Including A Dish, Plate, Slide, Or Tray Patents (Class 435/288.3)
  • Patent number: 8481326
    Abstract: A microfluidic device and method for measuring a level of cholesterol therewith are provided. The cholesterol measurement apparatus includes a microfluidic device including a plurality of chambers and at least one channel through which the plurality of chambers are interconnected. The plurality of chambers include a reaction chamber which contains a capture binder, a buffer chamber which contains an elution buffer and is connected to the reaction chamber, and at least one detection chamber which contains a cholesterol measurement reagent and is connected to the reaction chamber.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: July 9, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: In Wook Kim
  • Patent number: 8476065
    Abstract: The present invention is directed to a device comprising (a) a substrate having a surface and (b) an ordered array of posts over the surface, wherein the posts are capable of binding a protein or small molecule ligand, and wherein the pitch between adjacent posts is less than about 100 nm. The invention is also directed to methods for identifying the presence of an analyte in a fluid and to methods for measuring relative binding specificity or affinity between an analyte in a fluid and the posts, using the device of the present invention.
    Type: Grant
    Filed: April 13, 2006
    Date of Patent: July 2, 2013
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Michael P. Sheetz, Samuel J. Wind
  • Patent number: 8465971
    Abstract: Methods and apparatus for controlling biological functions with mechanical vibration are provided. Stimulation is applied to cells of one of an organism, bacteria or virus by mechanical vibration. The biological function comprises biological functions relating to cell growth. The biological functions relating to cell growth may include at least one of cell cultivation, cell proliferation, cell fusion, and cell differentiation.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: June 18, 2013
    Assignee: Tokyo Iken Co., Ltd.
    Inventors: Akio Kishida, Tsutomu Furuzono, Kozo Miyazaki, Toru Masuzawa
  • Patent number: 8450116
    Abstract: A method applying a biological specimen to an analytic plate by using an applicator device to apply a coating to the analytic plate and adhering the biological sample to the plate. The coating is substantially transparent, translucent or invisible, and is substantially flush with the surface of the analytic plate. The coating is preferably comprised of a polysiloxane, siloxane, silicone, a silane, a silicon fluid, or a combination thereof and optionally an acid.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: May 28, 2013
    Inventor: Lee H. Angros
  • Patent number: 8440454
    Abstract: An apparatus and method for thermal cycling including a pasting edge heater. The pasting edge heater can provide substantial temperature uniformity throughout the retaining elements during thermal cycling by a thermoelectric module.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: May 14, 2013
    Assignee: Applied Biosystems, LLC
    Inventors: Hon Siu Shin, Hock Lai Khoo
  • Patent number: 8434933
    Abstract: A static continuous flow mixer, with or without reaction, is provided with basic cells, which are individually provided with an individualized chamber (1). The basic cells are also provided with at least two connecting channels (2), at least two of them being oblique relatively to the resulting direction (x) of the flow in the mixer, and with at least two additional apertures (0) for connection with the exterior. The cells interconnect successively in the space, forming a network. The mixer promotes convective processes. The dimensions (Dj, li, di, ?), the geometry of the chambers (spherical or cylindrical) and of the channels (cylindrical or prismatic) may vary, as well as their quantity.
    Type: Grant
    Filed: February 14, 2005
    Date of Patent: May 7, 2013
    Inventors: José Carlos Brito Lopes, Paulo Eduardo Miranda dos Santos da Costa Laranjeira, Madalena Maria Gomes Queiroz Dias, António Augusto Areosa Martins
  • Publication number: 20130089891
    Abstract: An apparatus includes a system for guiding chemiluminescence and a system for preventing a variation in dark currents. The apparatus includes a first light shielding BOX having a sample container holder and a shutter unit therein, the shutter unit including a top plate which is partly formed by a movement of a plate member, and a second light shielding BOX having a photodetector therein. While a measurement is not implemented, the shutter unit is closed to block entrance of stray light to the photodetector, and while a measurement is implemented, the plate member is moved to open the shutter unit, and the tip of the photodetector is inserted into a through hole formed in the top plate, so that the distance between the bottom of the sample container and a sensitive area of the photodetector is reduced to several millimeters or less.
    Type: Application
    Filed: November 29, 2012
    Publication date: April 11, 2013
    Applicant: HITACHI, LTD.
    Inventor: HITACHI, LTD.
