Transferase Other Than Ribonuclease (2.) Patents (Class 435/193)
  • Publication number: 20150031098
    Abstract: Provided is a mutant of propionyl-CoA transferase from Clostridium propionicum that can convert lactate into lactyl-CoA with high efficiency in a method of preparing a polylactate (PLA) or PLA copolymer using microorganisms. Unlike conventional propionyl-CoA transferase which is weakly expressed in E. coli, when a mutant of propiony-CoA transferase from Clostridium propionicum is introduced into recombinant E. coli, lactyl-CoA can be supplied very smoothly, thereby enabling highly efficient preparation of polylactate (PLA) and PLA copolymer.
    Type: Application
    Filed: October 7, 2014
    Publication date: January 29, 2015
    Inventors: Si Jae PARK, Taek Ho YANG, Hye Ok KANG, Sang Hyun LEE, Eun Jung LEE, Tae Wan KIM
  • Patent number: 8940876
    Abstract: The present disclosure relates to a method for preparing recombinant glycoproteins with high sialic acid content. More specifically, for UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE/MNK) enzyme where point mutation was induced by substituting arginine at position 263 by leucine only or by further substituting arginine at position 266 by glutamine, epimerase activity is constantly maintained, and overexpressed cells thereof experience an increase in intracellular cytidine monophosphate (CMP)-sialic acid content, irrespective of CMP-sialic acid concentration.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: January 27, 2015
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Jung Hoe Kim, Young Dok Son, Jin Young Hwang, Yeon Tae Jeong
  • Patent number: 8940295
    Abstract: The present invention comprises methods and compositions for the reduction of oxalate in humans, and methods for the purification and isolation of recombinant oxalate reducing enzyme proteins. The invention provides methods and compositions for the delivery of oxalate-reducing enzymes in particle compositions. The compositions of the present invention are suitable in methods of treatment or prevention of oxalate-related conditions.
    Type: Grant
    Filed: March 27, 2013
    Date of Patent: January 27, 2015
    Assignee: Oxthera Intellectual Property AB
    Inventors: Harmeet Sidhu, Aaron Blake Cowley, Carl-Gustaf Golander, Qingshan Li
  • Patent number: 8936925
    Abstract: The present invention relates to protein fragments of 5-enolpyruvylshikimate-3-phosphate synthase, which are selected from the protein fragment pairs of EPSPS, two such protein fragments can make up full length EPSPS and reconstitute EPSPS activities by complementation without help of any joint structure. The present invention also relates to nucleic acid molecules encoding the protein fragments, expression vectors and cells comprising such nucleic acid molecules. The present invention also relates to methods for reconstituting EPSPS activities by using the fragments or the nucleic acid molecules or the expression vectors of the present invention, as well as methods for dividing the protein fragments of the present invention.
    Type: Grant
    Filed: December 16, 2005
    Date of Patent: January 20, 2015
    Assignee: Peking University
    Inventors: Yiping Wang, Yicheng Sun, Yan Li
  • Publication number: 20150020221
    Abstract: The invention provides methods and compositions for enhancing the efficacy of cancer therapies through modulation of BAL1 and/or BBAP. Also provided are methods for predicting the efficacy of cancer therapies or treating cancer in a subject through modulation of BAL1 and/or BBAP. Further provided are methods for identifying compounds that are capable of modulating BAL1-BBAP complexes.
    Type: Application
    Filed: October 5, 2012
    Publication date: January 15, 2015
    Inventors: Margaret A. Shipp, Qingsheng Yan
  • Publication number: 20150018522
    Abstract: Disclosed are mutants of galactosyltransferases that can catalyze formation of oligosaccharides in the presence of magnesium; mutants of galactosyltransferases having altered donor and acceptor specificity which can catalyze formation of oligosaccharides in the presence of magnesium; methods and compositions that can be used to synthesize oligosaccharides; methods for increasing the immunogenicity of an antigen; and methods to stabilize platelets.
    Type: Application
    Filed: March 10, 2014
    Publication date: January 15, 2015
    Applicant: The United States of America, as represented by the Secretary, Department of Health & Human Servic
    Inventors: Pradman K. Qasba, Elizabeth Boeggeman, Boopathy Ramakrishnan
  • Publication number: 20150020233
    Abstract: The invention provides glyphosate tolerant transgenic turfgrass plants, plant material, and seeds that have a specific transformation event. Also provided are assays for detecting the presence of the event. The invention also provides sequences for a variant EPSPS gene and a GAO2X gene, cassettes, and plants comprising the variant EPSPS gene and a GAO2X gene.
