Polynucleotide (e.g., Nucleic Acid, Oligonucleotide, Etc.) Patents (Class 435/91.1)
  • Patent number: 10214573
    Abstract: The invention provides compositions and methods for treating, preventing, and diagnosing diseases or conditions associated with an abnormal level or activity of biglycan; disorders associated with an unstable cytoplasmic membrane, due, e.g., to an unstable dystrophin associated protein complex (DAPC); disorders associated with abnormal synapses or neuromuscular junctions, including those resulting from an abnormal MuSK activation or acetylcholine receptor (AChR) aggregation. Examples of diseases include Amyotrophic Lateral Sclerosis (ALS), as well as muscular dystrophies, such as Duchenne's Muscular Dystrophy, Becker's Muscular Dystrophy, neuromuscular disorders and neurological disorders.
    Type: Grant
    Filed: October 9, 2013
    Date of Patent: February 26, 2019
    Assignees: Tivorsan Pharmaceuticals, Inc., Brown University
    Inventors: Justin Fallon, Elizabeth John
  • Patent number: 10202642
    Abstract: Provided herein is technology relating to sequencing nucleic acids and particularly, but not exclusively, to methods, compositions, systems, and kits for sequencing a nucleic acid using a degenerate two-base code. Particular embodiments provide: 1) that the two-base degenerate code relates a first element to a base comprising adenine (A) or guanine (G) and a second element to a base comprising cytosine (C) or thymine (T); 2) that the two-base degenerate code relates a first element to a base comprising A or C and a second element to a base comprising G or T; and 3) that the two-base degenerate code relates a first element to a base comprising G or C and a second element to a base comprising A or T.
    Type: Grant
    Filed: May 2, 2013
    Date of Patent: February 12, 2019
    Assignee: IBIS BIOSCIENCES, INC.
    Inventor: Mark W. Eshoo
  • Patent number: 10167508
    Abstract: The present invention provides assay systems and related methods for determining genetic abnormalities in mixed samples comprising cell free DNA from both normal and putative genetically atypical cells. Exemplary mixed samples for analysis using the assay systems of the invention include samples comprising both maternal and fetal cell free DNA and samples that contain DNA from normal cells and circulating cancerous cells.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: January 1, 2019
    Assignee: ARIOSA DIAGNOSTICS, INC.
    Inventors: Ken Song, Arnold Oliphant, John Stuelpnagel, Andrew Sparks
  • Patent number: 10087465
    Abstract: Compounds of the formula (Z)x wherein: each Z is independently selected from 2?-deoxythymidinyl moiety, 2?-deoxyadenosinyl moiety, and a 2?-deoxycytidinyl moiety, x is an integer from 5-20, wherein said 2?-deoxythymidinyl moieties are connected by thiophosphate triester linkages, and 3-12 of said thiophosphate triester linkages being positively charged linkages of the formula: where n is an integer from 2 to 6; and the remainder of the thiophosphate triester linkages are neutral linkages of the formula: provided that when x is 5-6, the number of positively charged linkages is 3, when x is 7-8, the number of positively charged linkages is 3-4, when x is 9-12, the number of positively charged linkages is 3-10, and when x is 13-20, the number of positively charged linkages is 4-12.
    Type: Grant
    Filed: September 14, 2016
    Date of Patent: October 2, 2018
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Serge L. Beaucage, Harsh V. Jain
  • Patent number: 10083341
    Abstract: Methods and systems for quantifying cellular activity using labeled probes, e.g., quantum dots, are disclosed. In one example approach, a method for quantifying cellular activity in a sample containing intact cells having labeled complexes comprises receiving images of the sample at a plurality of depths and detecting individual intact cells in the images of the sample at the plurality of depths. For each detected cell, discrete labels may be detected and localized in the cell at each depth, a total number of detected and localized labels may be calculated in the cell, and an activity level of the target molecule for the labeled probe in the cell determined.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: September 25, 2018
    Assignee: Oregon Health & Science University
    Inventors: Tania Vu, Thomas Jacob
  • Patent number: 10081837
    Abstract: In some embodiments, methods for obtaining sequence information from a nucleic acid template linked to a support include hybridizing a first primer to a template strand linked to a support, sequencing a portion of the nucleic acid template, thereby forming an extended first primer product that is complementary to a portion of the nucleic acid template, In some embodiments, the method further includes introducing a nick into a portion of the template strand that is hybridized to the extended first primer product, degrading a portion of the template strand from the nick using a degrading agent, where a portion of the extended first primer remains hybridized to an undegraded portion of the template strand, and sequencing at least some of the single-stranded portion of the extended first primer by synthesis.
