadahiko Kubota
  • Patent number: 8323837
    Abstract: Provided is a porous film comprising a heat-resistant resin and two or more fillers, wherein a value of D2/D1 is 0.15 or less where among values each obtained by measuring the average particle diameter of particles that constitute one of the two or more fillers, the largest value is let be D1 and the second largest value is let be D2.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: December 4, 2012
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Yasunori Nishida, Yasuo Shinohara, Hiroyuki Sato
  • Publication number: 20120301774
    Abstract: Provided is an inorganic/organic composite porous separator including a porous substrate having pores and an active layer formed on the porous substrate. The active layer contains mixture of binder and inorganic particles. The inorganic/organic composite porous separator of the present invention has desirable anti-oxidation performance, and can prevent the separator from being oxidized in the lithium secondary battery using high voltage anode material. Also provided is a method for manufacturing the inorganic/organic composite porous separator and an electrochemical device using the same.
    Type: Application
    Filed: May 27, 2012
    Publication date: November 29, 2012
    Inventors: De shun Jiang, Yue Li Wang, Wu Tang Zhang, Jun Feng Jiao
  • Publication number: 20120301792
    Abstract: Disclosed is a rechargeable lithium battery that includes a positive electrode including a lithium nickel-based positive active material; a negative electrode including a negative active material; an electrolyte including a lithium salt and a non-aqueous organic solvent; and a separator including a polymer substrate and a hydroxide compound-containing coating layer disposed on the polymer substrate.
    Type: Application
    Filed: August 8, 2012
    Publication date: November 29, 2012
    Applicant: SAMSUNG SDI CO., LTD.
    Inventors: Jae-Yul Ryu, Joon-Sup Kim, Jea-Woan Lee, Jin-Hee Moon, Wan-Uk Choi, Young-Ugk Kim, Chang-Keun Back, Seung-Hee Park, Yong-Bum Lee
  • Patent number: 8318360
    Abstract: The present invention provides an organic/inorganic composite porous separator, which comprises: (a) a porous substrate having pores; and (b) an organic/inorganic composite layer formed by coating at least one region selected from the group consisting of a surface of the substrate and a part of pores present in the substrate with a mixture of inorganic porous particles and a binder polymer, wherein the inorganic porous particles have a plurality of macropores with a diameter of 50 nm or greater in the particle itself thereby form a pore structure, a manufacturing method thereof, and an electrochemical device using the same. As an additional pathway for lithium ions is created due to a number of pores existing in the inorganic porous particle itself, degradation in the battery performance can be minimized, and energy density per unit weight can be increased by the weight loss effect.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: November 27, 2012
    Assignee: LG Chem, Ltd.
    Inventors: Dae Jong Seo, Seok Koo Kim, Jang Hyuk Hong, Joon Yong Sohn, Sang Young Lee, Soon Ho Ahn
  • Publication number: 20120295154
    Abstract: A cross-linked microporous polysulfone or polysulfone copolymer battery electrode separator membrane are described. Such membranes, which would otherwise be soluble above a particular, generally high temperature in selected battery electrolyte systems, once at least in part cross-linked, swell in the electrolyte at the particular higher temperature instead of dissolving. When the membrane separators are restrained between solid electrodes in a battery, the separator cannot increase in bulk volume, and the swelling occurs within the pores with the pore volume decreasing from its original bulk volume. The drop in pore volume causes the battery current density to drop, thereby reducing the heat generation within the hot area of the battery. This process provides a measure of safety against overheating and fires, and the battery is capable of continued usage if the overheating is localized.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 22, 2012
    Inventor: Ray L. Hauser
  • Patent number: 8313865
    Abstract: Provided is a separator made of a laminated porous film in which a heat-resistant layer that comprises a heat-resistant resin and a shut-down layer that comprises a thermoplastic resin are laminated, wherein the heat-resistant layer further comprises two or more fillers, and the value of D2/D1 is 0.15 or less where among values each obtained by measuring the average particle diameter of particles that constitute one of the two or more fillers, the largest value is let be D1 and the second largest value is let be D2.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: November 20, 2012
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Yasunori Nishida, Yasuo Shinohara, Hiroyuki Sato
  • Patent number: 8304113
    Abstract: A ceramic microporous polyolefin battery separator membrane, high in air permeability, low in shrinkage and improved temperature resistance addresses the safety requirements of lithium ion batteries. The separators made by the current invention consists of one or more polyolefin polymers and kaolin fillers comprised of aluminum oxide and silicon oxide. The membranes of current invention have a thickness of 5-200 microns, air permeability of 1-200 sec/10 cc (Gurley seconds), and average pore diameter of less than 1 micron.
    Type: Grant
    Filed: March 5, 2007
    Date of Patent: November 6, 2012
    Assignee: Advanced Membrane Systems, Inc.
