Including A Dish, Plate, Slide, Or Tray Patents (Class 435/288.3)
  • Patent number: 8809041
    Abstract: The invention provides a photo bioreactor comprising an aqueous liquid comprising a photosynthetic culture and light distributors (30). Each light distributor has a surface arranged to receive light and a tapered surface arranged to emit at least part of the received light. At least part of the tapered surface is submerged in the aqueous liquid comprising the photosynthetic culture. Light may be distributed efficiently in the aqueous liquid comprising the photosynthetic culture by relatively simple and cheap means. The reactor allows a high illuminated volume fraction.
    Type: Grant
    Filed: September 15, 2008
    Date of Patent: August 19, 2014
    Assignee: Feyecon B.V.
    Inventors: Geert Feye Woerlee, Steven Elmore, Frank Emile Wubbolts
  • Patent number: 8809040
    Abstract: An apparatus and method are provided for differentiating multiple detectable signals by excitation wavelength. The apparatus can include a light source that can emit respective excitation light wavelengths or wavelength ranges towards a sample in a sample retaining region, for example, in a well. The sample can contain two or more detectable markers, for example, fluorescent dyes, each of which can be capable of generating increased detectable emissions when excited in the presence of a target component. The detectable markers can have excitation wavelength ranges and/or emission wavelength ranges that overlap with the ranges of the other detectable markers. A detector can be arranged for detecting an emission wavelength or wavelength range emitted from a first marker within the overlapping wavelength range of at least one of the other markers.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: August 19, 2014
    Assignee: Applied Biosystems, LLC
    Inventors: Howard G. King, Steven J. Boege, Eugene F. Young, Mark F. Oldham
  • Patent number: 8784752
    Abstract: Methods and devices for adding liquids to and washing a microfluidic element array are disclosed. The method and devices feature a microfluidic plate holder with a sloped wall for improved draining of liquid, a machine readable/writable identifier, plate leveling systems, liquid filling systems, a hydrophilic-liquid coating, and an automated washing station.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: July 22, 2014
    Assignee: Curiox Biosystems Pte Ltd
    Inventors: Namyong Kim, Kong Leong Cheng, Li Li, Teow Soon Seah
  • Publication number: 20140199719
    Abstract: Devices and methods are provided for measuring, on a digital microfluidic platform, electrical signals associated with the impedance of adherent cells. In one embodiment, a sub-droplet of cell culture media containing adherent cells is passively dispensed at a pre-selected electrode location where a local hydrophilic surface region is provided, and adherent cells are attached to the local hydrophilic surface region. The cell culture media sub-droplet is replaced with a sub-droplet of a low-conductivity medium in a passive dispensing step, retaining the attached adherent cells. An AC voltage with a suitable frequency is applied between electrodes of the device and a signal associated with the impedance of the adherent cells is obtained. One of the electrodes to which the AC voltage is applied may be a dedicated sensing electrode. The local thickness of a dielectric layer coating the pre-selected electrode may be reduced to increase the detection sensitivity of the device.
    Type: Application
    Filed: October 25, 2013
    Publication date: July 17, 2014
    Applicant: THE GOVERNING COUNCIL OF THE UNIVERSITY OF TORONTO
    Inventors: Steven Chao-Chung Shih, Irena Barbulovic-Nad, Aaron Wheeler
  • Patent number: 8778669
    Abstract: The present invention discloses a vessel for culturing cells which includes: a bottom including a base with an upwardly extending wall at least partially bounding the base of the bottom; a top including a base with a downwardly extending wall at least partially bounding the base of the top; a tubular neck with an opening defined therein; and, one or more shelves, wherein, each shelf includes a base with an upwardly extending wall at least partially bounding the base of the shelf. The upwardly extending wall of a first shelf adjoins the downwardly extending wall of the top with the first shelf being located intermediate the bottom and the top. The base of each of the shelves having at least one aperture formed therein. The bottom, the top and the one or more shelves collectively define an enclosed volume for culturing cells. The tubular neck extends from the vessel with the enclosed volume being accessible by the opening in the tubular neck.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: July 15, 2014
    Assignee: Corning Incorporated
    Inventors: William J. Lacey, Michael S. Shanler, Amy W. Cai
  • Patent number: 8778666
    Abstract: A device comprises: one or more cantilevered biomimetic cilia, and a liquid disposed among the one or more biomimetic cilia, wherein individual biomimetic cilia are at least partially submerged in the liquid, and wherein the biomimetic cilia are arranged for excitation into resonance, such as for mixing and pumping via the resonant behavior of the excited cilia.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: July 15, 2014
