Glutamic Acid; Glutamine Patents (Class 435/110)
  • Patent number: 8753849
    Abstract: The present invention provides a bacterium which has an ability to produce a useful metabolite derived from acetyl-coenzyme A, such as L-glutamic acid, L-glutamine, L-proline, L-arginine, L-leucine, L-cysteine, succinate, and polyhydroxybutyrate, wherein said bacterium is modified so that activities of D-xylulose-5-phosphate phosphoketolase and/or fructose-6-phosphate phosphoketolase are enhanced. The present invention also provides a method for producing the useful metabolite using the bacterium.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: June 17, 2014
    Assignee: Ajinomoto Co., Inc.
    Inventors: Yury Ivanovich Kozlov, Akito Chinen, Hiroshi Izui, Yoshihiko Hara, Hisashi Yasueda, Konstantin Vyacheslavovich Rybak, Ekaterina Aleksandrovna Slivinskaya, Joanna Yosifovna Katashkina
  • Publication number: 20140162325
    Abstract: The present invention provides a method for producing L-amino acid using a bacterium belonging to the family Enterobacteriaceae, particularly a motile bacterium belonging to the genus Escherichia, Enterobacter or Pantoea, wherein the bacterium has been modified so that expression of at least one gene of the flagella formation and motility cascade is enhanced.
    Type: Application
    Filed: February 11, 2014
    Publication date: June 12, 2014
    Applicant: AJINOMOTO CO., INC.
    Inventors: Irina Borisovna Altman, Tatyana Abramovna Yampolskaya, Leonid Romanovich Ptitsyn
  • Publication number: 20140141471
    Abstract: The present invention relates to methods for degrading or converting a cellulosic material and for producing substances from the cellulosic material.
    Type: Application
    Filed: May 18, 2012
    Publication date: May 22, 2014
    Applicant: Novozymes, Inc.
    Inventors: Feng Xu, William Widner, Ani Tejirian
  • Patent number: 8728772
    Abstract: An L-amino acid is produced by culturing a bacterium having an L-amino acid-producing ability in a medium containing a processed product of a microalga which promotes production and accumulation of the L-amino acid by the bacterium. The process product is produced by disrupting the culture of the microalga, and/or extracting the culture of the microalga, or fractionating the culture of the microalga or the disrupted culture. The processed product contains a mixture of organic substances produced by the microalga, a hydrolysate of the disrupted microalga culture, and/or an extract or fractionation product of the microalga culture. The processed product can also contain a saccarification product of starch or a hydrolysate of fats and oils. The bacterium is cultured to produce and accumulate the L-amino acid in culture, and the L-amino acid is collected from the culture.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: May 20, 2014
    Assignee: Ajinomoto Co., Inc.
    Inventors: Shigeo Suzuki, Yoshihiro Usuda, Shuhei Hashiro
  • Publication number: 20140134672
    Abstract: Bioreactors, and particularly, photobioreactors having a reactor chamber and surge driver, and methods for using these devices, for example, for the production of carbon-based products are provided. The reactor chamber provides a housing for microorganisms and culture medium. The surge driver produces a surge of the microorganisms and/or culture medium in the reactor chamber.
    Type: Application
    Filed: July 5, 2012
    Publication date: May 15, 2014
    Inventors: Max B. Tuttman, David A. St. Angelo
  • Publication number: 20140115739
    Abstract: The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
    Type: Application
    Filed: October 11, 2013
    Publication date: April 24, 2014
    Inventors: Suchindra Maiyuran, Randall Kramer, Paul Harris
  • Patent number: 8703446
    Abstract: The present invention provides a method for producing L-amino acid using a bacterium of the Enterobacteriaceae family, particularly a bacterium belonging to the genus Escherichia or Pantoea, which has been modified to enhance the expression of the bssR gene, which encodes a regulator of biofilm through signal secretion.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: April 22, 2014
    Assignee: Ajinomoto Co., Inc.
    Inventors: Mikhail Yurievich Kiryukhin, Mikhail Markovich Gusyatiner
  • Patent number: 8703447
    Abstract: Provided is an efficient process for producing L-glutamine or L-glutamic acid using a microorganism. L-glutamine or L-glutamic acid is produced by culturing in a medium a microorganism in which has an ability to produce L-glutamine or L-glutamic acid, and in which an ability to form a superhelical double-stranded DNA is decreased compared with that of the parent strain, producing and accumulating L-glutamine or L-glutamic acid in the medium, and recovering L-glutamine or L-glutamic acid from the medium.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: April 22, 2014
    Assignee: Kyowa Hakko Bio Co., Ltd.