  • Patent number: 8414845
    Abstract: A sample processing vessel may include a branch segment and at least two tracks. The at least two tracks may be fluidly isolated from one another by a permanent seal. The tracks may be segmented by breakable seals. The branch segment may be temporarily isolated from the tracks by breakable seal(s) and put in fluid communication with the tracks once those seal(s) are broken, such that fluid received by the branch segment is divided into portions that pass into both tracks.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: April 9, 2013
    Assignee: Iquum, Inc.
    Inventors: Shuqi Chen, Bertrand Lemieux, Lingjun Chen
  • Patent number: 8415144
    Abstract: Gas permeable devices and methods are disclosed for cell culture, including cell culture devices and methods that contain medium at heights, and certain gas permeable surface area to medium volume ratios. These devices and methods allow improvements in cell culture efficiency and scale up efficiency.
    Type: Grant
    Filed: August 16, 2006
    Date of Patent: April 9, 2013
    Assignee: Wilson Wolf Manufacturing
    Inventors: John R. Wilson, Douglas A. Page, Dan Welch, Alison Robeck
  • Publication number: 20130084597
    Abstract: Provided is a microbial test unit for detecting microbes in a compressed gas. The microbial test unit includes a decompression region and a sampling region in fluid communication with the decompression region and separated from the decompression region by a plate. The decompression region and the sampling region define a flow path. An inlet communicates with the decompression region such that compressed gas entering the decompressing region is incident on the plate for effectuating decompression of the gas prior to the gas passing into the sampling region. The microbial test unit may be used in conjunction with a growth medium substrate to form a microbial test system. The microbial test unit provides the ability to test compressed gas directly input to the unit due to positive pressure from the compressed gas pushing the microbes onto the microbial growth substrate.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 4, 2013
    Applicant: PARKER-HANNIFIN CORPORATION
    Inventor: PARKER-HANNIFIN CORPORATION
  • Patent number: 8409849
    Abstract: The present invention is to present a smear slide preparing apparatus capable of properly providing sample-related information on a predetermined area of a slide glass even when glass shards and dust and the like are attached to the predetermined area. A smear slide preparing apparatus comprises: a smear section for smearing a sample on a slide glass; an attached matter removing section for removing attached matter which is attached to a sample-related information area of the slide glass; and a sample-related information providing section for providing sample-related information which is related to the sample on the sample-related information area of the slide glass, the attached matter having been removed from the sample-related information area.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: April 2, 2013
    Assignee: Sysmex Corporation
    Inventor: Mitsuo Yamasaki
  • Patent number: 8404489
    Abstract: A nucleic acid extraction kit, which enables the nucleic acid extraction operation to be accomplished safely without causing contamination, and in which the complex preparation of reagents and the disposal treatments that are performed before and after the nucleic acid extraction operation can be performed rapidly and simply, with the extraction performed in an automated manner. The nucleic acid extraction kit includes: a container including reagent wells that each store at least a reagent, a sample well into which a biological sample is introduced, a waste liquid well, and a collection well in which an extracted nucleic acid is collected, and an extraction filter cartridge equipped with an extraction filter for separating and extracting a nucleic acid from the biological sample, wherein the extraction filter cartridge is formed in a manner that enables the extraction filter cartridge to be supported on the waste liquid well and the collection well.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: March 26, 2013
    Assignee: Toppan Printing Co., Ltd.
    Inventors: Shuichi Akashi, Ryoichi Asai
  • Patent number: 8383393
    Abstract: A titer plate and a method for detecting an analyte, and the use thereof are disclosed. According to at least one embodiment of the invention, it is proposed that a plurality of depressions and a biochip of the titer plate sposed adjacent thereto be surrounded by a wall in order to effectively prevent sample contamination when there is a high degree of spatial integration.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: February 26, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventors: Walter Gumbrecht, Peter Paulicka
  • Patent number: 8383421
    Abstract: An object of the present invention is to provide a cartridge for automatic measurement used in an automatic measuring device, capable of automatically performing measurement including heat treatment of a sample, and a measuring device using the cartridge. The present invention relates to a cartridge for use in measuring a component to be measured contained in a sample, comprising: at least a heat-treatment well for performing heat treatment of the sample; and a reaction well for reacting the component to be measured in the sample with a material specifically reacting therewith.