    Assignee: University of Washington
    Inventors: Jae Chung, Santosh Devasia, James J. Riley, Kieseok Oh, Kyong Hoon Lee, Jiradech Kongthon
  • Patent number: 8772049
    Abstract: Screening assays and methods of performing such assays are provided. In certain examples, the assays and methods may be designed to determine whether or not two or more species can associate with each other. In some examples, the assays and methods may be used to determine if a known antigen binds to an unknown monoclonal antibody.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: July 8, 2014
    Assignee: President and Fellows of Harvard College
    Inventors: J. Christopher Love, Hidde L. Ploegh, Jehnna Ronan
  • Publication number: 20140186932
    Abstract: An apparatus for inoculating and streaking a solid growth culture medium in a plate, the streaking using a streaking applicator having a line of resiliently and flexibly supported spaced apart contact surfaces, the apparatus including: (a) an inoculating and streaking station including: a plate work position having a notional action line fixed in two dimensions (x,y) in a predetermined position; and a plate rotation device for rotating a positioned plate to cause streaking; (b) a sensor capable of locating the surface of the medium in a positioned plate to thereby determine for that plate, prior to inoculation and streaking of that plate, the third dimension (z) of the action line; (c) an inoculating device capable of dispensing inoculum, along the action line, on the surface of the medium in the positioned plate; and (d) a streaking device capable of moving the streaking applicator such that its line of spaced apart contact surfaces contacts, along the action line, the surface of the medium in the positi
    Type: Application
    Filed: March 10, 2014
    Publication date: July 3, 2014
    Applicant: LBT INNOVATIONS LIMITED
    Inventors: Rajiv Gupta, Stephen Lewis Leckenby, Phillip James Duncan, Ryan Andrew Annear, Daniel Patrick Torpy, Chong Kean Ooi, Michael John Tomlinson, Leon Raj, Graeme John Cross, Kenneth Andrew Nicoll, Wayne Richard Cheetham, Michael Craig Lovett, Colin William Potter
  • Patent number: 8765476
    Abstract: Automated sample processing systems may include onboard efficient high-speed mixing of at least two components with an automatic vertical force fluidic turbulent component mixer of which a mixed component may be aspirated and high-speed dispensed in a mixing vial. Other aspects may include single sweep applying a multi-treatment cleaning cycle to at least one slide. A multi-treatment cleaning cycle may include a washing treatment and a drying treatment. In yet other aspects the present invention may include an automated recovery sample processing system with the capability of detecting at least one immediate condition of a fortuitously terminated automatic sample processing run and perhaps even an automatic terminated sample processing run reconstruction calculator.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: July 1, 2014
    Assignee: Biocare Medical, LLC
    Inventors: Saradha Avantsa, Ravishankar Melkote, Thomas Maxwell, Geoffrey Cook
  • Patent number: 8759076
    Abstract: A sensor for detecting an electric field fluctuation associated with the permeabilization of a bacterial cell wall comprises a substrate, at least two electrodes integrated on the substrate, an amplifier integrated on the substrate, and a processor electrically connected to the amplifier to analyze the amplified signal. The substrate and the at least two electrodes define a well between the at least two electrodes, and the at least two electrodes being configured to generate a signal in response to an electric field fluctuation in close proximity to the well or the electrodes triggered when at least one antibacterial agent associated with the well contacts a cognate target. The amplifier is configured to generate an amplified signal in response to the signal. In addition, the processor is electrically connected to the amplifier to analyze the amplified signal.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: June 24, 2014
    Inventors: Patrick Glenn Gulak, Karen Lee Maxwell, Nasim Nikkhoo, Cintia Po Sze Man
  • Patent number: 8753890
    Abstract: An apparatus and method for analyzing a biological fluid sample is provided. The method includes the steps of: a) providing an analysis cartridge having a channel and an analysis chamber, wherein the channel is in fluid communication with the analysis chamber and includes at least one hydrophobic interior wall surface; b) admixing one or more anti-adsorption agents with fluid sample disposed within the channel, wherein the anti-adsorption agents are operable to inhibit adsorption of fluid sample onto the interior wall surface of the channel; c) moving the fluid sample into the analysis chamber; and d) analyzing the sample within the analysis chamber.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: June 17, 2014
    Assignee: Abbott Point of Care, Inc.