    Inventors: Mikiro Hayashi, Kazuhiko Tabata, Yoshiyuki Yonetani
  • Publication number: 20140106407
    Abstract: A system is provided for reducing non-specific binding of an enzyme to lignin to enhance an enzymatic processing of a lignocellulosic material. The enhancements provide economic and process advantages to any process that converts a lignocellulosic biomass into a product using an enzyme. Systems are provided comprising a reaction vessel; a lignocellulosic feedstock comprising a component selected from the group consisting of a hardwood, a softwood, or a non-wood material; an enzyme component including a cellulase, a hemicellulase, or a combination thereof; and, water. The reaction vessel can contain a combination of the lignocellulosic feedstock, the water, and the enzyme component at a pH ranging from about 5.2 to about 6.2; and, the lignocellulosic feedstock can be saccharified in the reaction vessel. Moreover, the systems can include a lignosulfonate, with or without a pH of about 5.2 to about 6.2, to also reduce non-specific binding and enhance enzymatic activity.
    Type: Application
    Filed: October 15, 2012
    Publication date: April 17, 2014
    Applicant: The United States of America as Represented by the Secretary of Agriculture
    Inventor: The United States of America as Represented by the Secretary of Agriculture
  • Publication number: 20140099680
    Abstract: The present invention relates to Corynebacterium sp. that is transformed with an Escherichia sp.-derived fructokinase gene to express fructokinase showing a sufficient activity of converting fructose into fructose-6-phosphate, thereby preventing unnecessary energy consumption, and a method for producing L-amino acids using the strain. The transformed Corynebacterium sp. of the present invention is able to express fructokinase from the Escherichia-derived fructokinase gene to prevent unnecessary energy consumption during fructose metabolism, leading to more cost-effective production of L-amino acids. Therefore, it can be widely used for the effective production of L-amino acids.
    Type: Application
    Filed: April 2, 2012
    Publication date: April 10, 2014
    Applicant: CJ CHEILJEDANG CORPORATION
    Inventors: Hyun Won Bae, Hyung Joon Kim, Jun Ok Moon, Jae Woo Jang, Jong Chul Kim, Tae Han Kim, Jin Suck Sung, Kyung Han Lee, Dae Cheol Kim, Hyo Jin Kim, Hyun Ae Bae, Sang Jo Lim
  • Patent number: 8691537
    Abstract: The present invention provides a method for producing an L-amino acid using a bacterium of the Enterobacteriaceae family, particularly a bacterium belonging to genus Escherichia or Pantoea, which has been modified to attenuate expression of the rcsA gene.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: April 8, 2014
    Assignee: Ajinomoto Co., Ltd.
    Inventors: Dmitriy Vladimirovich Filippov, Elvira Borisovna Voroshilova, Mikhail Markovich Gusyatiner
  • Publication number: 20140096287
    Abstract: The present invention relates to isolated polypeptides having endoglucanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
    Type: Application
    Filed: November 14, 2013
    Publication date: April 3, 2014
    Inventors: Kristian Krogh, Paul Harris
  • Publication number: 20140075603
    Abstract: The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
    Type: Application
    Filed: November 14, 2013
    Publication date: March 13, 2014
    Inventors: Lan Tang, Ye Liu, Junxin Duan, Wenping Wu, Randall Kramer
  • Patent number: 8669080
    Abstract: A D-aminotransferase can be modified so as to efficiently produce (2R,4R)-monatin having high sweetness intensity from 4-(indol-3-ylmethyl)-4-hydroxy-2-oxoglutaric acid by mutating the amino acid sequence of a wild-type D-aminotransferase represented in SEQ ID NO:4.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: March 11, 2014
    Assignee: Ajinomoto Co., Inc.
    Inventors: Masakazu Sugiyama, Kunihiko Watanabe, Tatsuki Kashiwagi, Ei-ichiro Suzuki
  • Publication number: 20140051130
    Abstract: The present invention relates to enzyme compositions for high temperature saccharification of cellulosic material and to uses thereof.
    Type: Application
    Filed: October 11, 2013
    Publication date: February 20, 2014
    Inventors: Brett McBrayer, Tarana Shaghasi, Elena Vlasenko
  • Publication number: 20140051132
    Abstract: The present invention provides a method for producing an L-amino acid belonging to the glutamate family, using a coryneform bacterium which has been modified so that expression of one or more gene(s) of the NCgl_2067-NCgl_2065 operon in said bacterium is/are attenuated.