    Type: Grant
    Filed: January 17, 2006
    Date of Patent: February 26, 2013
    Assignee: Mitsubishi Chemical Medience Corporation
    Inventors: Atsushi Yanagida, Takashi Kurihara, Hiroyuki Yokoi, Atsushi Koyata, Yoshikazu Okamura, Daishi Miyamoto
  • Patent number: 8377686
    Abstract: This invention relates to a method and apparatus for detecting a biological molecule associated with enzyme activity in a sample. The invention is applicable to detecting a microorganism associated with an enzyme in a sample such as water, food, soil, or a biological sample. According to a preferred embodiment of the method of the invention, a sample containing an enzyme of interest or a microorganism associated with the enzyme is combined with a suitable substrate, and a fluorescent product of the enzyme-substrate reaction is selectively detected. The fluorescent product is detected with a partitioning element or optical probe/partitioning element of the invention. In one embodiment the partitioning element provides for partitioning of only the fluorescent product molecule into the probe. The invention also provides an automated system for monitoring for biological contamination of water or other samples.
    Type: Grant
    Filed: June 16, 2008
    Date of Patent: February 19, 2013
    Inventors: R. Stephen Brown, Samir P. Tabash, Igor S. Kozin, Eric J. P. Marcotte, Arthur N. Ley, Kevin R. Hall, Moe Hussain, Peter V. Hodson, Raymond J. Bowers, Robin A. Wynne-Edwards, John G. St. Marseille
  • Patent number: 8372629
    Abstract: A device for individually analysing cells of interest, comprising (a) a channel for receiving the contents of a cell of interest, wherein the channel has an input end and an output end, and (b) a cell trapping site in proximity to the input end of the channel, wherein (i) the input end of the channel is adapted such that an intact cell of interest cannot enter the channel; and (ii) the channel contains one or more analytical components for analysing the contents of the cell of interest. In use, a cell is applied to the device, where it is trapped by the cell trapping means. The cell cannot enter the channel intact, but its contents can be released in situ to enter the channel's input end. The contents can then move down the channel, towards the output end, and they encounter the immobilised reagents, thereby permitting analysis of the cell contents.
    Type: Grant
    Filed: May 3, 2006
    Date of Patent: February 12, 2013
    Assignee: Oxford Gene Technology IP Limited
    Inventors: Edwin Southern, Wouter Meuleman, Dietrich Wilhelm Karl Lueerssen, Natalie Milner
  • Patent number: 8367014
    Abstract: A sample block for use in the polymerase chain reaction, DNA sequencing, and other procedures that involve the performance of simultaneous reactions in multiple samples with temperature control by heating or cooling elements contacting the bottom surface of the block is improved by the inclusion of hollows in the block that are positioned to decrease the mass of the block in the immediate vicinity of the wells.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: February 5, 2013
    Assignee: Bio-Rad Laboratories, Inc.
    Inventor: Sunand Banerji
  • Patent number: 8366896
    Abstract: Provided is a capillary electrophoresis device including a holder preventing a septum from coming off when a capillary is pulled out, and also allowing containers to be taken out in any order. In the capillary electrophoresis device for separating and analyzing a sample such as a DNA and a protein by electrophoresis, the holder includes: a septum having a capillary hole through which a capillary penetrates; a container for storing a solution; and a container-accommodation unit for accommodating the container. A hole formed in the septum engages with an engagement portion formed on the container, and thereby the septum is held to cover the container.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: February 5, 2013
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Takeshi Ooura, Ryoji Inaba
  • Patent number: 8361808
    Abstract: Methods, materials, apparatus and systems are described for performing capillary flow assay. In one aspect, a system includes a sample collection unit to collect a sample liquid and a sample testing and storing unit to interface with the sample collection unit to test and store the collected sample liquid. The sample testing and storing unit includes a sample inlet shaped to receive the collected sample from the sample collection unit, and a sample well positioned below the sample inlet to retain at least a portion of the sample liquid. The sample testing and storing unit includes a sample housing unit to store a remainder of the sample liquid not retained in the sample well, and an analyte testing unit housing shaped to receive an analyte detecting unit to test a presence of a target analyte in the sample liquid.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: January 29, 2013
    Assignee: Oranoxis, Inc.
    Inventor: Dequn Wang
  • Publication number: 20130023041
    Abstract: The present invention pertains to an apparatus for holding cells. The apparatus comprises a mechanism for incubating cells having a dynamically controlled environment in which the cells are grown, which are maintained in a desired condition and in which cells can be examined while the environment is dynamically controlled and maintained in the desired condition. The apparatus also comprises a mechanism for determining the state of the cells. The determining mechanism is in communication with the incubating mechanism. The present invention pertains to a method for holding cells. The method comprises the steps of incubating the cells in a dynamically controlled environment which is maintained in a desired condition and in which the cells can be examined while the environment is dynamically controlled and maintained in the desired condition. Additionally, there is the step of determining the state of the cells.