    Type: Grant
    Filed: October 11, 2017
    Date of Patent: September 25, 2018
    Assignee: Life Technologies Corporation
    Inventors: Jason Myers, Zhoutao Chen, Devin Dressman, Theo Nikiforov
  • Patent number: 10041060
    Abstract: Methods are provided for constructing a synthetic genome, comprising generating and assembling nucleic acid cassettes comprising portions of the genome, wherein at least one of the nucleic acid cassettes is constructed from nucleic acid components that have been chemically synthesized, or from copies of the chemically synthesized nucleic acid components. In one embodiment, the entire synthetic genome is constructed from nucleic acid components that have been chemically synthesized, or from copies of the chemically synthesized nucleic acid components. Rational methods may be used to design the synthetic genome (e.g., to establish a minimal genome and/or to optimize the function of genes within a genome, such as by mutating or rearranging the order of the genes). Synthetic genomes of the invention may be introduced into vesicles (e.g., bacterial cells from which part or all of the resident genome has been removed, or synthetic vesicles) to generate synthetic cells.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: August 7, 2018
    Assignee: Synthetic Genomics, Inc.
    Inventors: J. Craig Venter, Hamilton O. Smith, Clyde A. Hutchison, III, Daniel G. Gibson
  • Patent number: 10030267
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing. Such polynucleotide processing may be useful for a variety of applications, including polynucleotide sequencing.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: July 24, 2018
    Assignee: 10X GENOMICS, INC.
    Inventors: Benjamin Hindson, Christopher Hindson, Michael Schnall-Levin, Kevin Ness, Mirna Jarosz, Serge Saxonov
  • Patent number: 9951386
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing. Such polynucleotide processing may be useful for a variety of applications, including polynucleotide sequencing.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: April 24, 2018
    Assignee: 10X GENOMICS, INC.
    Inventors: Benjamin Hindson, Christopher Hindson, Michael Schnall-Levin, Kevin Ness, Mirna Jarosz, Serge Saxonov
  • Patent number: 9951333
    Abstract: A novel class of pharmaceuticals which comprises a Locked Nucleic Acid (LNA) which can be used in antisense therapy. These novel oligonucleotides have improved antisense properties. The novel oligonucleotides are composed of at least one LNA selected from beta-D-thio/amino-LNA or alpha-L-oxy/thio/amino-LNA. The oligonucleotides comprising LNA may also include DNA and/or RNA nucleotides.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: April 24, 2018
    Assignee: Roche Innovation Center Copenhagen A/S
    Inventors: Signe M. Christensen, Nikolaj Dam Mikkelsen, Miriam Frieden, Henrik Frydenlund Hansen, Troels Koch, Daniel Sejer Pedersen, Charlotte Albaek Thrue, Majken Westergaard, Christoph Rosenbohm
  • Patent number: 9950001
    Abstract: The disclosure provides methods and compositions for delivering polynucleotides into cells. The disclosure provides transiently protected polynucleotides comprising an anionic charge-neutralizing moiety/group, which may also confer additional functionality. These compounds can enter the cytosol of cells by endocytic or macropinocytic mechanisms. The transient protecting group is bioreversible, i.e., once inside a cell, it is designed to be removed by enzymatic activity or by passive intracellular methods (e.g., changes in pH or reductive environment).
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: April 24, 2018
    Assignee: The Regents of the University of California
    Inventors: Steven F. Dowdy, Bryan R. Meade, Khirud Gogoi
  • Patent number: 9920305
    Abstract: Compositions and methods are provided for improved reverse transcriptases and their uses in reverse transcription where the improvement may include increased temperature, increased salt, increased activity and/or increased dUTP tolerance.
    Type: Grant
    Filed: October 16, 2014
    Date of Patent: March 20, 2018
    Assignee: New England Biolabs, Inc.
    Inventors: Yinhua Zhang, Thomas C. Evans, Jr.
