Material Deposition Only Patents (Class 430/315)
  • Patent number: 10676392
    Abstract: Described are carbon nanotube dispersions containing single-walled carbon nanotubes dispersed in a dispersant solution comprising a solvent (water, organic polar protic solvents, and/or organic polar aprotic solvents), and an azo compound. The single-walled carbon nanotubes are not cross-linked with covalent bonds. The dispersions are useful for fabricating transparent conductive thin films on flexible and inflexible substrates. Methods for making the transparent conductive thin films are also described.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: June 9, 2020
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Sundaram Gunasekaran, Ashok Kumar Sundramoorthy
  • Patent number: 10643840
    Abstract: Methods of depositing a film selectively onto a first substrate surface relative to a second substrate surface are described. The methods include exposing a substrate to a blocking molecule to selectively deposit a blocking layer on the first surface. A layer is selectively formed on the second surface and defects of the layer are formed on the blocking layer. The defects are removed from the blocking layer on the first surface.
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: May 5, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Jeffrey W. Anthis, Chang Ke, Pratham Jain, Benjamin Schmiege, Guoqiang Jian, Michael S. Jackson, Lei Zhou, Paul F. Ma, Liqi Wu
  • Patent number: 10515801
    Abstract: Self-assembling materials, such as block copolymers, are used as mandrels for pitch multiplication. The copolymers are deposited over a substrate and directed to self-assemble into a desired pattern. One of the blocks forming the block copolymers is selectively removed. The remaining blocks are used as mandrels for pitch multiplication. Spacer material is blanket deposited over the blocks. The spacer material is subjected to a spacer etch to form spacers on sidewalls of the mandrels. The mandrels are selectively removed to leave free-standing spacers. The spacers may be used as pitch-multiplied mask features to define a pattern in an underlying substrate.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: December 24, 2019
    Assignee: Micron Technology, Inc.
    Inventor: Gurtej Sandhu
  • Patent number: 10507321
    Abstract: In some examples, a medical device system a thin film including at least one electrically conductive track extending between at least one electrode and at least one electrical contact, a first and second polymer layer; wherein, at a portion of the thin film between the at least one electrode and the at least one electrical contact, the first polymer layer and second polymer layer surround the at least one electrically conductive track; and at least one discrete ceramic member located between the first and second polymer layers at a portion of the thin film between the at least one electrode and the at least one electrical contact, wherein the at least one discrete ceramic member does not surround the at least one conductive track, and wherein the at least one discrete ceramic member is configured to increase adhesion between the first polymer layer and second polymer layer.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: December 17, 2019
    Assignee: Medtronic Bakken Research Center B.V.
    Inventors: Edward Willem Albert Young, Gijs Peters, Erik van Veenendaal
  • Patent number: 10490778
    Abstract: A light emitting device includes a window over a light emitting pixel. A light reflection performance of the light emitting pixel to an incoming ambient light is configured by the window to be appeared to have at least two regions, wherein one region of the at least two regions has a smaller transmittance to the incoming ambient light than the other.
    Type: Grant
    Filed: August 16, 2018
    Date of Patent: November 26, 2019
    Assignee: INT TECH CO., LTD.
    Inventors: Li-Min Huang, Li-Chen Wei
  • Patent number: 10471700
    Abstract: A three-dimensional object manufacturing apparatus that may be equipped to efficiently separate a three-dimensional object from a mounting unit is provided. The printing apparatus includes: a mounting unit having a mounting surface on which a three-dimensional object being manufactured is mounted; a separator to separate the three-dimensional object from the mounting unit; a moving unit to move the three-dimensional object remaining on the mounting surface and the separator unit relative to each other after the manufacturing of the three-dimensional object is completed, the three-dimensional object on the mounting surface and the separator being moved to arrive at a separating position at which the three-dimensional object is separated by the separator; and a controller that controls the moving unit.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: November 12, 2019
    Assignee: MIMAKI ENGINEERING CO., LTD.