    Type: Application
    Filed: July 14, 2014
    Publication date: January 15, 2015
    Inventors: Robert W. HARRIMAN, Lisa LEE, David M. STALKER, Rebecca TORISKY
  • Patent number: 8932586
    Abstract: Pseudomonas exotoxin A or “PE” is a 66 kD, highly potent, cytotoxic protein secreted by the bacterium Pseudomonas aeruginosa. Various forms of PE have been coupled to other proteins, such as antibodies, to generate therapeutically useful cytotoxin conjugates that selectively target cells of a desired phenotype (such as tumor cells). In the present invention, peptides spanning the sequence of an approximately 38 kD form of Pseudomonas exotoxin A protein were analyzed for the presence of immunogenic CD4+ T cell epitopes. Six immunogenic T cell epitopes were identified. Residues were identified within each epitope for introduction of targeted amino acid substitutions to reduce or prevent immunogenic T-cell responses in PE molecules which may be administered to a heterologous host.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: January 13, 2015
    Assignee: Intrexon Corporation
    Inventors: Timothy David Jones, Francis Joseph Carr
  • Patent number: 8933297
    Abstract: The invention provides Nicotiana benthamiana mutant plants which are incapable of forming xylosyl-structures on glycoproteins. In addition, the invention provides methods for the production of heterologous glycoproteins in said mutant plants.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: January 13, 2015
    Assignee: Icon Genetics GmbH
    Inventors: Koen Weterings, Gerben Van Eldik
  • Patent number: 8932838
    Abstract: The present disclosure provides engineered transaminase polypeptides having improved properties as compared to naturally occurring transaminases including the ability of converting the substrate, 3?-hydroxyacetophenone to (S)-3-(1-aminoethyl)-phenol in enantiomeric excess and high percentage conversion. Also provided are polynucleotides encoding the engineered transaminases, host cells capable of expressing the engineered transaminases, and methods of using the engineered transaminases to synthesize (S)-3-(1-aminoethyl)-phenol and related compounds useful in the production of active pharmaceutical ingredients.
    Type: Grant
    Filed: August 19, 2014
    Date of Patent: January 13, 2015
    Assignee: Codexis, Inc.
    Inventors: Fabien Louis Cabirol, Anupam Gohel, Seong Ho Oh, Derek J. Smith, Brian Wong, James J. Lalonde
  • Patent number: 8932836
    Abstract: The disclosure provides transaminase polypeptides capable of converting the substrate, 2-(3,4-dimethoxyphenethoxy)cyclohexanone to the trans diastereomer product (1R,2R)-2-(3,4-dimethoxyphenethoxy)cyclohexanamine in at least a 2:1 diastereomeric ratio relative to the cis diastereomer (1R,2S)-2-(3,4-dimethoxyphenethoxy)cyclohexanamine. The disclosure also provides polynucleotides, vectors, host cells, and methods of making and using the transaminase polypeptides in processes for preparing (1R,2R)-2-(3,4-dimethoxyphenethoxy)cyclohexanamine and its analogs, which can product compounds can be further used to prepare the aminocyclohexylether compound, (3R)-1-[(1R,2R)-2-[2-(3,4-dimethoxyphenyl)ethoxy]cyclohexyl]pyrrolidin-3-ol, which is an ion channel blocker.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: January 13, 2015
    Assignee: Codexis, Inc.
    Inventors: John Limanto, Gregory Beutner, Brendan Grau, Jacob Janey, Artis Klapars, Eric R. Ashley, Hallena R. Strotman, Matthew D. Truppo, Gregory Hughes, Fabien Cabirol, Anupam Gohel, Steven J. Collier, Jack Liang, Marissa Mock, Emily Mundorff, Scott Novick, Derek Smith
  • Publication number: 20150010954
    Abstract: Reaction solutions are disclosed herein comprising water, sucrose and a glucosyltransferase enzyme that synthesizes poly alpha-1,3-glucan. The glucosyltransferase enzyme can synthesize insoluble glucan polymer having at least 50% alpha-1,3 glycosidic linkages and a number average degree of polymerization of at least 100. Further disclosed are methods of using such glucosyltransferase enzymes to produce insoluble poly alpha-1,3-glucan.