    Inventors: Garrin Samii, Banafsheh Behnam, David Veno, Abbas Samii
  • Publication number: 20120251890
    Abstract: The present invention relates to a membrane comprising a flat, flexible substrate having a plurality of openings and having a porous inorganic coating situated on and in said substrate, the material of the substrate being selected from woven or non-woven, electrically non-conductive fibers, characterized in that the substrate comprises polyaramide fibers that are pure or connected to fibers of the further polymer or at least of one of these further polymers, wherein the fibers of at least one of said further polymers comprise a melting point that is lower than the decomposition point of the polyaramide fibers.
    Type: Application
    Filed: June 30, 2010
    Publication date: October 4, 2012
    Applicant: EVONIK DEGUSSA GmbH
    Inventors: Matthias Pascaly, Rolf-Walter Terwonne, Martin Schuster, Christian Hying
  • Patent number: 8268056
    Abstract: Disclosed is a method for manufacturing a separator. The method includes (S1) preparing a porous planar substrate having a plurality of pores, (S2) preparing a slurry containing inorganic particles dispersed therein and a polymer solution including a first binder polymer and a second binder polymer in a solvent, and sequentially coating the slurry on the porous substrate through a first discharge hole and a non-solvent incapable of dissolving the second binder polymer on the slurry through a second discharge hole adjacent to the first discharge hole, and (S3) simultaneously removing the solvent and the non-solvent by drying. According to the method, a separator with good bindability to electrodes can be manufactured in an easy manner. In addition, problems associated with the separation of inorganic particles in the course of manufacturing an electrochemical device can be avoided.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: September 18, 2012
    Assignee: LG Chem, Ltd.
    Inventors: Joo-Sung Lee, Jang-Hyuk Hong, Jong-Hun Kim, Bo-Kyung Ryu
  • Patent number: 8257857
    Abstract: A method for manufacturing separators includes (S1) treating at least one of the laminating surfaces of two porous substrates by corona discharge and laminating the porous substrates, (S2) preparing a slurry containing inorganic particles dispersed therein and a solution of a binder polymer in a solvent, and coating the slurry on both surfaces of the laminate of the porous substrates, and (S3) delaminating the coated laminate of the porous substrates. According to the method, two separators can be simultaneously manufactured with enhanced productivity. In addition, corona discharge can reduce damage to the surfaces of the porous substrates during lamination while maintaining the porosities of the porous substrates. Therefore, excellent performance of electrochemical devices using the separators can be ensured.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: September 4, 2012
    Assignee: LG Chem, Ltd.
    Inventors: Joo-Sung Lee, Jong-Hun Kim
  • Patent number: 8236068
    Abstract: A separator carries lithium particles on its surface. Using the separator, a non-aqueous electrolyte secondary battery having a high initial efficiency and improved cycle retentivity is available.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: August 7, 2012
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Mikio Aramata, Meguru Kashida, Satoru Miyawaki
  • Patent number: 8227115
    Abstract: A lithium ion secondary battery includes a positive electrode containing a composite lithium oxide, a negative electrode capable of absorbing and desorbing lithium ions, a sheet-like separator interposed between the positive electrode and the negative electrode, a non-aqueous electrolyte and a porous electron-insulating film attached to the surface of the negative electrode. The sheet-like separator is a monolayer film made of polypropylene resin or a multilayer film whose layer to be in contact with the positive electrode is made of polypropylene resin. The porous electron-insulating film includes an inorganic oxide filler and a binder. The inorganic oxide filler contains aluminum oxide or magnesium oxide. The sheet-like separator has a thickness not less than 1.5 times the thickness of the porous electron-insulating film.
    Type: Grant
    Filed: February 22, 2006
    Date of Patent: July 24, 2012
    Assignee: Panasonic Corporation
    Inventors: Kiyomi Kato, Kaoru Inoue
  • Patent number: RE44264
    Abstract: Provided are a composite polymer electrolyte for a lithium secondary battery in which a composite polymer matrix multi-layer structure composed of a plurality of polymer matrices with different pore sizes is impregnated with an electrolyte solution, and a method of manufacturing the same. Among the polymer matrices, a microporous polymer matrix with a smaller pore size contains a lithium cationic single-ion conducting inorganic filler, thereby enhancing ionic conductivity, the distribution uniformity of the impregnated electrolyte solution, and maintenance characteristics. The microporous polymer matrix containing the lithium cationic single-ion conducting inorganic filler is coated on a surface of a porous polymer matrix to form the composite polymer matrix multi-layer structure, which is then impregnated with the electrolyte solution, to manufacture the composite polymer electrolyte. The composite polymer electrolyte is used in a unit battery.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: June 4, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Young Gi Lee, Kwang Man Kim, Kwang Sun Ryu, Soon Ho Chang