    Inventor: Kunio Hakkaku
  • Patent number: 10257926
    Abstract: A method of producing a wired circuit board including an insulating layer and a conductive pattern, including: (1), an insulating layer having an inclination face, (2), a metal thin film provided at least on the inclination face, (3), a photoresist provided on the surface of the metal thin film, (4), a light shield portion of a photomask disposed so that a first portion, where the conductive pattern is to be provided in the photoresist, is shielded from light, and the photoresist is exposed to light through the photomask, (5), the first portion of the photoresist is removed to expose the metal thin film corresponding to the first portion, and (6), the conductive pattern is provided on the surface of the metal thin film exposed from the photoresist.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: April 9, 2019
    Assignee: NITTO DENKO CORPORATION
    Inventors: Yuu Sugimoto, Yoshito Fujimura, Hiroyuki Tanabe
  • Patent number: 10133179
    Abstract: A pattern treatment method, comprising: (a) providing a semiconductor substrate comprising a patterned feature on a surface thereof; (b) applying a pattern treatment composition to the patterned feature, wherein the pattern treatment composition comprises: a block copolymer and an organic solvent, wherein the block copolymer comprises: (i) a first block comprising a first unit formed from 4-vinyl-pyridine, and (ii) a second block comprising a first unit formed from a vinyl aromatic monomer; and (c) removing residual pattern shrink composition from the substrate, leaving a coating of the block copolymer over the surface of the patterned feature, thereby providing a reduced pattern spacing as compared with a pattern spacing of the patterned feature prior to coating the pattern treatment composition. The methods find particular applicability in the manufacture of semiconductor devices for providing high resolution patterns.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: November 20, 2018
    Assignees: Rohm and Haas Electronic Materials LLC, Dow Global Technologies LLC
    Inventors: Jin Wuk Sung, Mingqi Li, Jong Keun Park, Joshua A. Kaitz, Vipul Jain, Chunyi Wu, Phillip D. Hustad
  • Patent number: 9881793
    Abstract: A material stack is formed on the surface of a semiconductor substrate. The top layer of the material stack comprises at least an organic planarization layer. A neutral hard mask layer is formed on the top of the organic planarization layer. The neutral hard mask layer is neutral to the block copolymers used for direct self-assembly. A plurality of template etch stacks are then formed on top of the neutral hard mask layer. After formation of the template etch stacks, neutrality recovery is performed on the neutral hard mask layer and the top portions of the template etch stacks, the vertical sidewalls of the template etch stacks being substantially unaffected by the neutrality recovery. A template for DSA is thus obtained.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: January 30, 2018
    Assignee: International Business Machines Corporation
    Inventors: Sebastian U. Engelmann, Mahmoud Khojasteh, Deborah A. Neumayer, John Papalia, Hsinyu Tsai
  • Patent number: 9809672
    Abstract: Polymeric reaction products of certain aromatic alcohols with certain aromatic aldehydes are useful as underlayers in semiconductor manufacturing processes.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: November 7, 2017
    Assignees: Rohm and Haas Electronic Materials LLC, Rohm and Haas Electronic Materials Korea Ltd
    Inventors: Li Cui, Sung Wook Cho, Mingqi Li, Shintaro Yamada, Peter Trefonas, III, Robert L. Auger
  • Patent number: 9726788
    Abstract: A method for fabricating a nanoantenna array may include forming a resist layer on a substrate, forming a focusing layer having a dielectric microstructure array on the resist layer, diffusing light one-dimensionally in a specific direction by using a linear diffuser, forming an anisotropic pattern on the resist layer by illuminating the light diffused by the linear diffuser on the focusing layer and the resist layer, depositing a material suitable for a plasmonic resonance onto the substrate and the resist layer on which the pattern is formed, and forming a nanoantenna array on the substrate by removing the resist layer and the material deposited on the resist layer. A light diffusing angle by the linear diffuser and a size of the dielectric microstructure are determined based on an aspect ratio of the pattern to be formed.
    Type: Grant
    Filed: April 15, 2014
    Date of Patent: August 8, 2017
    Assignee: Korea Institute of Science and Technology
    Inventors: Kyeong Seok Lee, Won Mok Kim, Taek Sung Lee, Wook Seong Lee, Doo Seok Jeong, Inho Kim
  • Patent number: 9530976
    Abstract: A method of making a structure having a patterned a base layer and useful in the fabrication of optical and electronic devices including bioelectronic devices includes, in one embodiment, the steps of: a) providing a layer of a radiation-sensitive resin; b) exposing the layer of radiation-sensitive resin to patterned radiation to form a base layer precursor having a first pattern of exposed radiation-sensitive resin and a second pattern of unexposed radiation-sensitive resin; c) providing a layer of fluoropolymer in a third pattern over the base layer precursor to form a first intermediate structure; d) treating the first intermediate structure to form a second intermediate structure; and e) selectively removing either the first or second pattern of resin by contacting the second intermediate structure with a resin developing agent, thereby forming the patterned base layer.