    Type: Application
    Filed: September 19, 2014
    Publication date: January 8, 2015
    Inventors: MARK S. PAYNE, Yefim Brun, Hongxian He, Thomas Scholz
  • Publication number: 20150010955
    Abstract: Reaction solutions are disclosed herein comprising water, sucrose and a glucosyltransferase enzyme that synthesizes poly alpha-1,3-glucan. The glucosyltransferase enzyme can synthesize insoluble glucan polymer having at least 50% alpha-1,3 glycosidic linkages and a number average degree of polymerization of at least 100. Further disclosed are methods of using such glucosyltransferase enzymes to produce insoluble poly alpha-1,3-glucan.
    Type: Application
    Filed: September 19, 2014
    Publication date: January 8, 2015
    Inventors: MARK S. PAYNE, YEFIM BRUN, HONGXIAN HE, THOMAS SCHOLZ
  • Publication number: 20150011786
    Abstract: The present invention provides novel lysophospholipid acyltransferases. The object of the present invention is attained by the nucleotide sequences of SEQ ID NOs: 1 and 6 and the amino acid sequences of SEQ ID NOs: 2 and 7 of the present invention.
    Type: Application
    Filed: June 6, 2014
    Publication date: January 8, 2015
    Inventor: Misa OCHIAI
  • Publication number: 20150010956
    Abstract: Reaction solutions are disclosed herein comprising water, sucrose and a glucosyltransferase enzyme that synthesizes poly alpha-1,3-glucan. The glucosyltransferase enzyme can synthesize insoluble glucan polymer having at least 50% alpha-1,3 glycosidic linkages and a number average degree of polymerization of at least 100. Further disclosed are methods of using such glucosyltransferase enzymes to produce insoluble poly alpha-1,3-glucan.
    Type: Application
    Filed: September 19, 2014
    Publication date: January 8, 2015
    Inventors: MARK S. PAYNE, Yefim Brun, Hongxian He, Thomas Scholz
  • Patent number: 8927806
    Abstract: The present invention relates to the isolation, purification, characterization and use of the plant Snf1-related protein kinase (SnRK) gene and genetic products. The invention includes isolated and purified SnRK DNA and relates to methods of regulating water loss and plant drought tolerance, sucrose content, starch content, seed oil content, fatty acid synthesis, seed oil acyl composition, seed size/weight, resistance/tolerance to biotic stresses, increased root biomass, and/or carbon flux into other seed components, plant, using the gene, and to tissues and plants transformed with the gene. The invention also relates to transgenic plants, plant tissues and plant seeds having a genome containing an introduced DNA sequence of the invention, and a method of producing such plants and plant seeds.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: January 6, 2015
    Assignee: DowAgroSciences, LLC
    Inventors: Zhifu Zheng, Thomas W. Greene
  • Patent number: 8927809
    Abstract: Transgenic soybean seed having increased total fatty acid content of at least 10% and altered fatty acid profiles when compared to the total fatty acid content of non-transgenic, null segregant soybean seed are described. DGAT genes from Yarrowia Lipolytica are used to achieve the increase in seed storage lipids.
    Type: Grant
    Filed: November 14, 2011
    Date of Patent: January 6, 2015
    Assignee: E.I. du Pont de Nemours and Company
    Inventors: Knut Meyer, William D. Hitz, Narendra S. Yadav, Howard Glenn Damude
  • Patent number: 8927036
    Abstract: A process of enzymatic degumming edible oils, comprising treating edible oil with a lipid acyltransferase so as to transfer an acyl group from a major part of the phospholipid to one or more acyl acceptors, wherein the acyl acceptor may be any compound comprising a hydroxyl group. In one embodiment preferably the acyl acceptor is water and in another embodiment preferably the acyl acceptor is one or more sterols and/or stanols. When the acyl acceptor is a stanol and/or sterol, one or more sterol esters and/or stanol esters are produced.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: January 6, 2015
    Assignee: Dupont Nutrition Biosciences APS
    Inventors: Jorn Borch Søe, Mark Turner
  • Patent number: 8927810
    Abstract: The invention is directed to methods for optimizing glycan processing in organisms (and in particular, plants) so that a glycoprotein having complex type bi-antennary glycans and thus containing galactose residues on both arms and which are devoid of (or reduce in) xylose and fucose can be obtained. The invention is further directed to said glycoprotein obtained and host system comprising said protein.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: January 6, 2015
    Assignee: Stichting Dienst Landbouwkundig Onderzoek
    Inventors: Hendrikus Antonius Cornelis Bakker, Hendrik Jan Bosch, Dionisius Elisabeth Antonius Florack, Gerard Johan Adolph Rouwendal
  • Publication number: 20150004649
    Abstract: Reaction solutions are disclosed herein comprising water, sucrose and a glucosyltransferase enzyme that synthesizes poly alpha-1,3-glucan. The glucosyltransferase enzyme can synthesize insoluble glucan polymer having at least 50% alpha-1,3 glycosidic linkages and a number average degree of polymerization of at least 100. Further disclosed are methods of using such glucosyltransferase enzymes to produce insoluble poly alpha-1,3-glucan.