  • Patent number: 9884885
    Abstract: This invention relates to novel method of synthesis of RNA utilizing N-2-acetyl protected guanine as nucleoside base, nucleosides, succinates, phosphoramidites, corresponding solid supports that are suitable for oligo deoxy nucleosides and RNA oligonucleotide synthesis. Our discovery using N-acetyl protected guanine as nucleoside base protecting group, which is significantly faster base labile protecting group, yet significantly more stable than commonly utilized-2-isobutyryl guanosine is a novel approach to obtain highest purity oligonucleotides. This approach is designed to lead to very high purity and very clean oligonucleotide, after efficient removal of the protecting groups, including acetyl group from guanine and to produce high purity therapeutic grade DNA oligonucleotides, RNA oligonucleotides, diagnostic DNA, diagnostic RNA for microarray platform.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: February 6, 2018
    Assignee: CHEMGENES CORPORATION
    Inventors: Suresh C. Srivastava, Naveen P. Srivastava
  • Patent number: 9862998
    Abstract: This disclosure provides a method of determining a sequence of nucleotides for a nucleic acid template. The method can include the steps of contacting the nucleic acid template with a conformationally labeled polymerase and at least four different nucleotide species under conditions wherein the conformationally labeled polymerase catalyzes sequential addition of the nucleotide species to form a nucleic acid complement of the nucleic acid template, wherein the sequential addition of each different nucleotide species produces a conformational signal change from the conformationally labeled polymerase and wherein the rate or time duration for the conformational signal change is distinguishable for each different nucleotide species; detecting a series of changes in the signal from the conformationally labeled polymerase under the conditions; and determining the rates or time durations for the changes in the signal, thereby determining the sequence of nucleotides for the nucleic acid template.
    Type: Grant
    Filed: April 19, 2016
    Date of Patent: January 9, 2018
    Assignee: ILLUMINA, INC.
    Inventors: Molly He, Cheng-Yao Chen, Eric Kool, Mostafa Ronaghi, Michael Previte, Rigo Pantoja
  • Patent number: 9845509
    Abstract: Compositions are disclosed as nucleic acid sequences that may be used as amplification oligomers, including primers, and detection probes that hybridize specifically to Legionella pneumophila 23S rRNA sequences or DNA encoding 23S rRNA. Reaction mixtures are disclosed that contain oligonucleotides for the in vitro amplification and/or detection of Legionella pneumophila 23S rRNA sequences or DNA encoding 23S rRNA. Methods are disclosed for amplifying and/or detecting the presence of L. pnuemophila in samples by using the disclosed compositions in in vitro methods that include nucleic acid amplification and/or detection of a 23S rRNA sequence or DNA encoding the 23S rRNA sequence to produce a detectable amplification product. Reaction mixtures are disclosed that contain oligonucleotides for the in vitro amplification and/or detection of Legionella pneumophila 23S rRNA sequences or DNA encoding 23S rRNA.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: December 19, 2017
    Assignee: GEN-PROBE INCORPORATED
    Inventors: Jennifer J. Bungo, James J. Hogan, Reinhold B. Pollner, Marie K. Hudspeth, Shannon K. Kaplan, Elizabeth M. Marlowe
  • Patent number: 9834816
    Abstract: Compositions, methods, and kits for detecting one or more species of RNA molecules are disclosed. In one embodiment, a first adaptor and a second adaptor are ligated to the RNA molecule using a polypeptide comprising double-strand specific RNA ligase activity, without an intervening purification step. The ligated product is reverse transcribed, then at least some of the ribonucleosides in the reverse transcription product are removed. Primers are added and amplified products are generated. In certain embodiments, the sequence of at least part of at least one species of amplified product is determined and at least part of the corresponding RNA molecule is determined. In some embodiments, at least some of the amplified product species are detected, directly or indirectly, allowing the presence and/or quantity of the RNA molecule of interest to be determined.