    Type: Grant
    Filed: November 17, 2015
    Date of Patent: December 27, 2016
    Assignee: ORTHOGONAL, INC.
    Inventors: Marc Ferro, George Malliaras
  • Patent number: 9529126
    Abstract: A Fresnel zone plate is provided for encountering incident light having a wavelength. The Fresnel zone plate has a focal length and a wafer including alternating transparent and opaque zones, and a mourning surface. A plurality of silicon nanowires extend into opaque zone of the wafer. A mechanically stretchable tuning structure is mounted to the mounting surface such that stretching of the tuning structure varies the focal length of the Fresnel zone plate.
    Type: Grant
    Filed: January 9, 2014
    Date of Patent: December 27, 2016
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Hongrui Jiang, Yen-Sheng Lu, Hewei Liu
  • Patent number: 9466368
    Abstract: Carbon nanotube template arrays may be edited to form connections between proximate nanotubes and/or to delete undesired nanotubes or nanotube junctions.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: October 11, 2016
    Assignee: DEEP SCIENCE, LLC
    Inventors: Roderick A. Hyde, Muriel Y. Ishikawa, Nathan P. Myhrvold, Clarence T. Tegreene, Charles Whitmer, Lowell L. Wood, Jr.
  • Patent number: 9466529
    Abstract: The method comprises the steps of providing a semiconductor body or substrate (1) with a recess or trench (2) in a main surface (10), applying a mask (3) on the main surface, the mask covering the recess or trench, so that the walls and bottom of the recess or trench and the mask together enclose a cavity (4), which is filled with a gas, and forming at least one opening (5) in the mask at a distance from the recess or trench, the distance (6) being adapted to allow the gas to escape from the cavity via the opening when the gas pressure exceeds an external pressure.
    Type: Grant
    Filed: January 29, 2014
    Date of Patent: October 11, 2016
    Assignee: AMS AG
    Inventors: Guenther Koppitsch, Ewald Stueckler, Karl Rohracher, Jordi Teva
  • Patent number: 9412734
    Abstract: A structure with an inductor and a MIM capacitor is provided. The structure includes a dielectric layer, an inductor and a MIM capacitor. The inductor and the MIM capacitor are disposed within the dielectric layer. The inductor includes a core and a wire surrounding the core. The MIM capacitor includes a top electrode, a bottom electrode and an insulating layer. The top electrode or the bottom electrode includes a material which forms the core.
    Type: Grant
    Filed: January 5, 2015
    Date of Patent: August 9, 2016
    Assignee: UNITED MICROELECTORINCS CORP.
    Inventors: Zhibiao Zhou, Shao-Hui Wu, Chi-Fa Ku
  • Patent number: 9391021
    Abstract: A method for fabricating chip package includes providing a semiconductor chip with a metal bump, next adhering the semiconductor chip to a substrate using a glue material, next forming a polymer material on the substrate, on the semiconductor chip, and on the metal bump, next polishing the polymer material, next forming a patterned circuit layer over the polymer material and connected to the metal bump, and then forming a tin-containing ball over the patterned circuit layer and connected to the patterned circuit layer.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: July 12, 2016
    Assignee: QUALCOMM INCORPORATED
    Inventor: Mou-Shiung Lin
  • Patent number: 9354408
    Abstract: A structure is formed which is prepared as a via for electrical contact passing through layers of an optical waveguide, in a multilayer structure including an electrical substrate and the laminated layers of the optical waveguide. The surface of an electrode pad is plated with solder. The layers of the optical waveguide are formed above the portion plated with solder are removed to expose the portion plated with solder. A device is prepared having both a light-emitter or photoreceptor in optical contact with the optical waveguide, and a stud (pillar). The stud (pillar) is inserted into the portion in which layers of the optical waveguide have been removed, and the plated solder is melted to bond the electrode pad on top of the electrical substrate to the tip of the inserted stud (pillar).
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: May 31, 2016
    Assignee: International Business Machines Corporation
    Inventors: Hirokazu Noma, Keishi Okamoto, Masao Tokunari, Kazushige Toriyama, Yutaka Tsukada
  • Patent number: 9324962
    Abstract: According to an aspect of the present invention, an organic luminescence display includes a substrate, a first electrode on the substrate, a pixel defining layer on the first electrode and partially exposing the first electrode, an auxiliary layer on the pixel defining layer, an organic layer on the first electrode and an edge of the auxiliary layer, and a second electrode on the organic layer.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: April 26, 2016
    Assignee: Samsung Display Co., Ltd.