    Type: Application
    Filed: October 3, 2013
    Publication date: February 20, 2014
    Applicant: AJINOMOTO CO., INC.
    Inventors: Svetlana Alekseevna Samsonova, Viktor Vasilievich Samsonov, Yulia Georgievna Rostova, Mikhail Markovich Gusyatiner
  • Publication number: 20140017737
    Abstract: The present invention relates to variants of a parent cellobiohydrolase II. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the variants.
    Type: Application
    Filed: September 23, 2013
    Publication date: January 16, 2014
    Inventor: Mark Wogulis
  • Patent number: 8628941
    Abstract: Coryneform bacteria are described that have an ability to produce L-amino acids and are modified so that acetyl-CoA hydrolase activity is decreased. The bacteria are used to produce L-amino acids generated by a biosynthetic pathway in which pyruvic acid is an intermediate, such as L-glutamic acid, L-arginine, L-glutamine, L-proline, L-alanine, L-valine, and L-lysine.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: January 14, 2014
    Assignee: Ajinomoto Co., Inc.
    Inventors: Keita Fukui, Jun Nakamura, Hiroyuki Kojima
  • Publication number: 20130330787
    Abstract: A method produces a chemical through continuous fermentation including: (a) culturing a cell in a culture medium in a fermentor to ferment a feedstock to produce a chemical; (b) conducting filtration of the culture medium with a separation membrane module; (c) separating a permeate containing the chemical from the culture medium while retaining a non-permeated liquid in the fermentor, and (d) supplying a gas from at least one of a lower portion of the separation membrane module and a pipe communicating between the fermentor and the separation membrane module to adjust a gas linear velocity in the separation membrane module to 0.15 cm/s to 70 cm/s while supplying the separation membrane module with a liquid.
    Type: Application
    Filed: December 8, 2011
    Publication date: December 12, 2013
    Inventors: Satoko Kanamori, Jihoon Cheon, Takashi Mimitsuka, Norihiro Takeuchi, Makoto Nishida, Yuji Tanaka
  • Publication number: 20130323784
    Abstract: A target substance can be efficiently produced by culturing, in a medium, a coryneform bacterium in which the activity of a PTS protein relating to fructose uptake is reduced or lost as compared with a parent strain and the bacterium can produce the target substance, allowing the target substance to form and accumulate in a culture; and collecting the target substance from the culture
    Type: Application
    Filed: February 9, 2012
    Publication date: December 5, 2013
    Applicant: KYOWA HAKKO BIO CO., LTD.
    Inventors: Tetsuro Ujihara, Tetsuya Abe, Makoto Yagasaki
  • Publication number: 20130295621
    Abstract: A target substance can be produced by culturing a bacterium having an ability to produce 2-ketoglutaric acid or a derivative thereof, and an ability to produce xylonic acid from xylose, which is imparted with xylonate dehydratase activity, 2-keto-3-deoxyxylonate dehydratase activity and 2-ketoglutaric semialdehyde dehydrogenase activity, or in which these activities are enhanced, in a medium containing xylose as a carbon source to produce and accumulate the target substance in the medium, and collecting the target substance from the medium.
    Type: Application
    Filed: June 11, 2013
    Publication date: November 7, 2013
    Inventors: Yousuke Nishio, Youko Yamamoto, Kazuteru Yamada, Kosuke Yokota
  • Publication number: 20130288300
    Abstract: Provided are isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. Also provided are nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
    Type: Application
    Filed: February 23, 2012
    Publication date: October 31, 2013
    Applicant: Novoozymes A/S
    Inventors: Yu Zhang, Junxin Duan, Lan Tang, Wenping Wu
  • Publication number: 20130288296
    Abstract: The present invention relates to methods of degrading or converting a cellulosic material pretreated with a composition comprising one or more GH61 polypeptides.
    Type: Application
    Filed: November 2, 2011
    Publication date: October 31, 2013
    Applicant: Novozymes, Inc.
    Inventors: Jason Quinlan, Feng Xu
  • Publication number: 20130288313
    Abstract: An L-amino acid is produced by culturing a microorganism belonging to the family Enterobacteriaceae having an L-amino acid-producing ability and modified so that glycerol dehydrogenase and dihydroxyacetone kinase activities are increased, in a medium containing glycerol as a carbon source to produce and accumulate an L-amino acid in the medium or cells, and collecting the L-amino acid from the medium or the cells.