    Type: Application
    Filed: September 19, 2014
    Publication date: January 1, 2015
    Inventors: MARK S. PAYNE, Yefim Brun, Hongxian He, Thomas Scholz
  • Publication number: 20150004653
    Abstract: Reaction solutions are disclosed herein comprising water, sucrose and a glucosyltransferase enzyme that synthesizes poly alpha-1,3-glucan. The glucosyltransferase enzyme can synthesize insoluble glucan polymer having at least 50% alpha-1,3 glycosidic linkages and a number average degree of polymerization of at least 100. Further disclosed are methods of using such glucosyltransferase enzymes to produce insoluble poly alpha-1,3-glucan.
    Type: Application
    Filed: September 19, 2014
    Publication date: January 1, 2015
    Inventors: MARK S. PAYNE, Yefim Brun, Hongxian He, Thomas Scholz
  • Publication number: 20150004652
    Abstract: Reaction solutions are disclosed herein comprising water, sucrose and a glucosyltransferase enzyme that synthesizes poly alpha-1,3-glucan. The glucosyltransferase enzyme can synthesize insoluble glucan polymer having at least 50% alpha-1,3 glycosidic linkages and a number average degree of polymerization of at least 100. Further disclosed are methods of using such glucosyltransferase enzymes to produce insoluble poly alpha-1,3-glucan.
    Type: Application
    Filed: September 19, 2014
    Publication date: January 1, 2015
    Inventors: MARK S. PAYNE, Yefim Brun, Hongxian He, Thomas Scholz
  • Publication number: 20150004650
    Abstract: Reaction solutions are disclosed herein comprising water, sucrose and a glucosyltransferase enzyme that synthesizes poly alpha-1,3-glucan. The glucosyltransferase enzyme can synthesize insoluble glucan polymer having at least 50% alpha-1,3 glycosidic linkages and a number average degree of polymerization of at least 100. Further disclosed are methods of using such glucosyltransferase enzymes to produce insoluble poly alpha-1,3-glucan.
    Type: Application
    Filed: September 19, 2014
    Publication date: January 1, 2015
    Inventors: MARK S. PAYNE, Yefim Brun, Hongxian He, Thomas Scholz
  • Publication number: 20150004651
    Abstract: Reaction solutions are disclosed herein comprising water, sucrose and a glucosyltransferase enzyme that synthesizes poly alpha-1,3-glucan. The glucosyltransferase enzyme can synthesize insoluble glucan polymer having at least 50% alpha-1,3 glycosidic linkages and a number average degree of polymerization of at least 100. Further disclosed are methods of using such glucosyltransferase enzymes to produce insoluble poly alpha-1,3-glucan.
    Type: Application
    Filed: September 19, 2014
    Publication date: January 1, 2015
    Inventors: MARK S PAYNE, Yefim Brun, Hongxian He, Thomas Scholz
  • Publication number: 20150004659
    Abstract: The disclosure relates to a nucleic acid molecule isolated from a Papaver somniferum cultivar that produces the opiate alkaloid noscapine which comprises 10 genes involved in the biosynthesis of opiate alkaloids.
    Type: Application
    Filed: March 12, 2013
    Publication date: January 1, 2015
    Applicant: GlaxoSmithKline Australia Pty Limited
    Inventors: Thilo Winzer, Ian Alexander Graham, Tracy Carol Walker
  • Patent number: 8921079
    Abstract: The present disclosure relates to methods of using transaminase polypeptides in the synthesis of chiral amines from prochiral ketones.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: December 30, 2014
    Assignee: Codexis, Inc.
