Using Structure Alterable To Nonconductive State (i.e., Fuse) Patents (Class 438/132)
  • Patent number: 7977164
    Abstract: Disclosed herein is a fuse of a semiconductor memory device and a repair process for the same. The fuse includes a lower conductive film of a multilayer interconnection formed on a lower structure of a semiconductor substrate, an upper conductive film of the multilayer interconnection spaced apart upward from the lower conductive film to define a predetermined vertical space therebetween, and a contact electrode, which vertically connects the upper and lower conductive films to each other and forms a fuse body. The lower conductive film includes a form not coinciding with that of the upper conductive film. With such a configuration, the device can achieve a stable minimization in the length of the fuse and the distance between adjacent fuses in consideration of a laser beam irradiation region for the high integration of the semiconductor memory device. In this way, the device performs the repair process of cutting the contact electrode and/or upper conductive film using a laser beam.
    Type: Grant
    Filed: July 14, 2008
    Date of Patent: July 12, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jun Kwon An
  • Patent number: 7973341
    Abstract: A method for manufacturing a fuse of a semiconductor device comprises forming an island-type metal fuse in a region where a laser is irradiated, so that laser energy may not be dispersed in a fuse blowing process, thereby improving repair efficiency.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: July 5, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventors: Hyung Jin Park, Won Ho Shin
  • Patent number: 7955905
    Abstract: A method and system for locally processing a predetermined microstructure formed on a substrate without causing undesirable changes in electrical or physical characteristics of the substrate or other structures formed on the substrate are provided. The method includes providing information based on a model of laser pulse interactions with the predetermined microstructure, the substrate and the other structures. At least one characteristic of at least one pulse is determined based on the information. A pulsed laser beam is generated including the at least one pulse. The method further includes irradiating the at least one pulse having the at least one determined characteristic into a spot on the predetermined microstructure. The at least one determined characteristic and other characteristics of the at least one pulse are sufficient to locally process the predetermined microstructure without causing the undesirable changes.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: June 7, 2011
    Assignee: GSI Group Corporation
    Inventors: James J. Cordingley, Jonathan S. Ehrmann, David M. Filgas, Shepard D. Johnson, Joohan Lee, Donald V. Smart, Donald J. Svetkoff
  • Patent number: 7955906
    Abstract: A method and system for locally processing a predetermined microstructure formed on a substrate without causing undesirable changes in electrical or physical characteristics of the substrate or other structures formed on the substrate are provided. The method includes providing information based on a model of laser pulse interactions with the predetermined microstructure, the substrate and the other structures. At least one characteristic of at least one pulse is determined based on the information. A pulsed laser beam is generated including the at least one pulse. The method further includes irradiating the at least one pulse having the at least one determined characteristic into a spot on the predetermined microstructure. The at least one determined characteristic and other characteristics of the at least one pulse are sufficient to locally process the predetermined microstructure without causing the undesirable changes.
    Type: Grant
    Filed: July 1, 2008
    Date of Patent: June 7, 2011
    Assignee: GSI Group Corporation
    Inventors: James J. Cordingley, Jonathan S. Ehrman, David M. Filgas, Shepard D. Johnson, Joohan Lee, Donald V. Smart, Donald J. Svetkoff
  • Patent number: 7951653
    Abstract: A method of manufacturing a semiconductor device includes preparing a substrate on which a fuze line containing copper is formed. The method further includes cutting the fuze line by emitting a laser beam, and applying a composition for etching copper to the substrate to finely etch a cutting area of the fuze line and to substantially remove at least one of a copper residue and a copper oxide residue remaining near the cutting area. The composition for etching copper includes about 0.01 to about 10 percent by weight of an organic acid, about 0.01 to 1.0 percent by weight of an oxidizing agent, and a protic solvent.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: May 31, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-Dae Park, Da-Hee Lee, Seung-Ki Chae, Pil-Kwon Jun, Kwang-Shin Lim
  • Patent number: 7943437
    Abstract: Method of making an electronic fuse blow resistor structure. In one embodiment, the method includes forming an insulator film, depositing a conductor on the insulator film, and after the depositing, etching the conductor to form a plurality of spaced apart non-conductive regions and a plurality of spaced-apart conductive regions. In another embodiment, the method includes forming the insulator film, forming a conductive sheet, and sub-dividing the conductive sheet into the plurality of conductive regions.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: May 17, 2011
    Assignee: International Business Machines Corporation
    Inventor: Steven H. Voldman
  • Patent number: 7935621
    Abstract: Disclosed are embodiments of a circuit and method for electroplating a feature (e.g., a BEOL anti-fuse device) onto a wafer. The embodiments eliminate the use of a seed layer and, thereby, minimize subsequent processing steps (e.g., etching or chemical mechanical polishing (CMP)). Specifically, the embodiments allow for selective electroplating metal or alloy materials onto an exposed portion of a metal layer in a trench on the front side of a substrate. This is accomplished by providing a unique wafer structure that allows a current path to be established from a power supply through a back side contact and in-substrate electrical connector to the metal layer. During electrodeposition, current flow through the current path can be selectively controlled. Additionally, if the electroplated feature is an anti-fuse device, current flow through this current path can also be selectively controlled in order to program the anti-fuse device.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: May 3, 2011
    Assignee: International Business Machines Corporation
    Inventors: Veeraraghavan S. Basker, Toshiharu Furukawa, William R. Tonti
  • Publication number: 20110092031
    Abstract: A semiconductor structure is provided that includes an interconnect structure and a fuse structure located in different areas, yet within the same interconnect level. The interconnect structure has high electromigration resistance, while the fuse structure has a lower electromigration resistance as compared with the interconnect structure. The fuse structure includes a conductive material embedded within an interconnect dielectric in which the upper surface of the conductive material has a high concentration of oxygen present therein. A dielectric capping layer is located atop the dielectric material and the conductive material. The presence of the surface oxide layer at the interface between the conductive material and the dielectric capping layer degrades the adhesion between the conductive material and the dielectric capping layer.