    Inventors: Niten V. Lalpuria, Darryn W. Unfricht, Igor Nikonorov, Benjamin Ports, Douglas R. Olson
  • Patent number: 8741631
    Abstract: A device for biological purposes such as cell culturing, enzymatic reactions or filtering of fluid has a body with first and second surfaces. The body is delimited by a rim and an aperture in the center of the body. The aperture is covered at the first and second surface by first and second plates. The first and/or second plate has an inlet orifice allowing liquid medium into the aperture. Rotating means are arranged in the aperture between the first and second plate. At least one recessed portion is a cavity in the rim of the body having a first outlet orifice allowing the liquid medium to flow out of the body. At least one outlet channel connects the circular aperture with the recessed portion. Liquid is pumped into the aperture of the device and pumped through at least one outlet channel.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: June 3, 2014
    Assignees: Aarhus Universitet, Region Midtjylland
    Inventors: Dang Quang Svend Le, Jens Vinge Nygaard, Morten Foss, Flemming Besenbacher, Cody Bünger
  • Patent number: 8716762
    Abstract: Disclosed are: a biosensor kit in which a bionsensor utilizing a field effect transistor is not deteriorated during storage or transport; and a system for detecting a substance of interest, which is equipped with the biosensor chip. The biosensor kit comprises a biosensor chip which can measure a substance of interest quantitatively and a package which can hermetically seal the biosensor chip and is composed of a packaging material comprising a metal film. The biosensor chip can measure the substance quantitatively based on the value of a current generated in a field effect transistor when the substance is reacted with a molecule that can recognize the substance and is immobilized on a reaction field connected to the field effect transistor. The biosensor chip comprises the field effect transistor and a mounting substrate on which the field effect transistor is mounted.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: May 6, 2014
    Assignee: Mitsumi Electric Co., Ltd.
    Inventors: Mitsuru Sakamoto, Hirohiko Urushiyama, Hiroaki Kikuchi, Tomoaki Yamabayashi
  • Patent number: 8710554
    Abstract: Disclosed are: a biosensor kit in which a biosensor utilizing a field effect transistor is not deteriorated during storage or transport; and a system for detecting a substance of interest, which is equipped with the biosensor chip. The biosensor kit comprises a biosensor chip which can measure a substance of interest quantitatively and a package which can hermetically seal the biosensor chip and is composed of a packaging material comprising a metal film. The biosensor chip can measure the substance quantitatively based on the value of a current generated in a field effect transistor when the substance is reacted with a molecule that can recognize the substance and is immobilized on a reaction field connected to the field effect transistor. The biosensor chip comprises the field effect transistor and a mounting substrate on which the field effect transistor is mounted.
    Type: Grant
    Filed: September 19, 2013
    Date of Patent: April 29, 2014
    Assignee: Mitsumi Electric, Co., Ltd.
    Inventors: Mitsuru Sakamoto, Hirohiko Urushiyama, Hiroaki Kikuchi, Tomoaki Yamabayashi
  • Patent number: 8704158
    Abstract: The invention concerns fluorescence standards, and in particular fluorescence standards for calibrating optical detectors. According to the invention, a fluorescent mineral or mixtures of minerals are employed for use as a fluorescence standard. The fluorescent mineral can be a naturally occurring mineral or a synthetically produced mineral. Preferred fluorescent minerals for use as fluorescence standards are corundum, fluorite, turquoise, amber, zircon, zoisite, iolite or cordierite, spinel, topaz, calcium fluorite, sphalerite or zincblende, calcite or calcspar, apatite, scheelite or calcium tungstate, willemite, feldspars, sodalite, a uranium mineral, a mineral containing Al3+, and in particular ruby and sapphire.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: April 22, 2014
    Assignee: Qiagen Lake Constance GmbH
    Inventors: Klaus Haberstroh, Konrad Faulstich
  • Patent number: 8691524
    Abstract: A film (14) with a tissue section (10) is placed with the tissue section (10) downward on a microscope slide (18) and the microscope slide (18) positioned in the object plane of an inverse microscope; where an adhesive tape (20) is arranged, with a bonding agent (22) downward, above the film (14) and therefore above the tissue section (10); wherein the next step, tissue (36) to be isolated is excised by a focused laser beam, which also divides the film (14); whereupon removal of the adhesive tape (20) from the microscope, the excised tissue pieces (36) adhere to the adhesive tape (20), and the remnant of the film (14) and of the tissue section (10) remains adhering to the microscope slide (18).
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: April 8, 2014
    Assignee: Molecular Machines & Industries AG
    Inventor: Norbert Leclerc
  • Patent number: 8685753
    Abstract: Methods are provided for detecting and optionally quantitating multiple analytes, including nucleic acid and/or polypeptide analytes, in particle-based assays that can be highly multiplexed. Compositions, systems, and kits related to the methods are also featured.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: April 1, 2014
    Assignee: Affymetrix, Inc.