    Inventors: Gregory Hughes, Paul N. Devine, Fred J. Fleitz, Brendan T. Grau, John Limanto, Christopher Savile, Emily Mundorff
  • Publication number: 20140370568
    Abstract: Specialized (iso)eugenol 4-O-methyltransferase (s-IEMT) enzymes having increased capacity for methylation of monolignols are disclosed. The s-IEMTs have unique activity favoring methylation of coniferyl alcohol versus sinapyl alcohol. Various s-IEMTs methylate ferulic acid. Means for producing the various s-IEMTs are provided. The s-IEMTs are useful for modification of lignin content and production of aromatic compounds.
    Type: Application
    Filed: June 17, 2014
    Publication date: December 18, 2014
    Inventors: Chang-Jun Liu, Yuanheng Cai
  • Patent number: 8911982
    Abstract: The invention relates to cells, nucleic acids, and enzymes, the use thereof for producing sophorolipids, and methods for producing sophorolipids.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: December 16, 2014
    Assignee: Evonik Degussa GmbH
    Inventors: Steffen Schaffer, Mirja Wessel, Anja Thiessenhusen
  • Patent number: 8906636
    Abstract: The present invention relates to the field of recombinant toxin protein production in bacterial hosts. In particular, the present invention relates to production processes for obtaining high levels of a recombinant CRM197, Diphtheria Toxin, Pertussis Toxin, Tetanus Toxoid Fragment C, Cholera Toxin B, Cholera holotoxin, and Pseudomonas Exotoxin A, from a bacterial host.
    Type: Grant
    Filed: July 26, 2013
    Date of Patent: December 9, 2014
    Assignee: Pfenex Inc.
    Inventors: Diane M. Retallack, Lawrence Chew
  • Publication number: 20140356389
    Abstract: Disclosed herein are various open reading frames from a strain of E. coli responsible for neonatal meningitis (MNEC), and a subset of these that is of particular interest for preparing compositions for immunising against MNEC infections.
    Type: Application
    Filed: June 2, 2014
    Publication date: December 4, 2014
    Applicants: J. CRAIG VENTER INSTITUTE, INC., NOVARTIS VACCINES AND DIAGNOSTICS SRL
    Inventors: Vega MASIGNANI, Danilo Gomes MORIEL, Francesco BERLANDA SCORZA, Nathalie NORAIS, Maria Rita FONTANA, Mariagrazia PIZZA, Laura SERINO, Herve TETTELIN
  • Publication number: 20140352706
    Abstract: The present invention relates to a mutant, non-naturally occurring or transgenic plant cell comprising: (i) at least one polynucleotide comprising, consisting or consisting essentially of a sequence encoding an isopropylmalate synthase and having at least 60% sequence identity to SEQ ID NO:1 or SEQ ID NO:10 or SEQ ID NO: 12 or SEQ ID NO:14; or (ii) a polypeptide encoded by said polynucleotide(s); or (iii) a polypeptide having at least 60% sequence identity to SEQ ID NO:2 or SEQ ID NO:11 or SEQ ID NO:13 or SEQ ID NO:15; or (iv) a construct, vector or expression vector comprising said polynucleotide sequence(s), optionally wherein said construct, vector or expression vector additionally comprises a promoter comprising, consisting or consisting essentially of the sequence set forth in SEQ ID NO:8 or a variant thereof with at least about 60% identity thereto or a trichome promoter.
    Type: Application
    Filed: August 31, 2012
    Publication date: December 4, 2014
    Applicant: PHILIP MORRIS PRODUCTS S.A.
    Inventors: Nicholas Bakaher, Gregor Nicholas Bindler, Michel Philippe Blanc, Simon Goepfert, Florian Martin
  • Patent number: 8900838
    Abstract: A microorganism genetically modified for the bioproduction of 1,3-propanediol from sucrose, wherein the microorganism includes: a two-step metabolic pathway for the production of 1,3-propanediol, including a first step of decarboxylation of 4-hydroxy-2-ketobutyrate with an enzyme having a 2-keto acid decarboxylase activity, and a second step of reduction of the obtained 3-hydroxypropionaldehyde with an enzyme having hydroxy aldehyde reductase activity, and genes enabling the microorganism to utilize sucrose as sole carbon source. A method for the biological preparation of 1,3-propanediol by fermentation, including cultivating said microorganism genetically modified, wherein the culture is performed in an appropriate medium including a source of sucrose, and recovering the 1,3-propanediol being produced.