    Type: Application
    Filed: August 7, 2012
    Publication date: January 24, 2013
    Inventors: Joel S. Greenberger, Paul A. DiMilla, Michael M. Domach, Raymond K. Houck
  • Patent number: 8354231
    Abstract: Provided herein are methods and systems for detecting and/or sorting targets in a sample based on the combined use of polynucleotide-encoded protein and substrate polynucleotides. The polynucleotide-encoded protein is comprised of a protein that specifically binds to a predetermined target and of an encoding polynucleotide that specifically binds to a substrate polynucleotide, wherein the substrate polynucleotide is attached to a substrate.
    Type: Grant
    Filed: January 4, 2010
    Date of Patent: January 15, 2013
    Assignee: Cal. Inst. Tech.
    Inventors: Gabriel A. Kwong, Ryan C. Bailey, Rong Fan, James R. Heath
  • Patent number: 8349279
    Abstract: A samples storage system for pharmaceutical development in which the usable volumes of ultramicrotubes (384 tubes) are increased and smooth insertion and extraction of ultramicrotubes is possible irrespective of the positions of the ultramicrotubes. The samples storage system includes tubes in which samples are sealed and a storage rack for vertically accommodating a plurality of the tubes in a grid pattern. Each tube is of a rectangular hollow tubular cross-section and the intersect is tapered toward the bottom portion of the tube. Corner portions of the outer four side surfaces of the tubes are chamfered. The storage rack has engagement partition walls forming open-ended sections in a grid pattern inside the rack frame. The height of the walls is smaller than the length of the tube, and tube-supporting pins project vertically from the intersections of the grid.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: January 8, 2013
    Assignee: Tsubakimoto Chain Co.
    Inventors: Hiroyuki Taike, Kazuhiro Tsutsumi, Hisao Nishii, Nobuaki Matsumoto, Yukio Ueyama
  • Publication number: 20120329145
    Abstract: A sensor strip apparatus includes: a top plate having an entrance opening downward and a joint formed downward; a pad section including a support having a window opening downward, a reaction pad attached to the window of the support and reacting with a specimen, first and second hemolysis inhibition pads attached to the reaction pad to filter hemocytes from the specimen, a specimen pad attached to the first and second hemolysis inhibition pads to diffuse the specimen crosswise, and an adhesive film attached to the support around the first and second hemolysis inhibition pads to increase adhesion strength of the specimen pad; and a bottom plate having a second joint forcibly coupled with to the joint of the top plate, and a window configured to indentify the reaction pad through the window of the support.
    Type: Application
    Filed: March 14, 2011
    Publication date: December 27, 2012
    Applicant: SD BIOSENSOR, INC.
    Inventors: Hyo Geun Lee, Hyo Lim Park, Eun Sun Song, Byung Hak Song
  • Patent number: 8338166
    Abstract: A system for identifying all of the known and unknown pathogenic or non-pathogenic organisms in a sample. A droplet generator creates droplets from the sample. The droplets constitute sub-nanoliter volume reactors containing the organism sized particles. A lysis device performs lysis of the organisms to release the nucleic acids. An amplifier amplifies the nucleic acids. A fractionater releases the nucleic acids from the droplets. A parallel analyzer identifies all of the known and unknown pathogenic or non-pathogenic organisms in the sample.
    Type: Grant
    Filed: January 4, 2007
    Date of Patent: December 25, 2012
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Neil R. Beer, Benjamin J. Hindson, Billy W. Colson, Jr., Joseph P. Fitch
  • Patent number: 8338191
    Abstract: The invention relates to a device for performing binding assays. In particular, the invention relates to a centrifugal device for performing such assays. The invention also relates to a method of performing binding assays involving antigen-antibody binding, nucleic acid hybridization, or receptor-ligand interaction.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: December 25, 2012
    Assignee: Corbett Life Science Pty Ltd
    Inventors: John Michael Corbett, John Michael Corbett, Jr.
  • Patent number: 8329427
    Abstract: The invention relates to a method and device for the cross-referencing of identification (1) of tissue slice supports (2), for microtomised analytical samples still to be mounted thereon, with identification information (3) of a tissue sample holder (4) of a tissue sample (5) which is not yet microtomised. The conventional problem of cross-referencing is improved in a simple manner, whereby the identification information (3) for the tissue sample holder (4) is automatically detected when positioned in the microtome (6) and an identification (1) corresponding thereto is automatically transferred to at least one tissue slice support (2) and that tissue slice support (2), provided with the identification (1), is dispensed for application of the tissue sample slice at the moment when a tissue sample slice must be applied to a tissue slice support (2).