    Inventor: Jun-Young Kim
  • Patent number: 9285681
    Abstract: The invention relates to a photosensitive resin composition, and an overcoat and/or spacer for a liquid crystal display component. The photosensitive resin composition comprises an alkali-soluble resin (A), a compound having an ethylenically unsaturated group (B); a photoinitiator (C); a solvent (D); and an organic acid (E). The alkali-soluble resin (A) comprises a resin having an unsaturated group (A-1) synthesized by polymerizing a mixture, and the mixture comprises an epoxy compound having at least two epoxy groups (i) and a compound having at least one carboxyl group and at least one vinyl unsaturated group (ii). A molecular weight of said organic acid (E) is below 1000.
    Type: Grant
    Filed: May 19, 2014
    Date of Patent: March 15, 2016
    Assignee: CHI MEI CORPORATION
    Inventor: Li-Ting Hsieh
  • Patent number: 9159677
    Abstract: A method of forming a semiconductor device structure comprises forming at least one reflective structure comprising at least two dielectric materials having different refractive indices over at least one radiation-sensitive structure, the at least one reflective structure configured to substantially reflect therefrom radiation within a predetermined wavelength range and to substantially transmit therethrough radiation within a different predetermined wavelength range. Additional methods of forming a semiconductor device structure are described. Semiconductor device structures are also described.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: October 13, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Xinyu Zhang, Soichi Sugiura, Yu Zeng
  • Patent number: 9153352
    Abstract: A metal wiring suitable for a substrate of large size is provided. The present invention is characterized in that at least one layer of conductive film is formed on an insulating surface, a resist pattern is formed on the conductive film, and the conductive film having the resist pattern is etched to form a metal wiring while controlling its taper angle ? in accordance with the bias power density, the ICP power density, the temperature of lower electrode, the pressure, the total flow rate of etching gas, or the ratio of oxygen or chlorine in etching gas. The thus formed metal wiring has less fluctuation in width or length and can satisfactorily deal with an increase in size of substrate.
    Type: Grant
    Filed: July 28, 2014
    Date of Patent: October 6, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Koji Ono, Hideomi Suzawa
  • Patent number: 9115297
    Abstract: An adhesive composition of this invention includes a hydrocarbon resin and a solvent for dissolving the hydrocarbon resin, the solvent containing a condensed polycyclic hydrocarbon. Thus, an adhesive composition having excellent product stability is provided.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: August 25, 2015
    Assignee: Tokyo Ohka Kogyo Co., Ltd.
    Inventors: Hirofumi Imai, Koki Tamura, Atsushi Kubo, Takahiro Yoshioka
  • Patent number: 9093448
    Abstract: In a first aspect of the present invention, a method for manufacturing a flip chip package is provided comprising the steps of a) providing a chip having electrically conductive pads on an active surface thereof, b) coating at least a portion the chip with a protectant composition comprising a polymerizable component comprising a thermosetting epoxy resin, at least 50 weight percent of a substantially transparent filler having a coefficient of thermal expansion of less than 10 ppm/° C., a photoinitator, and a solvent carrier, wherein the protectant composition comprises a thixotropic index of less than 1.
    Type: Grant
    Filed: September 24, 2013
    Date of Patent: July 28, 2015
    Assignee: LORD Corporation
    Inventor: Russell A. Stapleton
  • Patent number: 9086633
    Abstract: A lithographic method is disclosed that includes, on a substrate provided with a layer of a resist and a further layer of a material provided on the layer of resist, providing a pattern in the further layer, the pattern defining a space via which an area of the layer of resist may be exposed to radiation, a distance between features of the pattern defining the space, and exposing the layer of resist to radiation having a wavelength greater than the distance between features of the pattern defining the space, such that near-field radiation is generated which propagates into and exposes an area of the resist.
    Type: Grant
    Filed: May 11, 2009
    Date of Patent: July 21, 2015
    Assignee: ASML HOLDING N.V.
    Inventor: Donis George Flagello
  • Publication number: 20150146180
    Abstract: A method for fabricating a nanoantenna array may include forming a resist layer on a substrate, forming a focusing layer having a dielectric microstructure array on the resist layer, diffusing light one-dimensionally in a specific direction by using a linear diffuser, forming an anisotropic pattern on the resist layer by illuminating the light diffused by the linear diffuser on the focusing layer and the resist layer, depositing a material suitable for a plasmonic resonance onto the substrate and the resist layer on which the pattern is formed, and forming a nanoantenna array on the substrate by removing the resist layer and the material deposited on the resist layer. A light diffusing angle by the linear diffuser and a size of the dielectric microstructure are determined based on an aspect ratio of the pattern to be formed.