    Type: Application
    Filed: December 22, 2010
    Publication date: April 21, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Chih-Chao Yang, Lynne M. Gignac, Chao-Kun Hu
  • Patent number: 7923306
    Abstract: Methods and systems selectively irradiate structures on or within a semiconductor substrate using a plurality of pulsed laser beams. The structures are arranged in a row extending in a generally lengthwise direction. The method generates a first pulsed laser beam that propagates along a first laser beam axis that intersects the semiconductor substrate and a second pulsed laser beam that propagates along a second laser beam axis that intersects the semiconductor substrate. The method directs respective first and second pulses from the first and second pulsed laser beams onto distinct first and second structures in the row. The method moves the first and second laser beam axes relative to the semiconductor substrate substantially in unison in a direction substantially parallel to the lengthwise direction of the row.
    Type: Grant
    Filed: February 4, 2005
    Date of Patent: April 12, 2011
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Kelly J. Bruland, Brian W. Baird, Ho Wai Lo, Stephen N. Swaringen, Frank G. Evans
  • Patent number: 7923307
    Abstract: A method for fabricating a semiconductor with a fuse includes providing a substrate, forming an insulation layer over the substrate, forming a polysilicon hard mask over the insulation layer, forming a first mask pattern to form a fuse over the polysilicon hard mask, and removing the polysilicon hard mask exposed by the first mask pattern to form a portion of the polysilicon hard mask into a polysilicon fuse.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: April 12, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Buem-Suck Kim
  • Patent number: 7915096
    Abstract: A semiconductor device includes a fuse pattern formed as conductive polymer layer having a low melting point. The fuse pattern is easily cut at low temperature to improve repair efficiency. The semiconductor device includes first and second fuse connecting patterns that are separated from each other by a distance, a fuse pattern including a conductive polymer layer formed between the first and second fuse connection patterns and connecting the first and second fuse connection patterns, and a fuse box structure that exposes the fuse pattern.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: March 29, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Hyung Jin Park
  • Patent number: 7910408
    Abstract: A conductor-filled damage propagation barrier is formed extending into a low-k dielectric layer between a fuse and an adjacent circuit element for preventing propagation of damage during a fuse blow operation. Conductor material filling the damage propagation barrier is formed from the same conductor layer as that used to form an interconnect structure.
    Type: Grant
    Filed: October 26, 2006
    Date of Patent: March 22, 2011
    Assignee: International Business Machines Corporation
    Inventors: Timothy H. Daubenspeck, Jeffrey P. Gambino, Christopher D. Muzzy, Wolfgang Sauter
  • Publication number: 20110045644
    Abstract: A method of forming a programmable fuse structure includes forming at least one shallow trench isolation (STI) in a substrate, forming an e-fuse over the at least one STI and depositing an interlevel dielectric (ILD) layer over the e-fuse. Additionally, the method includes removing at least a portion of the at least one STI under the e-fuse to provide an air gap below a portion of the e-fuse and removing at least a portion of the ILD layer over the e-fuse to provide the air gap above the portion of the e-fuse.