    Inventors: Jason Martin, Quan Ngoc Nguyen
  • Patent number: 8658422
    Abstract: The present invention pertains to a culture plate, and in particular to a culture plate comprising a lid wherein the peripheral side wall of the lid is formed at least partially of at least one filter element made of a filter material. This enables lateral, uniform ventilation of the culture plate even in a stacked arrangement of the culture plate, avoiding at the same time significant loss of culture medium by evaporation.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: February 25, 2014
    Assignee: Eppendorf AG
    Inventor: Jochen Beese
  • Patent number: 8658418
    Abstract: The invention provides systems, including apparatus, methods, and kits, for the microfluidic manipulation and/or detection of particles, such as cells and/or beads. The invention provides systems, including apparatus, methods, and kits, for the microfluidic manipulation and/or analysis of particles, such as cells, viruses, organelles, beads, and/or vesicles. The invention also provides microfluidic mechanisms for carrying out these manipulations and analysis. These mechanisms may enable controlled input, movement/positioning, retention/localization, treatment, measurement, release, and/or output of particles. Furthermore, these mechanisms may be combined in any suitable order and/or employed for any suitable number of times within a system.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: February 25, 2014
    Assignee: Fluidigm Corporation
    Inventor: Antoine Daridon
  • Publication number: 20140051089
    Abstract: Described herein are methods of detecting a wound infection and for detecting the presence or absence of microorganisms, for example, wound pathogens in a sample, by contacting a sample with an enzyme produced and/or secreted by the bacteria, and detecting modification or the absence of modification of the substrate, as an indicator of the presence or absence of the enzyme in the sample. The present invention also features a biosensor for detecting the presence or absence of bacteria in a sample.
    Type: Application
    Filed: July 23, 2013
    Publication date: February 20, 2014
    Applicant: Systagenix Wound Management (US), Inc.
    Inventors: Mitchell C. Sanders, Adrian M. Lowe, Maureen A. Hamilton, Gerard J. Colpas
  • Patent number: 8647836
    Abstract: The invention relates to a method and device for the cross-referencing of identification (1) of tissue slice supports (2), for microtomised analytical samples still to be mounted thereon, with identification information (3) of a tissue sample holder (4) of a tissue sample (5) which is not yet microtomised. The conventional problem of cross-referencing is improved in a simple manner, whereby the identification information (3) for the tissue sample holder (4) is automatically detected when positioned in the microtome (6) and an identification (1) corresponding thereto is automatically transferred to at least one tissue slice support (2) and that tissue slice support (2), provided with the identification (1), is dispensed for application of the tissue sample slice at the moment when a tissue sample slice must be applied to a tissue slice support (2).
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: February 11, 2014
    Assignee: Microm International GmbH
    Inventors: Hans L. Heid, Jose Novoa
  • Patent number: 8647859
    Abstract: An apparatus for analyzing bacteria is described that includes an analytic sample preparation section for preparing an analytic sample by treating a specimen so as to generate a morphological difference between Gram-negative bacteria and Gram-positive bacteria, a detector for detecting optical information from each particle contained in the analytic sample and an analyzing section for detecting Gram-positive bacteria contained on the basis of the detected optical information. A method for analyzing bacteria is also described.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: February 11, 2014
    Assignee: Sysmex Corporation
    Inventor: Yasuyuki Kawashima
  • Publication number: 20140038225
    Abstract: A cell culture device for culturing cells and measuring mechanical forces exerted by one or more cells. The device includes a cell culture chamber having a bottom plate and a main frame with side walls to enclose a volume. The main frame has side walls fabricated as one piece. The cell culture chamber is open on a side opposite the bottom plate. The device further has a force sensor array on top of the bottom plate within the cell culture chamber. The force sensor array has an array of flexible microcolumns configured to provide a site of adhesion for one or more cells, each microcolumn being configured to be deflected from an original position to a deflected position in response to a mechanical force exerted by the one or more cells.