    Type: Grant
    Filed: March 6, 2017
    Date of Patent: December 5, 2017
    Assignee: APPLIED BIOSYSTEMS, LLC
    Inventor: R. Scott Kuersten
  • Patent number: 9810609
    Abstract: Apparatus for transferring biological material onto storage media, said apparatus comprising a powered hand held device including a powered hammer arrangement, the apparatus further comprising an anvil arrangement and a storage media accepting area between the hammer and the anvil, the apparatus being operable such that in use the storage media is repeatedly compressed between the hammer and the anvil by blows from the hammer.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: November 7, 2017
    Assignee: GE Healthcare UK Limited
    Inventors: Stevan Paul Tortorella, William A. Garwood
  • Patent number: 9790250
    Abstract: The invention relates to a method and kits for isolating and/or purifying nucleic acids, in particular, short-chain nucleic acids, from a nucleic acid containing starting material, characterized by the following method steps: (a) bonding the nucleic acids to a nucleic acid bonding support material, wherein the starting material is brought into contact with the nucleic acid bonding support material in the presence of at least one chaotropic compound and preferably isopropanol, wherein the isopropanol is present in a concentration of ?25% (v/v) and ?35% (v/v), (b) optional elution of the bonded nucleic acids from the nucleic acid bonding support material. Said method is particularly suitable for the purification of foetal DNA from maternal blood.
    Type: Grant
    Filed: May 12, 2009
    Date of Patent: October 17, 2017
    Assignee: QIAGEN GmbH
    Inventors: Christoph Ritt, Martin Horlitz, Markus Sprenger-Haussels
  • Patent number: 9777314
    Abstract: Methods for capturing and characterizing low frequency nucleic acid molecules indicative of diseases such as cancer (e.g. adenomas or early stage cancers) are provided. In some aspects, a low complexity capture technique is combined with a high complexity analytical technique. In some aspects, samples may be analyzed using a digital analysis and/or a single molecule sequencing technique.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: October 3, 2017
    Assignee: Esoterix Genetic Laboratories, LLC
    Inventor: Anthony P. Shuber
  • Patent number: 9725760
    Abstract: Methods and compositions for the amplification of nucleic acids and generation of concatemers are disclosed. Amplification methods provided herein may be performed under isothermal conditions. Methods and compositions may include reagents such nucleic acid polymerases and primers.
    Type: Grant
    Filed: March 15, 2014
    Date of Patent: August 8, 2017
    Assignee: Theranos, Inc.
    Inventors: Kamila Belhocine, Josephine Lee, Pranav Patel, Aaron Richardson, Scott Tabakman
  • Patent number: 9719080
    Abstract: Synthetic polynucleotides encoding human methylmalonyl-CoA mutase (synMUT) and exhibiting augmented expression in cell culture and/or in a subject are described herein. An adeno-associated viral (AAV) gene therapy vector encoding synMUT under the control of a liver-specific promoter (AAV2/8-HCR-hAAT-synMUT-RBG) successfully rescued the neonatal lethal phenotype displayed by methylmalonyl-CoA mutase-deficient mice, lowered circulating methylmalonic acid levels in the treated animals, and resulted in prolonged hepatic expression of the product of synMUT transgene in vivo, human methylmalonyl-CoA mutase (MUT).
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: August 1, 2017
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Charles P. Venditti, Randy J. Chandler
  • Patent number: 9657345
    Abstract: Provided is a dual-hybridization polynucleotide including a first complementary region that is complementary to the 3?-terminus of a target nucleic and a second complementary region that is complementary to the 5?-terminus of the target nucleic acid, a composition and kit including the polynucleotide, and a method of producing a nucleotide sequence complementary to the target nucleic acid. The first complementary region to be bound at the 3?-terminus of the target nucleic acid can be shortened and the target nucleic acid may be amplified with excellent specificity and/or sensitivity.
    Type: Grant
    Filed: May 21, 2013
    Date of Patent: May 23, 2017
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Dong-hyun Park, Sung-woo Hong, Kyung-hee Park, Myo-yong Lee
  • Patent number: 9650427
    Abstract: The invention provides methods, compositions, and kits featuring novel RIG-I like receptor activators or inhibitors for use in preventing or treating virus infection or autoimmune disease.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: May 16, 2017
    Assignee: Children's Medical Center Corporation
    Inventor: Jonathan C. Kagan
  • Patent number: 9650628
    Abstract: The present invention provides methods, compositions and kits for targeted nucleic acid sequence enrichment in a nucleic acid sample and for high efficiency nucleic acid library generation for next generation sequencing (NGS). Specifically, the methods, compositions and kits provided herein are useful for the production and capture of amplification-ready, target-specific and strand-specific regions of interest from nucleic acid samples containing complex DNA.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: May 16, 2017
    Assignee: NUGEN TECHNOLOGIES, INC.