    Type: Grant
    Filed: May 9, 2008
    Date of Patent: December 11, 2012
    Assignee: Microm International GmbH
    Inventors: Hans L. Heid, José Novoa
  • Patent number: 8329100
    Abstract: An automated in situ heat induced antigen recovery and staining method and apparatus for treating a plurality of microscope slides. The process of heat induced antigen recovery and the process of staining the biological sample on the microscope slide are conducted in the same apparatus, wherein the microscope slides do not need to be physically removed from one apparatus to another. Each treatment step occurs within the same reaction compartment. The reaction conditions of each reaction compartment for treating a slide can preferably be controlled independently, including the individualized application of reagents to each slide and the individualized treatment of each slide. The reagents are preferably held in a reagent dispensing strip similar to a “blister pack”.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: December 11, 2012
    Inventor: Lee Angros
  • Publication number: 20120309046
    Abstract: A method for determining the viability of a plant sample includes providing a viability detection device containing a solid or semisolid culture medium suitable for the nutritional requirements of a plant sample, wherein the culture medium has a starch supplement; growing the plant tissue in the viability detection device from the previous step; removing the plant tissue sample from the viability detection device; and revealing the viability detection device.
    Type: Application
    Filed: January 28, 2011
    Publication date: December 6, 2012
    Applicant: UNIVERSIDAD DE TALCA
    Inventors: Rolando Garcia González, Karla Andrea Quiroz Bravo, Peter Douglas Savaria Caligari
  • Patent number: 8323955
    Abstract: A micromachined patch-clamp apparatus is disclosed for holding one or more cells and providing electrical, chemical, or mechanical stimulation to the cells during analysis with the patch-clamp technique for studying ion channels in cell membranes. The apparatus formed on a silicon substrate utilizes a lower chamber formed from silicon nitride using surface micromachining and an upper chamber formed from a molded polymer material. An opening in a common wall between the chambers is used to trap and hold a cell for analysis using the patch-clamp technique with sensing electrodes on each side of the cell. Some embodiments of the present invention utilize one or more electrostatic actuators formed on the substrate to provide mechanical stimulation to the cell being analyzed, or to provide information about mechanical movement of the cell in response to electrical or chemical stimulation.
    Type: Grant
    Filed: March 5, 2003
    Date of Patent: December 4, 2012
    Assignee: Sandia Corporation
    Inventor: Murat Okandan
  • Patent number: 8318477
    Abstract: A cellular electrophysiological measurement device includes a thin plate and a frame. The thin plate has a first surface with a depression and a second surface with a through-hole. The frame is in contact with an outer periphery on the second surface of thin plate. The thin plate has a laminated structure of at least two layers including a first material layer on the first surface and a second material layer on the second surface. The frame is formed of a third material layer. The structure allows the cellular electrophysiological measurement device to be not so vulnerable to breakage of thin plate and other damages, thereby having high production yield.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: November 27, 2012
    Assignee: Panasonic Corporation
    Inventors: Masaya Nakatani, Takashi Yoshida, Masatoshi Kojima
  • Patent number: 8318479
    Abstract: A system has been constructed that recapitulate the features of a capillary bed through normal human tissue. The system facilitates perfusion of three-dimensional (3D) cell monocultures and heterotypic cell co-cultures at the length scale of the capillary bed. A major feature is that the system can be utilized within a “multiwell plate” format amenable to high-throughput assays compatible with the type of robotics commonly used in pharmaceutical development. The system provides a means to conduct assays for toxicology and metabolism and as a model for human diseases such as hepatic diseases, including hepatitis, exposure-related pathologies, and cancer. Cancer applications include primary liver cancer as well as metastases. The system can also be used as a means of testing gene therapy approaches for treating disease and inborn genetic defects.