    Type: Application
    Filed: March 30, 2012
    Publication date: February 6, 2014
    Inventors: Nils Goedecke, Ralf Streichan
  • Patent number: 8632966
    Abstract: This invention relates to a method and apparatus for detecting a biological molecule associated with enzyme activity in a sample. The invention is applicable to detecting a microorganism associated with an enzyme in a sample such as water, food, soil, or a biological sample. According to a preferred embodiment of the method of the invention, a sample containing an enzyme of interest or a microorganism associated with the enzyme is combined with a suitable substrate, and a fluorescent product of the enzyme-substrate reaction is selectively detected. The fluorescent product is detected with a partitioning element or optical probe/partitioning element of the invention. In one embodiment the partitioning element provides for partitioning of only the fluorescent product molecule into the probe. The invention also provides an automated system for monitoring for biological contamination of water or other samples.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: January 21, 2014
    Assignee: Queen's University at Kingston
    Inventors: R. Stephen Brown, Samir P. Tabash, Igor S. Kozin, Eric J. P. Marcotte, Arthur N. Ley, Kevin R. Hall, Moe Hussain, Peter V. Hodson, Raymond J. Bowers, Robin A. Wynne-Edwards, John G. St. Marseille
  • Patent number: 8633032
    Abstract: A nucleic acid extraction kit, which enables the nucleic acid extraction operation to be accomplished safely without causing contamination, and in which the complex preparation of reagents and the disposal treatments that are performed before and after the nucleic acid extraction operation can be performed rapidly and simply, with the extraction performed in an automated manner. The nucleic acid extraction kit includes: a container including reagent wells that each store at least a reagent, a sample well into which a biological sample is introduced, a waste liquid well, and a collection well in which an extracted nucleic acid is collected, and an extraction filter cartridge equipped with an extraction filter for separating and extracting a nucleic acid from the biological sample, wherein the extraction filter cartridge is formed in a manner that enables the extraction filter cartridge to be supported on the waste liquid well and the collection well.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: January 21, 2014
    Assignee: Toppan Printing Co., Ltd.
    Inventors: Shuichi Akashi, Ryoichi Asai
  • Patent number: 8628952
    Abstract: The invention relates to sensor compositions comprising a composite array of individual arrays, to allow for simultaneous processing of a number of samples. The invention further provides methods of making and using the composite arrays. The invention further provides a hybridization chamber for use with a composite array.
    Type: Grant
    Filed: March 16, 2009
    Date of Patent: January 14, 2014
    Assignee: Illumina, Inc.
    Inventors: John R. Stuelpnagel, Mark S. Chee, Steven R. Auger, Gan G. Wang, Laura S. Casas, Shawn Christopher Baker, Robert C. Kain
  • Publication number: 20130344579
    Abstract: The imaging chamber according to the invention comprises a housing with a lower part and an upper part, wherein said lower part is a dish (1) and said upper part is a lid (2) provided with a skirt (9) surrounding the upper rim (10) of the dish (1), the bottom of the dish (1) is provided with a cover slip (12) to be used in confocal microscopy and at least a part of the lid (2) is transparent wherein the lid (2) is provided with a breathing silicon insert (5). The silicon insert (5) comprises a circular ring part fixed to the inner surface of the lid (2) and a skirt (14) parallel with the upper rim (10) of the dish (1) and supported by the skirt (9) of the lid (2) and provided with an annular groove (15) tight fitted on the upper rim (10) of the dish (1); and the lid (2) is provided with openings (4) to allow breathing of the housing.
    Type: Application
    Filed: January 11, 2011
    Publication date: December 26, 2013
    Applicant: LACERTA TECHNOLOGIES INC.
    Inventors: Viktor Izápy, Õdön Wagner, Zsombor Lacza, Miklós Weszl
  • Patent number: 8609366
    Abstract: Systems and methods for providing dynamic mechanical loading and mechanical property assessment of tissue cultures in open dish cultures are provided. An actuator may be provided under a cell culture dish for driving the dish upward toward a fixed post member, thereby providing controlled compression of a tissue sample.
    Type: Grant
    Filed: November 7, 2006
    Date of Patent: December 17, 2013
    Assignee: Legacy Emanuel Hospital & Health Center
    Inventors: Michael Bottlang, Mark B. Sommers
  • Patent number: 8609344
    Abstract: Arrays of polypeptides are generated by translation of nucleic acid sequences encoding the polypeptides at a plurality of addresses on the array.
    Type: Grant
    Filed: August 3, 2004
    Date of Patent: December 17, 2013
    Assignee: President and Fellows of Harvard College
    Inventors: Joshua Labaer, Albert Y. Lau
  • Publication number: 20130330757
    Abstract: The present invention relates to the enrichment and detection of microorganisms which contaminate food products, especially beverages and soft-drinks. It is particularly suitable for the detection of beer-spoiling bacteria. The present invention provides a novel system which a) improves the recovery of spoilage microbes b) provides faster detection and earlier emergence of colonies on plates, and c) provides larger colony sizes which makes detection easier.
    Type: Application
    Filed: January 13, 2012
    Publication date: December 12, 2013
    Applicant: BIOSILTA OY
    Inventor: Antti Vasala
  • Patent number: 8603804
    Abstract: An apparatus and method for increasing the efficiency of finding a field of focus, and for increasing the accuracy of field of view in reading slides with fluorescent microscopy technology, including tuberculosis slides.
    Type: Grant
    Filed: January 3, 2011
    Date of Patent: December 10, 2013
    Assignee: QBC Diagnostics, Inc.