    Type: Application
    Filed: April 15, 2014
    Publication date: May 28, 2015
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Kyeong Seok LEE, Won Mok KIM, Taek Sung LEE, Wook Seong LEE, Doo Seok JEONG, Inho KIM
  • Patent number: 9040227
    Abstract: A microstructure manufacturing method includes forming a layer of a photosensitive resin on a substrate surface having an electrical conductivity, forming a structure of the photosensitive resin by exposing the layer of the photosensitive resin to light and developing the layer of the photosensitive resin to expose a part of the substrate surface, forming a first plated layer on the exposed part of the substrate surface by soaking the structure of the photosensitive resin in a first plating solution, curing the structure of the photosensitive resin after forming the first plated layer, removing at least part of the first plated layer after curing the structure of the photosensitive resin, and forming a second plated layer on a part where the first plated layer is removed, by soaking the structure of the photosensitive resin in a second plating solution different from the first plating solution.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: May 26, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventors: Takayuki Teshima, Yutaka Setomoto
  • Publication number: 20150140729
    Abstract: A method of making a structure having a patterned a base layer and useful in the fabrication of optical and electronic devices including bioelectronic devices includes, in one embodiment, the steps of: a) providing a layer of a radiation-sensitive resin; b) exposing the layer of radiation-sensitive resin to patterned radiation to form a base layer precursor having a first pattern of exposed radiation-sensitive resin and a second pattern of unexposed radiation-sensitive resin; c) providing a layer of fluoropolymer in a third pattern over the base layer precursor to form a first intermediate structure; d) treating the first intermediate structure to form a second intermediate structure; and e) selectively removing either the first or second pattern of resin by contacting the second intermediate structure with a resin developing agent, thereby forming the patterned base layer.
    Type: Application
    Filed: November 19, 2014
    Publication date: May 21, 2015
    Inventors: Marc FERRO, George MALLIARAS
  • Patent number: 9034570
    Abstract: Some embodiments include methods of forming patterns of openings. The methods may include forming spaced features over a substrate. The features may have tops and may have sidewalls extending downwardly from the tops. A first material may be formed along the tops and sidewalls of the features. The first material may be formed by spin-casting a conformal layer of the first material across the features, or by selective deposition along the features relative to the substrate. After the first material is formed, fill material may be provided between the features while leaving regions of the first material exposed. The exposed regions of the first material may then be selectively removed relative to both the fill material and the features to create the pattern of openings.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: May 19, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Scott E. Sills, Gurtej S. Sandhu, John Smythe, Ming Zhang
  • Patent number: 9034562
    Abstract: Improved fidelity to an integrated circuit pattern design in a semiconductor structure ultimately produced is achieved by modeling material removal and deposition processes in regard to materials, reactant, feature size, feature density, process parameters and the like as well as the effects of such parameters on etch and material deposition bias due to microloading and RIE lag (including inverse RIE lag) and using the models to work backward through the intended manufacturing method steps, including hard mask pattern decomposition, to morphologically develop feature patterns for use in most or all process steps which will result in the desired feature sizes and shapes at the completion of the overall process. Modeling of processes may be simplified through use of process assist features to locally adjust rates of material deposition and removal.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: May 19, 2015
    Assignee: International Business Machines Corporation
    Inventors: Derren Neylon Dunn, Ioana Graur, Scott Marshall Mansfield
  • Publication number: 20150131417
    Abstract: Near field transducers (NFTs) and devices that include a peg having an air bearing region and an opposing back region, the back region including a sacrificial structure, a disc having a first surface in contact with the peg, and a barrier structure, the barrier structure positioned between the opposing back region of the peg and the first surface of the disc.
    Type: Application
    Filed: November 7, 2014
    Publication date: May 14, 2015
    Inventors: Tong Zhao, Xiaoyue Huang, Michael C. Kautzky, Hui Brickner, Yi-Kuei Ryan Wu
  • Publication number: 20150130580
    Abstract: A common mode filter and a manufacturing method thereof are disclosed. The common mode filter in accordance with an embodiment of the present invention includes: a magnetic substrate; a coil layer formed on the magnetic substrate and including a coil pattern; a magnetic layer formed on the coil layer; a resin layer formed on the magnetic layer; and an external electrode formed in the resin layer so as to be electrically connected with the coil pattern.