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: December 2, 2014
    Assignee: Metabolic Exployer
    Inventors: Philippe Soucaille, Cedric Boisart
  • Publication number: 20140349339
    Abstract: The present invention provides novel methods for preparing glycosylated molecules such as oligosaccharides, glycolipids, and glycoproteins/peptides. Novel sialyltransferases are also disclosed. The method includes forming a reaction mixture containing an acceptor molecule, a donor substrate having a sugar moiety and a nucleotide, and a sialyltransferase selected from PmST3 (SEQ ID NO:7) and certain variants thereof. The reaction mixture is formed under conditions sufficient to transfer the sugar moiety from the donor substrate to the acceptor molecule, thereby forming the glycosylated molecule. In some embodiments, the acceptor molecule is selected from a natural product, an oligosaccharide, a glycoprotein, and a glycolipid. In some embodiments, the donor substrate is formed via conversion of a suitable hexosamine derivative to a cytidine 5?- monophosphate(CMP)-sialic acid in a one-pot reaction mixture containing asialic acid aldolase and a CMP-sialic acid synthetase.
    Type: Application
    Filed: November 7, 2012
    Publication date: November 27, 2014
    Inventors: Xi Chen, Vireak Thon, Hai Yu
  • Publication number: 20140349371
    Abstract: The present invention provides a method for producing a protein which has a restored native higher-order structure by bringing a protein which has lost its native higher-order structure into contact at pH 6.5 to 9.0 with a 1 to 3% aqueous solution of a specific surfactant, such as lauroylglutamic acid to obtain a solubilized solution of the protein; and then adding the solubilized solution to a buffer with pH 6.5 to 9.0 containing arginine or an arginine derivative at a concentration of 0.1 to 1.2 M to lower the concentration of the specific surfactant, such as lauroylglutamic acid, in the obtained mixture solution down to 0.02 to 0.275%. According to the present invention, it is possible to easily restore the native higher-order structure of a protein while smoothly removing the surfactant from the protein.
    Type: Application
    Filed: August 8, 2014
    Publication date: November 27, 2014
    Applicant: AJINOMOTO CO., INC.
    Inventors: Ryosuke Yumioka, Daisuke Ejima
  • Patent number: 8895808
    Abstract: Methods of, and compositions for, assembling one or more transcription units in a genome without a linked selectable marker or other unwanted transcription unit are provided. Also provided methods of, and compositions for, assembling one or more transcription units in a genome with a reduced frequency of vector backbone.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: November 25, 2014
    Assignee: Monsanto Technology LLC
    Inventors: Larry A. Gilbertson, Susan J. Johnson
  • Publication number: 20140344997
    Abstract: Disclosed are polynucleotides encoding polypeptides that comprise the biosynthetic pathway for lignin in the jute plant. The present invention relates generally to the field of plant lignin biosynthesis genes, polypeptides encoded by such genes, and the use of such polynucleotide and polypeptide sequences for controlling plant lignin production. Also disclosed are methods for using the polynucleotides and polypeptides to influence the quality and amount of fiber produced by jute.
    Type: Application
    Filed: April 25, 2012
    Publication date: November 20, 2014
    Applicant: Bangladesh Jute Research Institute
    Inventors: Maqsudul Alam, Haseena Khan, Mahboob Zaman, Mohammed K. Uddin, Mohammed S. Haque, Mohammed S. Islam, Muhammed S. Azam
  • Publication number: 20140342412
    Abstract: The present disclosure relates to transaminase polypeptides capable of aminating a dicarbonyl substrate, and polynucleotides, vectors, host cells, and methods of making and using the transaminase polypeptides.
    Type: Application
    Filed: September 7, 2012
    Publication date: November 20, 2014
    Applicant: CODEXIS, INC.
    Inventors: Fabien Cabirol, Haibin Chen, Anupam Gohel, Paulina Salim, Derek Smith, Jacob Janey, Birgit Kosjek, Weng Lin Tang, Helen Hsieh, Son Pham
  • Patent number: 8889380
    Abstract: The present disclosure relates to polypeptides having transaminase activity, polynucleotides encoding the polypeptides, and methods of using the polypeptides.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: November 18, 2014
    Assignee: Codexis, Inc.