    Inventors: Christopher J. Graham, Craig Stout
  • Patent number: 8597590
    Abstract: Systems and methods for multiple analyte detection include a system for distribution of a biological sample that includes a substrate, wherein the substrate includes a plurality of sample chambers, a sample introduction channel for each sample chamber, and a venting channel for each sample chamber. The system may further include a preloaded reagent contained in each sample chamber and configured for nucleic acid analysis of a biological sample that enters the substrate and a sealing instrument configured to be placed in contact with the substrate to seal each sample chamber so as to substantially prevent sample contained in each sample chamber from flowing out of each sample chamber. The substrate can be constructed of detection-compatible and assay-compatible materials.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: December 3, 2013
    Assignee: Applied Biosystems, LLC
    Inventors: Min Yue, David M. Liu, Joy Roy, Yuh-Min Chiang, Joon Mo Yang, Dennis Lehto, Charles S. Vann, Nigel P. Beard, Ian A. Harding, John R. Van Camp, Alexander Dromaretsky, Sergey V. Ermakov, Mark F. Oldham, Maryam Shariati, Umberto Ulmanella
  • Patent number: 8597903
    Abstract: The present technology discloses biotinidase assay, biotinidase substrates (I) and a kit wherein the biotinidase substrate includes a label molecule separated from the biotin carbamoyl group by a linker X longer than about 4 ? but shorter than about 27 ?.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: December 3, 2013
    Assignee: Wallac Oy
    Inventors: Jarkko Karvinen, Pertti Hurskainen, Pekka Mattsson, Outi Mulari, Jari Peuralahti, Lassi Jaakkola
  • Patent number: 8597715
    Abstract: A method of removing a target from a biological sample which involves placing a transfer surface in contact with the biological sample, and then focally altering the transfer surface to allow selective separation of the target from the biological sample. In disclosed embodiments, the target is a cell or cellular component of a tissue section and the transfer surface is a film that can be focally altered to adhere the target to the transfer surface. Subsequent separation of the film from the tissue section selectively removes the adhered target from the tissue section. The transfer surface is activated from within the target to adhere the target to the transfer surface, for example by heating the target to adhere it to a thermoplastic transfer surface. Such in situ activation can be achieved by exposing the biological sample to an immunoreagent that specifically binds to the target (or a component of the target).
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: December 3, 2013
    Assignee: The United States of America as represented by the Secretary of the Department of Health and Human Services
    Inventors: Michael R. Emmert-Buck, Michael Anthony Tangrea, Robert F. Bonner, Rodrigo Chuaqui, Thomas J. Pohida
  • Patent number: 8597938
    Abstract: Provided are methods and oligonucleotides useful as primers and templates for internal controls designed for use in Real Time Reverse Transcriptase Polymerase Chain Reactions. Use of the present methods and oligonucleotides allows validation of assay parameters and of the results that an assay set.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: December 3, 2013
    Assignee: QIAGEN Sciences LLC
    Inventors: Jingping Yang, Li Shen
  • Publication number: 20130316442
    Abstract: Cell culture environment monitoring system (6) for monitoring parameters relevant to cell growth in at least one culture dish (4) containing a cell growth medium (14), including at least one sensing device (22, 22?) configured to measure environmental parameters relevant to cell growth, and a tray (24) supporting said at least one culture dish. The sensing device is configured for mounting inside said culture dish at least partially within said cell growth medium, and comprises an RFID transponder (34). The tray (24) comprises an RFID base station (44) configured to interrogate the RFID transponder to obtain measurements of said parameters relevant to cell growth.
    Type: Application
    Filed: February 6, 2012
    Publication date: November 28, 2013
    Applicant: ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)
    Inventors: Eric Meurville, Yann Barrandon, Georges Abou-Jaoude
  • Patent number: 8586368
    Abstract: Methods, systems, and computer readable media for using actuated surface-attached posts for assessing biofluid rheology are disclosed. According to one aspect, a method for testing properties of a biofluid specimen includes placing the specimen onto a micropost array having a plurality of microposts extending outwards from a substrate, wherein each micropost includes a proximal end attached to the substrate and a distal end opposite the proximal end, and generating an actuation force in proximity to the micropost array to actuate the microposts, thereby compelling at least some of the microposts to exhibit motion. The method further includes measuring the motion of at least one of the microposts in response to the actuation force and determining a property of the specimen based on the measured motion of the at least one micropost.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: November 19, 2013
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: Richard Superfine, Richard Chasen Spero, Adam Richard Shields, Benjamin Aaron Evans, Briana Lee Fiser
  • Patent number: 8580344
    Abstract: This disclosure provides methods, devices and systems for using a stamp to enhance selectivity between surface layers of a substrate, and to facilitate functionalizing selected layers. An array of flat stamps may be used to concurrently stamp multiple regions of a substrate to transfer one or more substances to the topmost layer or layers of the substrate. If desired, the affected regions of the substrate may be isolated from each other through the use of a reactor plate that, when clamped to the substrate's surface, forms reaction wells in the area of stamping. The stamp area can, if desired, be configured for stamping the substrate after the reactor plate has been fitted, with the individual stamps sized and arranged in a manner that permits stamping within each reaction well.