    Type: Application
    Filed: April 23, 2014
    Publication date: May 14, 2015
    Applicant: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Sang-Moon LEE, Ju-Hwan YANG, Hye-Won BANG, Won-Chul SIM
  • Patent number: 9029071
    Abstract: The present invention provides a silicon oxynitride film formation method capable of reducing energy cost, and also provides a substrate equipped with a silicon oxynitride film formed thereby. This method comprises the steps of: casting a film-formable coating composition containing a polysilazane compound on a substrate surface to form a coat; drying the coat to remove excess of the solvent therein; and then irradiating the dried coat with UV light at a temperature lower than 150° C.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: May 12, 2015
    Assignee: Merck Patent GmbH
    Inventors: Ninad Shinde, Tatsuro Nagahara, Yusuke Takano
  • Patent number: 9005878
    Abstract: A thiosulfate polymer composition includes an electron-accepting photosensitizer component, either as a separate compound or as an attachment to the thiosulfate polymer. The thiosulfate polymer composition can be applied to various articles and used to form a predetermined polymeric pattern after photothermal reaction to form crosslinked disulfide bonds, removing non-crosslinked polymer, and reaction with a disulfide-reactive material.
    Type: Grant
    Filed: January 20, 2014
    Date of Patent: April 14, 2015
    Assignee: Eastman Kodak Company
    Inventors: Deepak Shukla, Kevin M. Donovan, Mark R. Mis
  • Patent number: 9005854
    Abstract: A conductive pattern is formed using a reactive polymer comprising pendant tertiary alkyl ester groups, a compound that provides an acid upon exposure to radiation, and a crosslinking agent. A polymeric layer is patternwise exposed to form first exposed regions with a polymer comprising carboxylic acid groups that are contacted with electroless seed metal ions, and then contacted with a halide to form corresponding electroless seed metal halide. Another exposure converts electroless seed metal halide to electroless seed metal nuclei and forms second exposed regions. A reducing agent is used to develop the electroless seed metal nuclei in the second exposed regions, or to develop the electroless seed metal halide in the first exposed regions. Fixing is used to remove any remaining electroless seed metal halide. The electroless seed metal nuclei are then electrolessly plated in various exposed regions.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: April 14, 2015
    Assignee: Eastman Kodak Company
    Inventors: Mark Edward Irving, Thomas B. Brust
  • Patent number: 9005883
    Abstract: The invention provides a patterning process comprises the steps of: (1) forming a positive chemically amplifying type photoresist film on a substrate to be processed followed by photo-exposure and development thereof by using an organic solvent to obtain a negatively developed pattern, (2) forming a silicon-containing film by applying a silicon-containing film composition comprising a solvent and a silicon-containing compound capable of becoming insoluble in a solvent by a heat, an acid, or both, (3) insolubilizing in a solvent the silicon-containing film in the vicinity of surface of the negatively developed pattern, (4) removing the non-insolubilized part of the silicon-containing film to obtain an insolubilized part as a silicon-containing film pattern, (5) etching the upper part of the silicon-containing film pattern thereby exposing the negatively developed pattern, (6) removing the negatively developed pattern, and (7) transferring the silicon-containing film pattern to the substrate to be processed.
    Type: Grant
    Filed: July 26, 2013
    Date of Patent: April 14, 2015
    Assignee: Shin-Estu Chemical Co., Ltd.
    Inventors: Tsutomu Ogihara, Takafumi Ueda
  • Publication number: 20150093687
    Abstract: An exposure mask for forming a pattern in a photosensitive material includes a mask substrate which is disposed facing the photosensitive material; a body portion on the mask substrate and corresponding to a shape of the pattern at a distance furthest from the exposure mask; and a plurality of branch portions on the mask substrate and each extending outward from an outer edge of the body portion, in a plan view. The pattern comprises a contact hole of a display device.
    Type: Application
    Filed: March 26, 2014
    Publication date: April 2, 2015
    Applicant: Samsung Display Co., Ltd.