    Type: Application
    Filed: July 10, 2013
    Publication date: October 31, 2013
    Inventors: Yuri Nagai, Kazuyuki Hayashi, Takuji Ueda, Yoshihiro Usuda, Kazuhiko Matsui
  • Publication number: 20130269061
    Abstract: Genetically engineered plants having altered levels of one or more starch regulation enzymes and a polysaccharide degrading enzyme are provided. Methods of genetically engineering plants to express products altering expression of one or more starch regulation enzymes and polysaccharide degrading enzymes, and genetic constructs are provided. Methods of agricultural processing and animal feed using the genetically engineered plants are described.
    Type: Application
    Filed: March 11, 2013
    Publication date: October 10, 2013
    Inventors: Philip A. Lessard, Michael Lanahan, Vladimir Samoylov, Oleg Bougri, Jonas Emery, R. Michael Raab, Dongcheng Zhang
  • Publication number: 20130260420
    Abstract: The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
    Type: Application
    Filed: January 26, 2012
    Publication date: October 3, 2013
    Inventors: Marc D. Morant, Paul Harris
  • Publication number: 20130260423
    Abstract: The present invention relates to methods of saccharifying the trash (leaf) fraction of sugar cane using enzymes.
    Type: Application
    Filed: October 26, 2011
    Publication date: October 3, 2013
    Applicants: NOVOZYMES NORTH AMERICA, INC., NOVOZYMES A/S
    Inventors: Benjamin Knudsen, Armindo Ribeiro Gaspar
  • Patent number: 8541208
    Abstract: The present invention relates to a process for the production of fine chemicals in a microorganism, a plant cell, a plant, a plant tissue or in one or more parts thereof. The present invention relates further to a process for the control of the production of fine chemicals in a microorganism, a plant cell, a plant, a plant tissue or in one or more parts thereof. The invention furthermore relates to nucleic acid molecules, polypeptides, nucleic acid constructs, vectors, antisense molecules, antibodies, host cells, plant tissue, propagation material, harvested material, plants, microorganisms as well as agricultural compositions and to their use.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: September 24, 2013
    Assignee: Metanomics GmbH
    Inventors: Gunnar Plesch, Piotr Puzio, Astrid Blau, Ralf Looser, Birgit Wendel, Beate Kamlage, Oliver Schmitz
  • Publication number: 20130244294
    Abstract: Methods of manufacturing fuels are provided. These methods use often difficult to process lignocellulosic materials, for example crop residues and grasses. The methods can be readily practiced on a commercial scale in an economically viable manner, in some cases using as feedstocks materials that would otherwise be discarded as waste.
    Type: Application
    Filed: May 7, 2013
    Publication date: September 19, 2013
    Applicant: XYLECO, INC.
    Inventors: Marshall MEDOFF, Thomas Craig MASTERMAN
  • Publication number: 20130227748
    Abstract: The present invention relates to polypeptide having cellulolytic enhancing activity variants. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the variants.
    Type: Application
    Filed: September 29, 2011
    Publication date: August 29, 2013
    Applicant: Novozymes, Inc.
    Inventors: Matt Sweeney, Mark Wogulis
  • Publication number: 20130224806
    Abstract: A method for producing an L-amino acid is described using a bacterium of the Enterobacteriaceae family, wherein the bacterium contains a protein which is able to confer resistance to growth inhibition by L-cysteine.
    Type: Application
    Filed: May 3, 2013
    Publication date: August 29, 2013
    Applicant: AJINOMOTO CO., INC.
    Inventor: AJINOMOTO CO., INC.
  • Publication number: 20130217078
    Abstract: The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
    Type: Application
    Filed: April 4, 2013
    Publication date: August 22, 2013
    Applicants: Novozymes, Inc., Novozymes A/S
    Inventors: Novozymes A/S, Novozymes, Inc.
  • Publication number: 20130217079
    Abstract: The present invention relates to variants of a parent beta-glucosidase. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the variants.
    Type: Application
    Filed: September 30, 2011
    Publication date: August 22, 2013
    Applicant: Novozymes, Inc.
    Inventors: Mark Wogulis, Paul Harris, David Osborn
  • Publication number: 20130210087
    Abstract: The present invention provides isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also provides nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
    Type: Application
    Filed: November 4, 2011
    Publication date: August 15, 2013
    Applicant: NOVOZYMES INC.