    Type: Application
    Filed: November 4, 2010
    Publication date: February 24, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Karl W. Barth, Jeffrey P. Gambino, Tom C. Lee, Kevin S. Petrarca
  • Patent number: 7892895
    Abstract: System and method for providing an electrical fuse having a p-n junction diode. A preferred embodiment comprises a cathode, an anode, and one or more links formed between the cathode and the anode. The cathode and the portion of the cathode adjoining the link are doped with a first impurity, preferably a p-type impurity. The anode and the portion of the link adjoining the anode are doped with a second impurity, preferably an n-type impurity. The junction of the first impurity and the second impurity in the link forms a p-n junction diode. A conductive layer, such as a silicide layer, is formed over the p-n junction diodes. In an alternative embodiment, a plurality of p-n junction diodes may be formed in each link. One or more contacts may be formed to provide electrical contact to the cathode and the anode.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: February 22, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shien-Yang Wu, Shi-Bai Chen
  • Patent number: 7888771
    Abstract: An electronic fuse (“E-fuse”) has a silicide filament link extending along a gap between polysilicon structures formed on a silicon substrate. The silicide filament link extends across diffusions formed in the gap. A P-N junction between terminals of the E-fuse provides high resistivity after programming (fusing) the silicide filament link.
    Type: Grant
    Filed: May 2, 2007
    Date of Patent: February 15, 2011
    Assignee: Xilinx, Inc.
    Inventors: Lakhbeer Singh Sidhu, Srikanth Sundararajan, Michael J. Hart
  • Patent number: 7872327
    Abstract: A semiconductor integrated circuit device has: a layer insulating film formed on a semiconductor substrate; a fuse portion which is configured by an uppermost metal wiring layer that is formed on the layer insulating film; an inorganic insulating protective film which is formed on the metal wiring layer and the layer insulating film; and an organic insulating protective film which is formed on the inorganic insulating protective film. An opening is formed in the organic insulating protective film so that the inorganic insulating protective on the fuse portion is exposed. According to this configuration, it is not required to etch away the layer insulating film in order to form an opening above the fuse portion. Therefore, the time period required for forming the opening can be shortened and the whole production time period can be shortened.
    Type: Grant
    Filed: October 13, 2004
    Date of Patent: January 18, 2011
    Assignee: Panasonic Corporation
    Inventor: Katsuhiko Tsuura
  • Patent number: 7867832
    Abstract: A semiconductor fuse and methods of making the same. The fuse includes a fuse element and a compressive stress liner that reduces the electro-migration resistance of the fuse element. The method includes forming a substrate, forming a trench feature in the substrate, depositing fuse material in the trench feature, depositing compressive stress liner material over the fuse material, and patterning the compressive stress liner material.
    Type: Grant
    Filed: November 11, 2008
    Date of Patent: January 11, 2011
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Haining S. Yang
  • Patent number: 7867804
    Abstract: A semiconductor device that includes a phase change material for protecting the device from failure caused by overheating. The semiconductor device is adapted to detect a rapid increase in current due to heat and also adapted to break a circuit in the detected rapid increase in current by depositing a phase change material inside or outside a cell actually operated in the semiconductor device.
    Type: Grant
    Filed: July 4, 2008
    Date of Patent: January 11, 2011
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Byung-Ho Lee
  • Patent number: 7851885
    Abstract: An electrically programmable fuse comprising a cathode member, an anode member, and a link member, wherein the cathode member, the anode member, and the link member each comprise one of a plurality of materials operative to localize induced electromigration in the programmable fuse.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: December 14, 2010
    Assignee: International Business Machines Corporation
    Inventors: Deok-kee Kim, Keith Kwong Hon Wong, Chih-Chao Yang, Haining S. Yang
  • Patent number: 7838794
    Abstract: Laser-based methods and systems for removing one or more target link structures of a circuit fabricated on a substrate includes generating a pulsed laser output at a predetermined wavelength less than an absorption edge of the substrate are provided. The laser output includes at least one pulse having a pulse duration in the range of about 10 picoseconds to less than 1 nanosecond, the pulse duration being within a thermal laser processing range. The method also includes delivering and focusing the laser output onto the target link structure. The focused laser output has sufficient power density at a location within the target link structure to reduce the reflectivity of the target link structure and efficiently couple the focused laser output into the target link structure to remove the target link structure without damaging the substrate.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: November 23, 2010
    Assignee: GSI Group Corporation
    Inventors: Bo Gu, Donald V. Smart, James J. Cordingley, Joohan Lee, Donald J. Svetkoff, Shepard D. Johnson, Jonathan S. Ehrmann
  • Patent number: 7833844
    Abstract: A disclosed method of producing a semiconductor device includes the steps of (A) forming a gate electrode and a trimming fuse on a semiconductor substrate; (B) forming a side wall insulating film covering the gate electrode and the trimming fuse; (C) forming a conductive film on the side wall insulating film and patterning the conductive film to form an etching stop layer and a resistance element; (D) forming a side wall on the sides of the gate electrode; (E) repeating, one or more times, sub-steps of forming an interlayer insulating film and of forming an upper wiring layer, and then forming a passivation film; (F) removing the passivation film and the interlayer insulating film in the trimming opening forming area until the etching stop layer is exposed; and (G) forming the trimming opening by removing the etching stop layer in the trimming opening forming area.