    Inventors: Jungi KIM, Taegyun KIM, Jin-Su BYUN
  • Patent number: 8986920
    Abstract: A method for forming quarter-pitch patterns is described. Two resist layers are formed. The upper resist layer is defined into first patterns. A coating that contains or generates a reactive material making a resist material dissolvable is formed over the lower resist layer and the first patterns. The reactive material is diffused into a portion of each first pattern and portions of the lower resist layer between the first patterns to react with them. The coating is removed. A development step is performed to remove the portions of the first patterns and the portions of the lower resist layer, so that the lower resist layer is patterned into second patterns. Spacers are formed on the sidewalls of the remaining first patterns and the second patterns. The remaining first patterns are removed, and portions of the second patterns are removed using the spacers on the second patterns as a mask.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: March 24, 2015
    Assignee: Nanya Technology Corporation
    Inventor: Hung-Jen Liu
  • Publication number: 20150075845
    Abstract: Disclosed herein are a printed circuit board and a method of manufacturing the same. According to a preferred embodiment of the present invention, the printed circuit board includes: a base substrate; an inner layer build-up layer formed on the base substrate and including a first inner layer circuit layer, a second inner layer circuit layer, an inner layer insulating layer, and an inner layer via having a tapered section; and an outer layer build-up layer formed on the inner layer build-up layer and including an outer layer circuit layer, an outer layer insulating layer, and an outer layer via having a rectangular section.
    Type: Application
    Filed: September 12, 2014
    Publication date: March 19, 2015
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventor: Ki Young Yoo
  • Patent number: 8980538
    Abstract: A method of forming a layered substrate comprising a self-assembled material is provided. The method includes forming a first layer of material on a substrate, forming a layer of a radiation sensitive material on the first layer of material, imaging the layer of the radiation sensitive material with patterned light, heating the layer of the radiation sensitive material to a temperature at or above the cross-linking reaction temperature, developing the imaged layer, and forming the block copolymer pattern. The radiation sensitive material comprises at least one photo-sensitive component selected from (a) a photo-decomposable cross-linking agent, (b) a photo-base generator, or (c) a photo-decomposable base; and a cross-linkable polymer, wherein imaging by the patterned light provides a pattern defined by a first region having substantial portions of a decomposed photo-sensitive component surrounded by regions having substantial portions of intact photo-sensitive component.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: March 17, 2015
    Assignee: Tokyo Electron Limited
    Inventors: Mark H. Somervell, Michael A. Carcasi
  • Patent number: 8980525
    Abstract: A chemically amplified positive resist composition is provided comprising an alkali-insoluble or substantially alkali-insoluble polymer having an acid labile group-protected acidic functional group, an alkyl vinyl ether polymer, a photoacid generator, and a benzotriazole compound in a solvent. The composition forms on a substrate a resist film of 5-100 ?m thick which can be briefly developed to form a pattern at a high sensitivity and a high degree of removal or dissolution to bottom.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: March 17, 2015
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Hiroyuki Yasuda, Katsuya Takemura
  • Patent number: 8975004
    Abstract: Disclosed are polymer resins, including polymer resin sheets, having good electroconductivity and a method for manufacturing the same. The polymer resins exhibit flexibility and show electroconductivity on their surface as well as along their thickness, and thus can be used as electromagnetic wave-shielding materials having impact- and vibration-absorbing properties as well as conductivity.
    Type: Grant
    Filed: May 15, 2006
    Date of Patent: March 10, 2015
    Assignee: 3M Innovative Properties Company
    Inventors: Jeongwan Choi, Un Nyoung Sa, Won-Sik Kim
  • Publication number: 20150053469
    Abstract: Disclosed herein are a printed circuit board and a method of manufacturing the same. The printed circuit board includes a light-blocking glass substrate; a negative photosensitive insulating layer formed on the glass substrate; and a circuit pattern formed on the glass substrate and embedded in the negative photosensitive insulating layer.
    Type: Application
    Filed: December 4, 2013
    Publication date: February 26, 2015
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Eun Sil Kim, Sung Han Kim, Sa Yong Lee, Jin Ho Hong, Yong II Kwon, Sang Hyun Shin, Keun Yong Lee
  • Publication number: 20150053457
    Abstract: Disclosed herein are a printed circuit board and a method of manufacturing the same. According to the preferred embodiment of the present invention, the printed circuit board includes: a glass substrate through which light is not transmitted; a positive photosensitive insulating layer formed on the glass substrate; and a circuit pattern formed on the glass substrate and buried in the positive photosensitive insulating layer.
    Type: Application
    Filed: March 4, 2014
    Publication date: February 26, 2015
    Applicant: SAMSUNG ELECTRO-MECHANICS., LTD.