    Type: Grant
    Filed: May 19, 2005
    Date of Patent: November 27, 2012
    Assignees: Massachusetts Institute of Technology, Univeristy of Pittsburgh—Of the Commonwealth System of Higher Education
    Inventors: Karel Domansky, Linda G. Griffith, Steven R. Tannenbaum, Alan Wells, Samuel Walker Inman
  • Patent number: 8313941
    Abstract: Microfluidic devices having active features such as valves, peristaltic pumps, and mixing portions are fabricated to have a thin elastomeric membrane over the active features. The active features are activated by a tactile actuator external to the membrane, for example, a commercial Braille display. The display may be computer controlled, for example by simple text editor software, to activate individual Braille protrusions or a plurality of protrusions to actuate the active portions of the microfluidic device. Integral devices can incorporate the tactile actuators in a single device, but still external to the membrane.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: November 20, 2012
    Assignee: The Regents of The University of Michigan
    Inventors: Shuichi Takayama, Xiaoyue Zhu, Wei Gu, Gary Daniel Smith, Yunseok Heo, Brenda S. Cho, Nobuyuki Futai
  • Patent number: 8314052
    Abstract: The present invention relates to methods for generating functional biomolecules. In one exemplary aspect of the invention, generation of functional biomolecules may be performed against multiple targets simultaneously within a single system. In general, a plurality of targets may be disposed within in a single reaction volume and a library of biomolecules, such as a nucleic acid library, may be applied to the reaction volume. The members of the library that do not bind to any of the plurality of targets under given conditions may then be partitioned. The remaining members of the library may then be marked and/or tagged, such as to identify the particular target or targets to which the member of the library binds. The binding members of the library may then be isolated and, by virtue of the marking or tagging, be matched to a particular target or targets.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: November 20, 2012
    Assignee: Base Pair Biotechnologies, Inc.
    Inventor: George Jackson
  • Patent number: 8313694
    Abstract: An automated in situ heat induced antigen recovery and staining method and apparatus for treating a plurality of microscope slides. The process of heat induced antigen recovery and the process of staining the biological sample on the microscope slide are conducted in the same apparatus, wherein the microscope slides do not need to be physically removed from one apparatus to another. Each treatment step occurs within the same reaction compartment. The reaction conditions of each reaction compartment for treating a slide can preferably be controlled independently, including the individualized application of reagents to each slide and the individualized treatment of each slide. The reagents are preferably held in a reagent dispensing strip similar to a “blister pack”.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: November 20, 2012
    Inventor: Lee Angros
  • Publication number: 20120288887
    Abstract: The present invention provides a blood cell agglutination image determining method and a blood cell agglutination image determining apparatus capable of processing a blood sample in a short time and obtaining a reproducible determination result. Provided are a blood cell agglutination image determining method and a blood cell agglutination image determining apparatus for determining a blood sample to be positive or negative based on a blood cell agglutination image of a reaction between a blood sample and a reagent in a reaction container. The apparatus comprises: a rotation mechanism R for rotating a reaction container so that a bottom wall of the reaction container will turn outwards by centrifugal force; and an inclining apparatus 7 for inclining the reaction container so that a front part of the reaction container along the rotating direction will be downwards with respect to the vertical direction more than a back part thereof.
    Type: Application
    Filed: June 21, 2012
    Publication date: November 15, 2012
    Applicant: Beckman Coulter, Inc.
    Inventor: Tadashi Haga
  • Patent number: 8309364
    Abstract: An electrochemical immunosensor system with reduced interference, comprising: a first immunosensor that generates an electrochemical signal based on the formation of a sandwich between an immobilized antibody, a target analyte and a labeled antibody, wherein a portion of the signal arises from non-specific binding of the labeled antibody in the region of the first immunosensor, and a second immunosensor that acts as an immuno-reference sensor and generates a signal that is the same as or predictably related to the degree of non-specific binding which occurs in the region of the first immunosensor, and has an immunocomplex between an immobilized antibody and an endogenous or exogenous protein that is in the sample and that is not the target analyte.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: November 13, 2012
    Assignee: Abbott Point of Care Inc.
    Inventors: Cary James Miller, John Lewis Emerson Campbell
  • Patent number: 8303915
    Abstract: A platen for contacting a liquid to a surface of a substantially flat substrate is disclosed. The platen includes a liquid application station and a stripping element at an end of the liquid application station, wherein the stripping element includes an intersecting gap and an air barrier. Also disclosed are an apparatus including the platen and a method of using the platen to contact a substrate with a liquid.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: November 6, 2012
    Assignee: Ventana Medical Systems, Inc.