    Inventors: Ye Liu, Lan Tang
  • Publication number: 20130196387
    Abstract: The present invention provides isolated polypeptides having endoglucanase activity and isolated polynucleotides encoding the polypeptides. The invention also provides nucleic acid constructs, vectors, and host cell comprising the polynucleotides as well as methods of producing and using the polypeptides.
    Type: Application
    Filed: November 11, 2011
    Publication date: August 1, 2013
    Applicant: Novozymes Inc.
    Inventors: Ye Liu, Junxin Duan, Lan Tang
  • Publication number: 20130189747
    Abstract: The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a sulfur-containing compound. The present invention also relates to methods of using the compositions.
    Type: Application
    Filed: August 5, 2011
    Publication date: July 25, 2013
    Applicant: NOVOZYMES, INC.
    Inventor: Feng Xu
  • Publication number: 20130189734
    Abstract: The present invention provides isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also provides nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
    Type: Application
    Filed: November 2, 2011
    Publication date: July 25, 2013
    Applicant: NOVOZYMES INC.
    Inventors: Ye Liu, Lan Tang, Junxin Duan
  • Publication number: 20130183713
    Abstract: The present invention relates to isolated polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
    Type: Application
    Filed: August 30, 2011
    Publication date: July 18, 2013
    Applicants: NOVOYZMES A/S, NOVOZYMES, INC.
    Inventor: Marc Morant
  • Publication number: 20130157321
    Abstract: The present invention provides a bacterium which has an ability to produce a useful metabolite derived from acetyl-coenzyme A, such as L-glutamic acid, L-glutamine, L-proline, L-arginine, L-leucine, L-cysteine, succinate, and polyhydroxybutyrate, wherein said bacterium is modified so that activities of D-xylulose-5-phosphate phosphoketolase and/or fructose-6-phosphate phosphoketolase are enhanced. The present invention also provides a method for producing the useful metabolite using the bacterium.
    Type: Application
    Filed: February 22, 2013
    Publication date: June 20, 2013
    Applicant: AJINOMOTO CO., INC.
    Inventor: Ajinomoto Co., Inc.
  • Publication number: 20130157314
    Abstract: The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a heterocyclic compound. The present invention also relates to methods of using the compositions.
    Type: Application
    Filed: August 5, 2011
    Publication date: June 20, 2013
    Applicant: NOVOZYMES, INC.
    Inventors: Feng Xu, Matthew Sweeney, Jason Quinlan
  • Publication number: 20130157307
    Abstract: The invention relates to a process of fermenting plant material in a fermentation medium into a fermentation product using a fermenting organism, wherein one or more deamidases are present in the fermentation medium.
    Type: Application
    Filed: August 2, 2011
    Publication date: June 20, 2013
    Applicants: NOVOZYMES NORTH AMERICA, INC., NOVOZYMES A/S
    Inventors: Chee-Leong Soong, Shiro Fukuyama, Allan Noergaard, Preben Nielsen, Peter Rahbek Oestergaard
  • Publication number: 20130109063
    Abstract: The present invention provides a method for producing L-amino acid using a bacterium of the Enterobacteriaceae family, particularly a bacterium belonging to the genus Escherichia or Pantoea, which has been modified to enhance the expression of the bssR gene, which encodes a regulator of biofilm through signal secretion.
    Type: Application
    Filed: January 7, 2013
    Publication date: May 2, 2013
    Applicant: AJINOMOTO CO., INC.
    Inventor: AJINOMOTO CO., INC.
  • Publication number: 20130095522
    Abstract: The present invention relates to processes for producing fermentation products from starch-containing material, wherein liquefied mash is saccharified or pre-saccharified using a thermostable carbohydrate-source generating enzyme before fermentation or SSF.
    Type: Application
    Filed: April 13, 2011
    Publication date: April 18, 2013
    Applicants: NOVOZYMES NORTH AMERICA, INC., NOVOZYMES A/S
    Inventors: Randall Deinhammer, Guillermo Coward-Kelly, Ming Li, Junxin Duan, Zheng Liu, Shiro Fukuyama, Keiichi Ayabe
  • Publication number: 20130084609
    Abstract: An L-amino acid is produced by culturing a bacterium having an L-amino acid-producing ability in a medium containing a processed product of a microalga which promotes production and accumulation of the L-amino acid by the bacterium. The process product is produced by disrupting the culture of the microalga, and/or extracting the culture of the microalga, or fractionating the culture of the microalga or the disrupted culture. The processed product contains a mixture of organic substances produced by the microalga, a hydrolysate of the disrupted microalga culture, and/or an extract or fractionation product of the microalga culture. The processed product can also contain a saccarification product of starch or a hydrolysate of fats and oils. The bacterium is cultured to produce and accumulate the L-amino acid in culture, and the L-amino acid is collected from the culture.