    Inventors: SUNG HAN KIM, JIN HO HONG, YONG II KWON, SA YONG LEE, EUN SIL KIM, SANG HYUN SHIN, KEUN YONG LEE
  • Patent number: 8962224
    Abstract: Methods for providing a silicon layer on a photomask substrate surface with minimum defeats for fabricating film stack thereon for EUVL applications are provided. In one embodiment, a method for forming a silicon layer on a photomask substrate includes performing an oxidation process to form a silicon oxide layer on a surface of a first substrate wherein the first substrate comprises a crystalline silicon material, performing an ion implantation process to define a cleavage plane in the first substrate, and bonding the silicon oxide layer to a surface of a second substrate, wherein the second substrate is a quartz photomask.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: February 24, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Banqiu Wu, Ajay Kumar, Omkaram Nalamasu
  • Patent number: 8951715
    Abstract: A method of forming a patterned film on both a bottom and a top-surface of a deep trench is disclosed. The method includes the steps of: 1) providing a substrate having a deep trench formed therein; 2) growing a film over a bottom and a top-surface of the deep trench; 3) coating a photoresist in the deep trench and over the substrate and baking the photoresist to fully fill the deep trench; 4) exposing the photoresist to form a latent image that partially covers the deep trench in the photoresist; 5) silylating the photoresist with a silylation agent to transform the latent image into a silylation pattern; 6) etching the photoresist to remove a portion of the photoresist not covered by the silylation pattern; and 7) etching the film to form a patterned film on both the bottom and the top-surface of the deep trench.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: February 10, 2015
    Assignee: Shanghai Huahong Grace Semiconductor Manufacturing Corporation
    Inventor: Xiaobo Guo
  • Patent number: 8945816
    Abstract: A method for producing a semiconductor device includes forming a resist pattern by coating a resist pattern thickening material to cover the surface of the resist pattern, baking the resist pattern thickening material, and developing and separating the resist pattern thickening material, wherein at least one of the coating, the baking and the developing is carried out plural times.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: February 3, 2015
    Assignee: Fujitsu Limited
    Inventors: Miwa Kozawa, Koji Nozaki
  • Publication number: 20150030981
    Abstract: A photosensitive composition comprises a fluorinated solvent, a photo-acid generator and a copolymer. The copolymer comprises at least three distinct repeating units, including a first repeating unit having a fluorine-containing group, a second repeating unit having an acid-catalyzed cross-linkable group, and a third repeating unit having a sensitizing dye. The composition is useful in the fabrication of electronic devices, especially organic electronic and bioelectronic devices.
    Type: Application
    Filed: July 18, 2014
    Publication date: January 29, 2015
    Inventors: Douglas Robert Robello, Charles Warren Wright
  • Patent number: 8936890
    Abstract: A pattern is formed in a polymeric layer comprising (a) a reactive polymer comprising -A- recurring units comprising pendant tertiary alkyl ester groups, (b) a compound that provides an acid upon exposure to radiation having a ?max of 150 nm to 450 nm, and (c) a crosslinking agent that is capable of reacting in the presence of the acid to provide crosslinking in the (a) reactive polymer. The polymeric layer is patternwise exposed to the radiation to provide a polymeric layer comprising exposed regions comprising a polymer comprising carboxylic acid groups. The exposed regions are contacted with a reducing agent to incorporate reducing agent, and then contacted with electroless seed metal ions to oxidize the reducing agent and to form corresponding electroless seed metal nuclei. The electroless seed metal nuclei are then electrolessly plated with a metal to form a conductive metal pattern.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: January 20, 2015
    Assignee: Eastman Kodak Company
    Inventors: Mark Edward Irving, Thomas B. Brust
  • Publication number: 20150017587
    Abstract: [Object] To provide a composition enabling to form a fine negative photoresist pattern free from troubles, such as, surface roughness, bridge defects, and resolution failure; and also to provide a pattern formation method using that composition. [Means to Solve the Problem] A fine pattern-forming composition is used for miniaturizing a resist pattern by fattening said pattern in a process of formation of a negative resist pattern using a chemically amplified resist composition. The fine pattern-forming composition comprises a polymer comprising a repeating unit having a structure of the following formula (A), (B) or (C): and a solvent. This composition is cast on a negative resist pattern obtained by development with an organic solvent developer, and then heated to form a fine pattern.
    Type: Application
    Filed: October 10, 2012
    Publication date: January 15, 2015
    Applicant: AZ ELECTRONIC MATERIALS USA CORP.
    Inventors: Tetsuo Okayasu, Takashi Sekito, Mashiro Ishii