    Inventors: Doug Amorese, Chris Armour, Nurith Kurn
  • Patent number: 9624519
    Abstract: An embodiment of a method for generating a population of amplified concatamer products is described that comprises amplifying a template nucleic acid molecule using a first nucleic acid primer immobilized on a bead substrate and a second nucleic acid primer in solution to generate a population of substantially identical copies of the template nucleic acid molecule immobilized on the bead substrate; and amplifying the population of substantially identical copies of the template nucleic acid molecule using a concatamer primer that comprises a first region complementary to an end region of the population of substantially identical copies of the template nucleic acid molecule and a second region to generate a population of immobilized concatamer products of the substantially identical copies of the template nucleic acid molecule.
    Type: Grant
    Filed: August 22, 2014
    Date of Patent: April 18, 2017
    Assignee: 454 Life Sciences Corporation
    Inventors: Brian Christopher Godwin, Priya Shanbhag, Craig Elder Mealmaker, Gianni Calogero Ferreri, Melinda Palmer, Shally Hsueh-Wen Wang
  • Patent number: 9624534
    Abstract: Compositions, methods, and kits for detecting one or more species of RNA molecules are disclosed. In one embodiment, a first adaptor and a second adaptor are ligated to the RNA molecule using a polypeptide comprising double-strand specific RNA ligase activity, without an intervening purification step. The ligated product is reverse transcribed, then at least some of the ribonucleosides in the reverse transcription product are removed. Primers are added and amplified products are generated. In certain embodiments, the sequence of at least part of at least one species of amplified product is determined and at least part of the corresponding RNA molecule is determined. In some embodiments, at least some of the amplified product species are detected, directly or indirectly, allowing the presence and/or quantity of the RNA molecule of interest to be determined.
    Type: Grant
    Filed: July 13, 2016
    Date of Patent: April 18, 2017
    Assignee: APPLIED BIOSYSTEMS, LLC
    Inventor: R. Scott Kuersten
  • Patent number: 9617329
    Abstract: The present disclosure provides methods for producing expression constructs comprising linking a plurality of unlinked nucleic acids, including a nucleic acid encoding a marker protein.
    Type: Grant
    Filed: October 3, 2011
    Date of Patent: April 11, 2017
    Assignee: CSL Limited
    Inventors: Con Panousis, Chao-Guang Chen
  • Patent number: 9615550
    Abstract: The invention provides genetically modified non-human animals that express chimeric human/non-human MHC I polypeptide and/or human or humanized ?2 microglobulin polypeptide, as well as embryos, cells, and tissues comprising the same. Also provided are constructs for making said genetically modified animals and methods of making the same. Methods of using the genetically modified animals to study various aspects of human immune system are provided.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: April 11, 2017
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Lynn Macdonald, Andrew J. Murphy, Cagan Gurer, John McWhirter, Vera Voronina, Faith Harris, Sean Stevens
  • Patent number: 9616083
    Abstract: It is described pharmaceutical compositions and methods for the treatment of viral infections, hypercholesterolemia, hypertriglyceridemia, Alzheimer's disease, prion disease and Duchene's muscular dystrophy with oligonucleotide chelate complexes.
    Type: Grant
    Filed: May 17, 2013
    Date of Patent: April 11, 2017
    Assignee: REPLICOR INC
    Inventors: Michel Bazinet, Andrew Vaillant
  • Patent number: 9587269
    Abstract: In some embodiments, methods for obtaining sequence information from a nucleic acid template linked to a support include hybridizing a first primer to a template strand linked to a support, sequencing a portion of the nucleic acid template, thereby forming an extended first primer product that is complementary to a portion of the nucleic acid template, In some embodiments, the method further includes introducing a nick into a portion of the template strand that is hybridized to the extended first primer product, degrading a portion of the template strand from the nick using a degrading agent, where a portion of the extended first primer remains hybridized to an undegraded portion of the template strand, and sequencing at least some of the single-stranded portion of the extended first primer by synthesis.
    Type: Grant
    Filed: August 21, 2015
    Date of Patent: March 7, 2017
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Jason Myers, Zhoutao Chen, Devin Dressman, Theo Nikiforov
  • Patent number: 9541554
    Abstract: A method for detecting HIV infection in a mammal is disclosed. The method contains the steps of isolating exosomes from a urine sample of a mammal and detecting the presence of HIV-specific biomarker in said isolated exosomes. A method for diagnosing a mammal with an HIV-associated disease, in particular, HIV-associated nephropathy is also disclosed.