    Inventors: Brian H. Kram, Vincent R. Rizzo, Ryan Reeser, David Chafin
  • Patent number: 8298497
    Abstract: A delivery apparatus for selectively delivering one or more liquid reagents into a reaction or test chamber (2), especially of an assay apparatus, the apparatus comprising: one or more respective storage chambers (5,6) for containing the one or more liquid reagents and arranged generally above the reaction or test chamber (2); and a plunger element (4) arranged and operable for insertion into the mouth of a selected storage chamber so as to displace a selected reagent from therewithin into the reaction or test chamber (2) generally therebelow by gravitational liquid overflow from the mouth of the chamber. The apparatus may conveniently be provided as a discrete delivery unit, with the storage chambers (5,6) prefilled with the selected reagents.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: October 30, 2012
    Assignee: The Secretary of State for Defence
    Inventor: David James Squirrell
  • Patent number: 8293521
    Abstract: It is intended to easily dispense a minute amount of nonvolatile liquid. In a preferred embodiment, in dispensing of mineral oil (nonvolatile liquid), dispensing is conducted in the condition that the amount of air contained in a tip (70) is small by aspirating a larger amount of mineral oil (40) than a single dispensing amount in the tip (70) of a nozzle (28).
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: October 23, 2012
    Assignees: Shimadzu Corporation, Toppan Printing Co., Ltd., Riken
    Inventors: Nobuhiro Hanafusa, Koretsugu Ogata, Ryuh Konoshita, Yusuke Nakamura, Yozo Ohnishi
  • Patent number: 8288156
    Abstract: An analytical chip and analyzer are disclosed. The analytical chip comprises a substrate and reaction cells that are formed in the substrate for receiving a sample collected from a living body. A reagent storage portion is used to store reagents to be supplied to the reaction cells. Flow paths are provided to connect the reaction cells to the reagent storage portions, thereby allowing the reagents stored in the reagent storage portions to flow into the reaction cells.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: October 16, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Hisao Inami, Yasuhiko Sasaki, Ryo Miyake
  • Publication number: 20120258525
    Abstract: When automatically classified results are different from judgment of a laboratory technician, the laboratory technician has to reselect the bacterial colonies one-by-one to be a pickup colony through watching the displayed image. To get rid of the inconvenience, provided is a pretreatment device for a bacteria test comprising: a specification unit by which an operator instructs to specify the number of bacterial colonies and the increased/decreased number of the bacterial colonies to be displayed; and a display unit for displaying classification results obtained following the operator's instruction. The pretreatment device for a bacteria test facilitates the automatically classified results to be brought close to the judgment of the laboratory technician, resulting in the saving of the time required for checking the appropriate bacterial colonies for the pickup colony.
    Type: Application
    Filed: May 21, 2010
    Publication date: October 11, 2012
    Inventors: Noriko Iizumi, Akira Maekawa
  • Patent number: 8282896
    Abstract: Carriers or holders for holding microfluidic devices are provided. Some of the carriers that are provided include a hydration control device and/or a source of controlled fluid pressure to facilitate use of the carrier in conducting various types of analyses.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: October 9, 2012
    Assignee: Fluidigm Corporation
    Inventors: Geoffrey Richard Facer, Hany Ramaz Nassef
  • Patent number: 8263391
    Abstract: The invention relates to a specimen carrier for the study of cell growth, comprising a substrate with a reservoir with a bottom, wherein the reservoir is filled up to a predetermined height of the side wall, which is smaller than the complete height of the reservoir, with a carrier material for cell growth and the side wall of the reservoir is formed such that a predetermined contact angle of the carrier material can be adjusted with respect to the side wall.
    Type: Grant
    Filed: July 19, 2007
    Date of Patent: September 11, 2012
    Assignee: ibidi GmbH
    Inventors: Roman Zantl, Valentin Kahl
  • Patent number: 8257962
    Abstract: An extracellular potential measuring device includes a plate portion having a first surface and a second surface opposite to the first surface, and an electrode provided on the second surface of the plate portion. In the plate portion, a pocket having an opening which opens to the first surface is formed, and a through-hole communicating to the second surface from the pocket. The through-hole communicates from a position which is closer to the opening than a deepest point of the first pocket. The electrode is provided around of the opening of the through-hole. In this device, even if a cell to be examined does not reach the deepest point of the pocket, a cell membrane of the cell can tightly attaches onto the through-hole securely without a clearance. Hence, culture solution inside the through-hole is isolated from culture solution over an upper surface of the plate portion, thereby allowing electrochemical changes caused by activities of the cell to be detected efficiently with a detector electrode.