    Type: Grant
    Filed: March 16, 2009
    Date of Patent: November 12, 2013
    Assignee: Intermolecular, Inc.
    Inventors: Nikhil D. Kalyankar, Zachary Fresco, Chi-I Lang
  • Patent number: 8569049
    Abstract: The invention provides a photo bioreactor (1) comprising a vessel (10) containing an aqueous liquid comprising a photosynthetic culture and a light distributor (30). The light distributor has a surface (31) arranged to receive light (40) and a tapered surface (32) arranged to emit at least part of the received light. At least part of the tapered surface. (32) is submerged in the aqueous liquid comprising the photosynthetic culture. Light may be distributed efficiently in the aqueous liquid comprising the photosynthetic culture by relatively simple and cheap means. The reactor allows a high illuminated volume fraction.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: October 29, 2013
    Assignee: Feyecon Development & Implementation B.V.
    Inventors: Geert Feye Woerlee, Ernst-Jan Siewers
  • Patent number: 8569075
    Abstract: A method for using a multi-welled micro-plate in radioimmunoassay (“RIA”) is disclosed to improve the performance of RIA. At first, there is provided a multi-welled micro-plate that can be dismantled and divided into multiple wells. Then, samples are filled into the wells of the multi-welled micro-plate for incubation. Washing, tracer-adding, incubation, and washing are executed. At a final step, the multi-welled micro-plate is separated into wells, and each of to the wells is put into a test tube for gamma counting by a gamma counter.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: October 29, 2013
    Assignee: Atomic Energy Council Energy—Institute of Nuclear Energy Research
    Inventors: Meng-Jun Fu, Ping-Hung Yu, Chin-Yan Tsai, Kuan-Yin Chen, Chia-Chieh Chen
  • Patent number: 8563301
    Abstract: A bioreactor processing unit (10) includes at least one cell culture module (200) comprising: a base (202) including a receiving station (204) for removably receiving a plurality of bioreactor vessels (400) at respective locations (206); and a clamp plate (240). The clamp plate (240) is removably connectable to the base (202). The system further includes a drive mechanism (226) and multiple fluid conduits. When the system is to be used for an experiment run, vessels (400) are loaded into the receiving station (204) and the clamp plate (240) is connected to the base (202), forming a connection between the drive mechanism and the vessels, for transmitting input motion from the drive mechanism (226) into multiple rotary motion outputs for turning a stirrer (416) in each vessel (400).
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: October 22, 2013
    Assignee: The Automation Partnership Ltd.
    Inventor: Adrian Neil Bargh
  • Patent number: 8557582
    Abstract: The present invention details the design and operation of a miniaturized device array in which a range of simultaneous mechanical forces are produced by a single external pressure source. The invention is primarily embodied in a microfabricated device arrays designed to rapidly probe biological cell response to various combinations of mechanical, chemical and extra-cellular matrix parameters in a high-throughput fashion.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: October 15, 2013
    Inventors: Christopher Moraes, Craig Simmons, Yu Sun
  • Publication number: 20130252261
    Abstract: The invention provides compositions, kits, and methods for performing colorimetric analysis. A substrate is reacted to generate a chromogenic reaction product, and a reaction stop reagent that is a sulfonic acid is added to stop and stabilize the reaction product. The absorbance properties of the chromogenic reaction product can be maintained over significantly longer periods of time of that of conventional reagents and methods. The sulfonic acid can be used in assays such as ELISAs in order to provide a more accurate and safer detection of analytes in a biological sample.
    Type: Application
    Filed: March 22, 2013
    Publication date: September 26, 2013
    Inventors: Gary Opperman, Wendy Nelson
  • Patent number: 8535905
    Abstract: A film (14) with a tissue section (10) is placed with the tissue section (10) downward on a microscope slide (18) and the microscope slide (18) positioned in the object plane of an inverse microscope; where an adhesive tape (20) is arranged, with a bonding agent (22) downward, above the film (14) and therefore above the tissue section (10); wherein the next step, tissue (36) to be isolated is excised by a focused laser beam, which also divides the film (14); whereupon removal of the adhesive tape (20) from the microscope, the excised tissue pieces (36) adhere to the adhesive tape (20), and the remnant of the film (14) and of the tissue section (10) remains adhering/to the microscope slide (18).