    Inventors: Christopher Savile, Emily Mundorff, Jeffrey Moore, Paul N. Devine, Jacob M. Janey
  • Patent number: 8889709
    Abstract: The present invention relates in general to an inhibitor of a glutaminyl peptide cyclotransferase-like protein (QPCTL), and the use thereof for the treatment and/or prevention of an inflammatory disease or disorder selected from the group consisting of (a) chronic and acute inflammations, e.g. rheumatoid arthritis, atherosclerosis, restenosis, pancreatitis; (b) other inflammatory diseases, e.g. neuropathic pain, graft rejection/graft failure/graft vasculopathy, HIV infections/AIDS, gestosis, tuberous sclerosis, Guillain-Barré syndrome, chronic inflammatory demyelinizing polyradiculoneuropathy and multiple sclerosis; (c) neuroinflammation; and (d) neurodegenerative diseases, e.g. mild cognitive impairment (MCI), Alzheimer's disease, neurodegeneration in Down Syndrome, Familial British Dementia, and Familial Danish Dementia, which may result from neuroinflammation.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: November 18, 2014
    Assignee: Probiodrug AG
    Inventors: Hans-Ulrich Demuth, Stephan Schilling, Michael Wermann, Holger Cynis, Astrid Kehlen, Daniel Friedrich, Torsten Hoffmann, Kathrin Gans, Jens-Ulrich Rahfeld, Ulrich Heiser, Michael Almstetter, Robert Sommer, Ulf-Torsten Gaertner, Antje Hamann, Michael Thormann, Andreas Treml
  • Patent number: 8889391
    Abstract: The present disclosure provides novel beta-alanine/alpha ketoglutarate aminotransferase nucleic acid and protein sequences having increased biological activity. Also provided are cells containing such enzymes, as well as methods of their use, for example to produce malonyl semialdehyde and downstream products thereof, such as 3-hydroxypropionic acid and derivatives thereof.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: November 18, 2014
    Assignee: Cargill, Incorporated
    Inventors: Holly Jean Jessen, Hans H. Liao, Steven John Gort, Olga V. Selifonova
  • Patent number: 8889392
    Abstract: Modified (iso)eugenol 4-O-methyltransferase enzymes having novel capacity for methylation of monolignols and reduction of lignin polymerization in plant cell wall are disclosed. Sequences encoding the modified enzymes are disclosed.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: November 18, 2014
    Assignee: Brookhaven Science Associates, LLC
    Inventors: Chang-Jun Liu, Mohammad-Wadud Bhuiya, Kewei Zhang
  • Patent number: 8883460
    Abstract: The present invention relates to a polynucleotide that is active to an acetyl glutamate synthase and acetyl ornithinase which are associated with ornithine or arginine biosynthesis from Corynebacterium glutamicum. The present invention also relates to a polypeptide encoded by said polynucleotide, a recombinant vector comprising said polynucleotide, to a transformant obtained by introducing said recombinant vector to a host microorganism for producing L-ornithine or L-arginine, and transforming the recombinant vector, and to a method for producing L-ornithine or L-arginine by culturing said transformant. The activity of the transformant of the present invention to an acetyl glutamate synthase and acetyl ornithinase is increased as compared to an intrinsic activity, and thus L-ornithine or L-arginine can be produced, at a high yield rate, from the transformant of the present invention.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: November 11, 2014
    Assignee: CJ Cheiljedang Corp.
    Inventors: Jin-Man Cho, Hye-Won Kim, Ji-Hye Lee, Jae-Yong Cho
  • Patent number: 8883476
    Abstract: Provided is a mutant of propionyl-CoA transferase from Clostridium propionicum that can convert lactate into lactyl-CoA with high efficiency in a method of preparing a polylactate (PLA) or PLA copolymer using microorganisms. Unlike conventional propionyl-CoA transferase which is weakly expressed in E. coli, when a mutant of propiony-CoA transferase from Clostridium propionicum is introduced into recombinant E. coli, lactyl-CoA can be supplied very smoothly, thereby enabling highly efficient preparation of polylactate (PLA) and PLA copolymer.