    Type: Grant
    Filed: March 8, 2004
    Date of Patent: September 4, 2012
    Assignee: Panasonic Corporation
    Inventors: Masaya Nakatani, Hiroaki Oka, Fumiaki Emoto
  • Patent number: 8247217
    Abstract: A thermal cycling instrument for PCR and other reactions performed on multiple samples with temperature changes between sequential stages in the reaction procedure is supplied with a thermal block to provide rapid changes and close control over the temperature in each sample vessel and a pressure plate incorporated into a motorized lid that detects anomalies in the reaction vessels or in their positioning over the thermal block, and automatically adjusts the plate position to achieve an even force distribution over the sample vessels.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: August 21, 2012
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Jeffry M. Ceremony, Daniel Y. Chu, Deepak K. Doshi, Rhoel Rumbaoa, Dennis W. Loring, Paul J. Patt, Cliff Baldwin
  • Patent number: 8241865
    Abstract: An antimicrobial susceptibility assay enabling a more rapid and direct result, including an assay dish including at least one chamber, at least one growth medium carried by the assay dish, at least one antimicrobial agent sample positionable at a sample location adjacent a growth medium in the assay dish, at least one interpretive indication positionable at a predetermined distance from the sample location adjacent a growth medium in the assay dish, and at least one interfitting element, said at least one interfitting element configured cooperate with the assay dish to enable at least one of: a) more accurately positioning said at least one antimicrobial sample at the sample position in contact with the growth medium; b) carrying said at least one interpretive indication positionable at a predetermined distance from said sample position; said assay enabling the interpretative indication to be visually compared with a margin of a zone of inhibition of microbial organism growth on said growth medium to determin
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: August 14, 2012
    Assignee: Kwikculture LLC
    Inventor: Read Robert Taintor
  • Patent number: 8236555
    Abstract: The present invention is directed to methods for conducting multiplexed assays. The methods are particularly well suited for measuring a plurality of analytes that may be present in very different abundances. The invention also relates to systems, devices, equipment, kits and reagents for use in such methods.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: August 7, 2012
    Assignee: Meso Scale Technologies, LLC
    Inventors: Selen A. Stromgren, Eli N. Glezer
  • Publication number: 20120196317
    Abstract: The present invention relates to devices for conducting microorganism or toxin detection. More particularly, the invention relates to portable, pre-packaged devices that are suitable for culturing microorganisms, aliquoting predetermined volumes of testing samples, and conducting microorganism or toxin detection based on immunological reactions using samples of considerable size collected at remote sites away from testing laboratories.
    Type: Application
    Filed: September 28, 2010
    Publication date: August 2, 2012
    Applicant: FUNDACION GAIKER
    Inventors: Jose Luis Gondra Zubieta, Paloma Aldamiz-Echebarria Zulueta, Javier Escobal Gonzalo, Miren Garbine Olabarria De Pablo, Armando Cruz Llosa, Jesus Berganza Granda, Brigitte Michele Jacqueline Sauvage
  • Patent number: 8232084
    Abstract: A device for measuring an extracellular potential of a test cell includes a substrate having a well formed in a first surface thereof and a first trap hole formed therein. The well has a bottom. The first trap hole includes a first opening formed in the bottom of the well and extending toward a second face of the substrate, a first hollow section communicating with the first opening via a first connecting portion, and a second opening extending reaching the second surface and communicating with the first hollow section via a second connecting portion. The first connecting portion has a diameter smaller than a maximum diameter of the first hollow section, greater than a diameter of the second connecting portion, and smaller than a diameter of the test cell. The device can retain the test cell securely and accept chemicals and the test cell to be put into the device easily.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: July 31, 2012
    Assignee: Panasonic Corporation
    Inventors: Masaya Nakatani, Hiroaki Oka, Fumiaki Emoto
  • Patent number: 8231846
    Abstract: A tag (1) for a laboratory sample cassette has a first layer (3). A chip (8) is mounted on a surface (7) of the first layer (3), and an antenna (6) is printed on the surface of the first layer (3). The antenna (6) is arranged to establish communication between the chip (8) and an electric or electronic read/write device. A second layer (4) is positioned and bonded against the surface (7) and has a hole (9) which passes through the second layer (4). The hole (9) contains the chip (8) and a third layer (5) covers the hole (9) from the opposite side to the first layer (3), the third layer (5) being bonded to the second layer (4). Thus, the antenna (6) and chip (8) are sealed within the tag (1). A plurality of perforations (10) are provided which pass through all the layers (3,4,5) of the tag (1) from one side of the tag (1) to an opposite side thereof to enable liquid to pass through the tag (1).
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: July 31, 2012
    Assignee: Raymond A Lamb Limited
    Inventor: Thomas Fergus Hughes