    Type: Grant
    Filed: January 11, 2012
    Date of Patent: January 10, 2017
    Assignee: MOREHOUSE SCHOOL OF MEDICINE
    Inventors: Gale W. Newman, Mike Powell, Akins Doherty, Chamberlain Obialo
  • Patent number: 9534224
    Abstract: The present invention provides nucleic acid molecules, DNA constructs, plasmids, and methods for post-transcriptional regulation of gene expression using RNA molecules to both repress and activate translation of an open reading frame. Repression of gene expression is achieved through the presence of a regulatory nucleic acid element (the cis-repressive RNA or crRNA) within the 5? untranslated region (5? UTR) of an mRNA molecule. The nucleic acid element forms a hairpin (stem/loop) structure through complementary base pairing. The hairpin blocks access to the mRNA transcript by the ribosome, thereby preventing translation. In particular, in embodiments of the invention designed to operate in prokaryotic cells, the stem of the hairpin secondary structure sequesters the ribosome binding site (RBS). In embodiments of the invention designed to operate in eukaryotic cells, the stem of the hairpin is positioned upstream of the start codon, anywhere within the 5? UTR of an mRNA.
    Type: Grant
    Filed: November 14, 2003
    Date of Patent: January 3, 2017
    Assignee: Trustees of Boston University
    Inventors: James J. Collins, Farren J. Isaacs, Charles R. Cantor, Daniel J. Dwyer
  • Patent number: 9512431
    Abstract: Methods for making synthetic gene clusters are described.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: December 6, 2016
    Assignee: The Regents of the University of California
    Inventors: Ethan Mirsky, Karsten Temme, Christopher A. Voigt, Dehua Zhao
  • Patent number: 9453216
    Abstract: The present invention provides a mutagenesis method wherein a nucleic acid molecule is mutagenized with at least one mutagenesis primer in a primer extension reaction and subsequently amplified by rolling circle amplification (RCA). The method involves the step of rendering the template strand unfavorable for RCA. The method involves steps leading to selective amplification of only the mutated strand by a strand-displacing DNA polymerase. Multiple copies of the mutated plasmids are generated during multiple-primed RCA and the resulting DNA is transformed for use. The method is suitable for mutating both single-stranded and double-stranded DNA. The present invention also provides a kit for use in the mutagenesis method.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: September 27, 2016
    Assignee: Turun Yliopisto
    Inventors: Tuomas Huovinen, Urpo Lamminmäki, Eeva-Christine Brockmann, Markus Vehniäinen
  • Patent number: 9447463
    Abstract: The present disclosure relates to the amplification of target nucleic acid sequences for various sequencing and/or identification techniques. The use of these primers, as described herein, allows for the reduction in the amplification of nonspecific hybridization events (such as primer dimerization) while allowing for the amplification of the target nucleic acid sequences.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: September 20, 2016
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Kai Lao, Neil Straus, Nanlan Xu
  • Patent number: 9446403
    Abstract: A micro-channel chip comprises two gas control channels, a liquid inlet channel, a liquid outlet channel, a piston channel, and a micro pump including two micro-valves and a plurality of micro-channels. One of the gas control channels communicates with one end of the piston channel and communicates with the two micro-valves and the liquid inlet channel respectively via the micro-channels. The other one of the gas control channels communicates with the two micro-valves and the liquid outlet channel respectively via the micro-channels. The other end of the piston channel communicates with one of the micro-valves via the micro-channels.
    Type: Grant
    Filed: October 23, 2012
    Date of Patent: September 20, 2016
    Assignees: XIAMEN XINCHUANG BIOLOGICAL TECHNOLOGY CO., LTD.
    Inventor: Xingyue Peng
  • Patent number: 9434974
    Abstract: A method is provided for introducing a genome into a cell or cell-like system. The introduced genome may occur in nature, be manmade with or without automation, or may be a hybrid of naturally occurring and manmade materials. The genome is obtained outside of a cell with minimal damage. Materials such as a proteins, RNAs, polycations, nucleoid condensation proteins, or gene translation systems may accompany the genome. The genome is installed into a naturally occurring cell or into a manmade cell-like system. A cell-like system or synthetic cell resulting from the practice of the provided method may be designed and used to yield gene-expression products, such as desired proteins. By enabling the synthesis of cells or cell-like systems comprising a wide variety of genomes, accompanying materials and membrane types, the provided method makes possible a broader field of experimentation and bioengineering than has been available using prior art methods.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: September 6, 2016
    Assignee: Synthetic Genomics, Inc.