    Type: Grant
    Filed: July 24, 2002
    Date of Patent: September 17, 2013
    Assignee: Molecular Machines and Industries AG
    Inventor: Norbert Leclerc
  • Patent number: 8530230
    Abstract: The present invention is directed to methods for conducting multiplexed assays. The methods are particularly well suited for measuring a plurality of analytes that may be present in very different abundances. The invention also relates to systems, devices, equipment, kits and reagents for use in such methods.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: September 10, 2013
    Assignee: Meso Scale Technologies, LLC
    Inventors: Selen A. Stromgren, Eli N. Glezer
  • Patent number: 8518637
    Abstract: A method for providing portable biological testing capabilities free from biological contamination from an environment outside the device is provided. The method includes providing components configured to be assembled together to seal a volume against passage of biological materials between the volume and an environment outside the volume. The method further includes sterilizing the components and providing a sterilized culture medium. The method further includes assembling the components together with the sterilized culture medium within the volume. The method further includes sterilizing the assembled components by elevating the temperature. The method further includes flowing gas from within the volume to the environment while at an elevated temperature.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: August 27, 2013
    Inventors: Allen C. Barnes, Janice Barnes
  • Patent number: 8518710
    Abstract: The present invention provides a method for reducing undesirable light emission from a sample using at least one photon producing agent and at least one photon reducing agent (e.g. dye-based photon reducing agents). The present invention further provides a method for reducing undesirable light emission from a sample (e.g., a biochemical or cellular sample) with at least one photon producing agent and at least one collisional quencher. The present invention also provides a method for reducing undesirable light emission from a sample (e.g., a biochemical or cellular sample) with at least one photon producing agent and at least one quencher, such as an electronic quencher. The present invention also provides a system and method of screening test chemicals in fluorescent assays using photon reducing agents. The present invention also provides compositions, pharmaceutical compositions, and kits for practicing these methods.
    Type: Grant
    Filed: April 2, 2012
    Date of Patent: August 27, 2013
    Assignee: Life Technologies Corporation
    Inventors: Tom Knapp, Gregory Zlokarnik, Paul Negulescu, Roger Tsien, Timothy Rink
  • Patent number: 8507259
    Abstract: The systems of the invention include test cells with a first sorbent material defining a first flow path for a solution, a second sorbent material defining a second flow path distinct from the first flow path for a sample, and a test line or test site with immobilized antigens or antibodies or other ligand binding molecules such as aptamers, nucleic acids, etc. located at the junction of the first and second sorbent materials. The first and second sorbent strips touch each other at the test site location.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: August 13, 2013
    Assignee: Chembio Diagnostics Systems, Inc.
    Inventor: Javanbakhsh Esfandiari
  • Patent number: 8492137
    Abstract: The present invention relates to a cover for covering one or more sample(s) that are suitable to avoid or minimize evaporation and/or condensation of any vaporizable substance that may be present in the sample(s) or reaction mixture(s), in particular evaporation of substance at the fringes of a vessel or an array of vessels or condensation of a substance on the lid of a reaction vessel or a plate/block containing the sample(s) and/or a cover. This is achieved by providing a device comprising, among others, a force distribution unit that comprises at least one medium or material that is unable to withstand a static shear stress and deforms continuously under the action of a shear force.
    Type: Grant
    Filed: February 12, 2008
    Date of Patent: July 23, 2013
    Assignee: Eppendorf AG
    Inventors: Holger Link, Jens Peter Kroog, Lutz Timmann, Henner Tasch, Cordula Kroll, Stefan Roth, Ruediger Huhn, Reinhold Goetz, Helmut Knofe, Arne Schafrinski
  • Patent number: 8481305
    Abstract: The present invention relates to a rotation driving device for cell culturing, comprising: a power supplying unit operated by receiving an electric power from an outside; a rotational part rotated by the power supplying unit; and a driving part which is provided at an upper side of the rotational part and maintained in a stopped state during the rotation of the rotational part, and of which an inclination is changed according to a rotational direction of the rotational part. According to the present invention, there is provided a rotation driving device a rotation driving device which enables cells to be uniformly grown by equally distributing a culture solution with help of inclination control, of which a rotational speed is also controlled and which has a firm structure with a strong durability.
    Type: Grant
    Filed: November 28, 2008
    Date of Patent: July 9, 2013
    Assignee: Corestem Co., Ltd.
    Inventors: Kyung Suk Kim, Jai Jun Choung