    Type: Application
    Filed: December 7, 2012
    Publication date: April 4, 2013
    Applicant: AJINOMOTO CO., INC.
    Inventor: AJINOMOTO CO., INC.
  • Publication number: 20130084600
    Abstract: This invention is metabolically engineer bacterial strains that provide increased intracellular NADPH availability for the purpose of increasing the yield and productivity of NADPH-dependent compounds. In the invention, native NAD-dependent GAPDH is replaced with NADP-dependent GAPDH plus overexpressed NADK. Uses for the bacteria are also provided.
    Type: Application
    Filed: November 19, 2012
    Publication date: April 4, 2013
    Applicant: WILLIAM MARSH RICE UNIVERSITY
    Inventor: WILLIAM MARSH RICE UNIVERSITY
  • Patent number: 8394612
    Abstract: A method is provided for producing an L-amino acid by culturing a microorganism belonging to the Enterobacteriaceae family and having the ability to produce an L-amino acid, in a medium to produce and accumulate the L-amino acid in the medium. The microorganism has been modified by introduction of a DNA fragment which includes a pho regulon promoter and a structural gene encoding an L-amino acid biosynthetic enzyme, which is ligated downstream of the promoter so that the gene is expressed by the promoter, and so that the activity of the L-amino acid biosynthetic enzyme is increased by the expression of the gene by the promoter. In this way, the L-amino acid that is produced in the medium can be collected. Furthermore, the phosphorus concentration in the medium is such that the expression of the gene by the promoter is induced.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: March 12, 2013
    Assignee: Ajinomoto Co., Inc.
    Inventors: Akira Imaizumi, Larisa Gotlibovna Airikh, Vera Georgievna Doroshenko, Irina Sergeevna Tsyrenzhapova
  • Publication number: 20130059332
    Abstract: The present invention relates to a process for the production of an aqueous glucose solution from maize or maize kernels. The invention also relates to a glucose solution obtainable by this process, and to its use for the production of organic compounds. The process according to the invention comprises: a) fractionating dry milling of maize kernels, where the maize kernels are separated into a maize-starch-comprising endosperm fraction and a high-oil germ fraction and, if appropriate, a bran fraction; b) enzymatic liquefaction and saccharification of the maize starch in an aqueous suspension of the endosperm fraction, which gives an aqueous glucose solution comprising maize gluten; and c) depletion of the maize gluten and, if appropriate, any bran present from the aqueous glucose solution.
    Type: Application
    Filed: September 14, 2012
    Publication date: March 7, 2013
    Applicant: BASF SE
    Inventors: Matthias Boy, Jong-Kyu Choi, Jin Won Chung, Markus Lohscheidt, Jong In Choi, Jae Yeol Seo, Jörg Braun, Mo Se Kim, Sung Hyun Kim, Arno Kochner
  • Publication number: 20130052693
    Abstract: The present invention relates to cellobiohydrolase variants having improved thermostability in comparison to wild-type CBH2a.
    Type: Application
    Filed: July 13, 2012
    Publication date: February 28, 2013
    Applicant: CODEXIS, INC.
    Inventors: DIPNATH BAIDYAROY, LOUIS CLARK, DAVID ELGART, RAMA VOLADRI, XIYUN ZHANG
  • Publication number: 20130017571
    Abstract: A truncated pullulanase variant of a parent pullulanase belonging to family GH57 comprising an X47 domain and the use thereof.
    Type: Application
    Filed: December 22, 2010
    Publication date: January 17, 2013
    Applicant: NOVOZYMES A/S
    Inventors: Martin Borchert, Morten Gjermansen, Suzanne Clark, Bernard Henrissat, Maria B. Silow, Peter F. Hallin
  • Patent number: 8354255
    Abstract: A method for producing an L-amino acid is provided which includes culturing in a medium a microorganism of the Enterobacteriaceae family which has an ability to produce an L-amino acid and which has been modified so as to enhance the ?-glucoside PTS activity, and collecting the L-amino acid from the medium or cells.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: January 15, 2013
    Assignee: Ajinomoto Co., Inc.
    Inventors: Takuji Ueda, Yuji Joe