    Inventors: John I. Glass, Lei Young, Carole Lartigue, Nacyra Assad-Garcia, Hamilton O. Smith, Clyde A. Hutchison, J. Craig Venter
  • Patent number: 9428746
    Abstract: Methods for automated extraction of nucleic acids are disclosed. Also disclosed are method and kits for isolating fetal nucleic acids from a plasma sample of a pregnant woman. The method includes flowing the plasma sample through a first filter under conditions that allow binding of the fetal and maternal nucleic acids to the first filter; eluting the fetal and maternal nucleic acids bound to the first filter to produce a concentrated nucleic acid sample; flowing the concentrated nucleic acid sample through a second filter under conditions that allow preferential binding of the maternal nucleic acids to the second filter; and recovering the fetal nucleic acid from the concentrated nucleic acid sample that flow through the second filter.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: August 30, 2016
    Assignee: Akonni Biosystems, Inc.
    Inventors: Rebecca Holmberg, Alissa Erin Gindlesperger, Tinsley Janna Stokes, Phillip Belgrader
  • Patent number: 9416387
    Abstract: Methods and compositions for the amplification of nucleic acids are disclosed. Amplification methods provided herein may be performed under isothermal conditions. Methods and compositions may include reagents such as restriction enzymes, polymerases, ligases, primers, and polynucleotide adaptors.
    Type: Grant
    Filed: March 15, 2014
    Date of Patent: August 16, 2016
    Assignee: Theranos, Inc.
    Inventor: Pranav Patel
  • Patent number: 9360526
    Abstract: Improvements on the basic method used for BEAMing increase sensitivity and increase the signal-to-noise ratio. The improvements have permitted the determination of intrinsic error rates of various DNA polymerases and have permitted the detection of rare and subtle mutations in DNA isolated from plasma of cancer patients.
    Type: Grant
    Filed: October 20, 2006
    Date of Patent: June 7, 2016
    Assignee: The Johns Hopkins University
    Inventors: Bert Vogelstein, Frank Diehl, Kenneth W Kinzler, Meng Li
  • Patent number: 9301917
    Abstract: Provided is a pharmaceutical composition, including a drug and a collagen, in which the composition is satisfactory in handleability and has sustained-release property. The sustained-release pharmaceutical composition includes: a drug; a collagen; and at least one kind of sugar selected from monosaccharides, disaccharides, trisaccharides, and tetrasaccharides. The inventors of the present invention have found that the in vivo administration of a collagen solution containing a sugar results in the gelation of a collagen. Based on this finding, the inventors have found that a composition containing a drug, a collagen, and a sugar can control the release rate of the drug, and such composition can be used as a sustained-release pharmaceutical composition.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: April 5, 2016
    Assignees: Kyoto University, Kyoto Prefectural Public University Corporation, Kaken Pharmaceutical Co., Ltd., Koken Co., Ltd.
    Inventors: Masanori Fukushima, Hiroaki Matsubara, Satoaki Matoba, Shigeki Hijikata, Yu Aso, Tsutomu Sato
  • Patent number: 9259736
    Abstract: Apparatus for controlling the temperature of a reaction mixture held within a reaction container, the apparatus including a radiation source for exposing the reaction container to radiation thereby heating the reaction mixture, a temperature sensor for sensing a temperature indicative of a reaction mixture temperature and a controller for controlling the radiation source in accordance with the reaction mixture temperature to thereby selectively heat the reaction mixture.
    Type: Grant
    Filed: November 27, 2008
    Date of Patent: February 16, 2016
    Assignee: QIAGEN INSTRUMENTS AG
    Inventor: John Corbett
  • Patent number: 9260703
    Abstract: The present invention includes compositions, methods and kits for the real-time detection of transcription and translation in live cells, tissues and organisms. The present invention further provides method for the rapid sequencing of nucleic acids without using conventional sequencing techniques or reactions.