    Type: Grant
    Filed: July 26, 2013
    Date of Patent: November 11, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Si Jae Park, Taek Ho Yang, Hye Ok Kang, Sang Hyun Lee, Eun Jung Lee, Tae Wan Kim
  • Patent number: 8883445
    Abstract: The present invention provides genetically engineered strains of methylotrophic yeast including Pichia and especially Pichia pastoris capable of producing proteins with reduced or modified glycosylation. Methods of producing glycoproteins with reduced and/or modified glycosylation using such genetically engineered strains of Pichia are also provided. Vectors, which comprise coding sequences for ?-1,2-mannosidase I, glucosidase II, GlcNAc-tranferase I and mannosidase II or comprising OCH1 disrupting sequence, for transforming methylotrophic yeasts are contemplated by the present invention. Kit for providing the comtemplated vectors are also included in this invention.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: November 11, 2014
    Assignees: Research Corporation Technologies, Inc., Universiteit Gent, Vib, VZW
    Inventors: Roland Contreras, Nico L. M. Callewaert, Steven C. J. Geysens, Vladimir Kaigorodov, Vervecken Wouter
  • Publication number: 20140329291
    Abstract: Disclosed are methods and compositions related to ONC-T18, D4-desaturases, D5 elongases, their isolation, characterization, production, identification, and use for fatty acid production, as well as organisms containing these compositions and organisms expressing them.
    Type: Application
    Filed: May 6, 2014
    Publication date: November 6, 2014
    Applicant: DSM Nutritional Products AG
    Inventors: Adam M. Burja, Gabrielle S. Chafe, Helia Radianingtyas
  • Publication number: 20140323699
    Abstract: The present invention provides a method for labeling or detecting a protein with certain glycosyl groups. The methods are particularly useful for detecting cancer cells comprising the detected glycosyl groups. The present invention further provides labeling agents and detection agents, labeled proteins and mixtures, and kits and arrays thereof.
    Type: Application
    Filed: January 3, 2014
    Publication date: October 30, 2014
    Applicant: California Institute of Technology
    Inventors: Linda C. Hsieh-Wilson, Wen Yi, Jean-Luc Chaubard
  • Patent number: 8871474
    Abstract: Reaction solutions are disclosed herein comprising water, sucrose and a glucosyltransferase enzyme that synthesizes poly alpha-1,3-glucan. The glucosyltransferase enzyme can synthesize insoluble glucan polymer having at least 50% alpha-1,3 glycosidic linkages and a number average degree of polymerization of at least 100. Further disclosed are methods of using such glucosyltransferase enzymes to produce insoluble poly alpha-1,3-glucan.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: October 28, 2014
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Mark S Payne, Yefim Brun, Hongxian He, Thomas Scholz
  • Patent number: 8870980
    Abstract: The present invention relates to a process for producing enzymes and single cell oil. The process comprises that microorganisms capable of producing both single cell oil and enzymes are cultivated under conditions suitable for single cell oil production and enzyme production in a single cell oil production process. A microorganism culture comprising single cell oil and enzymes is obtained and at least part of the microorganism culture, of the supernatant and/or microorganism cells separated from the microorganism culture, of protein fraction enriched from the supernatant, and/or of protein fraction obtained from the cells is used as an enzyme preparation or as a source of enzymes. Single cell oil is recovered from the microorganism cells and used as biofuel, component of biofuel or as a starting material for biofuel production. Enzymes produced according to the process are used in the same or in another industrial process.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: October 28, 2014
    Assignee: Neste Oil Oyj
    Inventors: Annika Malm, Simo Laakso, Ossi Pastinen, Heidi Kahelin, Miia Mujunen
  • Publication number: 20140315313
    Abstract: Described are compositions and methods relating to variant filamentous fungi having altered growth characteristics. Such variants are well-suited for growth in submerged cultures, e.g., for the large-scale production of enzymes and other proteins for commercial applications.
    Type: Application
    Filed: April 20, 2012
    Publication date: October 23, 2014
    Applicant: DANISCO US INC.
    Inventors: Elizabeth A. Bodie, Robert James Pratt, II
  • Publication number: 20140314732
    Abstract: Improved compositions comprising a cross-linkable protein or polypeptide, and a non-toxic material which induces cross-linking of the cross-linkable protein. The compositions are optionally and preferably prepared in a non-phosphate buffer solvent. Optionally and preferably, the cross-linkable protein includes gelatin and any gelatin variant or variant protein as described herein. Optionally and preferably, the non-toxic material comprises transglutaminase (TG), which may optionally comprise any type of calcium dependent or independent transglutaminase, which may for example optionally be a microbial transglutaminase (mTG).
    Type: Application
    Filed: February 25, 2014
    Publication date: October 23, 2014
    Applicant: Lifebond Ltd.
    Inventor: Orahn PREISS-BLOOM