    Type: Grant
    Filed: May 17, 2006
    Date of Patent: February 16, 2016
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: James H Eberwine, Ulo Langel, Emelia Eiriksdottir, Tina Peritz, Jai-Yoon Sul, Philip G. Haydon, Junhyong Kim
  • Patent number: 9249458
    Abstract: This invention combines artificially expanded genetic information systems (AEGIS) with self-avoiding molecular recognition systems (SAMRS), in processes that involve template-directed primer extension in highly multiplexed form in mixtures containing large numbers of primers. This process yields extension products, or in its PCR format, amplicons, that have AEGIS tags that can be cleanly captured in highly complex mixtures.
    Type: Grant
    Filed: October 27, 2014
    Date of Patent: February 2, 2016
    Inventor: Steven Albert Benner
  • Patent number: 9243288
    Abstract: Systems, including apparatus, methods, compositions, kits, and software, for preparing, reacting, detecting, and/or analyzing samples in droplet-based assay systems, among others. The disclosure emphasizes, but is not limited to, a disposable cartridge with lysis chamber and droplet chamber, particularly for use in droplet-based assays.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: January 26, 2016
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Kevin Dean Ness, Samuel Burd, Benjamin Joseph Hindson, Phillip Belgrader, Billy W. Colston, Jr.
  • Patent number: 9217176
    Abstract: There is a need for improved methods for determining the diagnosis and prognosis of patients with conditions, including autoimmune disease and cancer. Provided herein are methods for using DNA sequencing to identify personalized biomarkers in patients with autoimmune disease and other conditions. Identified biomarkers can be used to determine the disease state for a subject with an autoimmune disease or other condition.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: December 22, 2015
    Assignee: Sequenta, LLC
    Inventors: Malek Faham, Thomas Willis
  • Patent number: 9212350
    Abstract: The present invention relates to a method of cloning stable stress tolerant superoxide dismutase from diverse plant species using universal primers.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: December 15, 2015
    Assignee: Council of Scientific and Industrial Research
    Inventors: Pardeep Kumar Bhardwaj, Arun Kumar, Amit Kishore, Sanjay Ghawana, Arti Rani, Kashmir Singh, Harsharan Singh, Ravi Shankar Singh, Hitesh Kumar, Payal Sood, Som Dutt, Sanjay Kumar, Paramvir Singh Ahuja
  • Patent number: 9198972
    Abstract: The invention features compounds of formula (V) or (XII). In one embodiment, the invention relates compounds and processes for conjugating ligand to oligonucleotide. The invention further relates to methods for treating various disorders and diseases such as viral infections, bacterial infections, parasitic infections, cancers, allergies, autoimmune diseases, immunodeficiencies and immunosuppression.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: December 1, 2015
    Assignee: ALNYLAM PHARMACEUTICALS, INC.
    Inventors: Muthiah Manoharan, Narayanannair K. Jayaprakash, Kallanthottahil G. Rajeev, Michael E. Jung
  • Patent number: 9153300
    Abstract: Chips that include one or more particle manipulation mechanisms, or force transduction elements, provided at specific locations to manipulate and localize particles proximal the substrate surface. In one embodiment, individually addressable magnetic control mechanisms such as electric coils are provided at specific locations to create a magnetic field to attract magnetic particles, such a magnetic or magnetizable beads, to those specific locations. In another embodiment, electrostatic control mechanisms such as electrodes are provided to attract and manipulate electrically charged micro-particles. A location may include a crater or well formed in the substrate, or it may include an element on the surface of the substrate. In some embodiments, one or more sensors are located proximal specific locations, e.g., specific craters, so as to analyze specific conditions at each location. In other embodiments, multiple locations share one or more sensors.
    Type: Grant
    Filed: August 15, 2011
    Date of Patent: October 6, 2015
    Inventors: Robert Otillar, David Storek, Christer Johansson
  • Patent number: 9133511
    Abstract: This invention provides methods for attaching a nucleic acid to a solid surface and for sequencing nucleic acid by detecting the identity of each nucleotide analogue after the nucleotide analogue is incorporated into a growing strand of DNA in a polymerase reaction. The invention also provides nucleotide analogues which comprise unique labels attached to the nucleotide analogue through a cleavable linker, and a cleavable chemical group to cap the —OH group at the 3?-position of the deoxyribose.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: September 15, 2015
    Assignee: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK
    Inventors: Jingyue Ju, Zengmin Li, John Robert Edwards, Yasuhiro Itagaki