    Type: Grant
    Filed: September 5, 2007
    Date of Patent: November 16, 2010
    Assignee: Ricoh Company, Ltd.
    Inventor: Yasunori Hashimoto
  • Patent number: 7829392
    Abstract: A method for manufacturing a fuse box of a semiconductor device includes forming an interlayer dielectric film over a semiconductor substrate including a given lower structure; forming a metal line and a fuse over the interlayer dielectric film; forming a first protective film over the resulting structure; etching the first protective film and the fuse at a given depth by a photo-etching process with a repair mask to form an open region; and forming a second protective film vertical to the fuse.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: November 9, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Ki Soo Choi
  • Patent number: 7829354
    Abstract: Deviation occurring in a particular region in a plane of a resistor group which constitutes a semiconductor integrated circuit is improved and a quick increase in yield is accomplished. Provided is a fuse trimming method for a semiconductor device in which circuit elements such as transistors and resistors are formed on a semiconductor wafer and which has fuse elements capable of adjusting a resistance value of the resistors by laser trimming, including a resistor correction step of correcting in the particular region of the semiconductor wafer the resistance value of the resistors based on an amount of deviation from a target value of the resistance value of the resistors.
    Type: Grant
    Filed: February 11, 2008
    Date of Patent: November 9, 2010
    Assignee: Seiko Instruments Inc.
    Inventors: Akiko Tsukamoto, Jun Osanai
  • Patent number: 7820493
    Abstract: A fuse structure, an integrated circuit including the structure, and methods for making the structure and (re)configuring a circuit using the fuse. The fuse structure generally includes (a) a conductive structure with at least two circuit elements electrically coupled thereto, (b) a dielectric layer over the conductive structure, and (c) a first lens over both the first dielectric layer and the conductive structure configured to at least partially focus light onto the conductive structure. The method of making the structure generally includes the steps of (1) forming a conductive structure electrically coupled to first and second circuit elements, (2) forming a dielectric layer thereover, and (3) forming a lens on or over the dielectric layer and over the conductive structure, the lens being configured to at least partially focus light onto the conductive structure.
    Type: Grant
    Filed: February 4, 2008
    Date of Patent: October 26, 2010
    Assignee: Marvell International Ltd.
    Inventors: Chuan-Cheng Cheng, Shuhua Yu, Roawen Chen, Albert Wu
  • Patent number: 7820491
    Abstract: A semiconductor device has a semiconductor substrate that in turn has a top semiconductor layer portion and a major supporting portion under the top semiconductor layer portion. An interconnect layer is over the semiconductor layer. A memory array is in a portion of the top semiconductor layer portion and a portion of the interconnect layer. The memory is erased by removing at least a portion of the major supporting portion and, after the step of removing, applying light to the memory array from a side opposite the interconnect layer. The result is that the memory array receives light from the backside and is erased.
    Type: Grant
    Filed: January 5, 2007
    Date of Patent: October 26, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Rajesh A. Rao, Leo Mathew, Ramachandran Muralidhar, Bruce E. White
  • Publication number: 20100261318
    Abstract: Programmable fuse-type through silicon vias (TSVs) in silicon chips are provided with non-programmable TSVs in the same chip. The programmable fuse-type TSVs may employ a region within the TSV structure having sidewall spacers that restrict the cross-sectional conductive path of the TSV adjacent a chip surface contact pad. Application of sufficient current by programming circuitry causes electromigration of metal to create a void in the contact pad and, thus, an open circuit. Programming may be carried out by complementary circuitry on two adjacent chips in a multi-story chip stack.
    Type: Application
    Filed: June 24, 2010
    Publication date: October 14, 2010
    Applicant: International Business Machines Corporation
    Inventors: Kai Di Feng, Louis Lu-Chen Hsu, Ping-Chuan Wang, Zhijian Yang
  • Patent number: 7811866
    Abstract: An integrated circuit structure comprising a fuse and a method for forming the same are provided. The integrated circuit structure includes a substrate, an interconnection structure over the substrate, a fuse connected to the interconnection structure, and an anti-reflective coating (ARC) on the fuse. The ARC has an increased thickness and acts as a remaining oxide, and no further remaining passivation layer exists on the ARC.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: October 12, 2010
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hao-Yi Tsai, Shang-Yun Hou, Anbiarshy N. F. Wu, Chia-Lun Tsai, Shin-Puu Jeng
  • Patent number: 7804153
    Abstract: A semiconductor device having a fuse structure that can prevent a bridge between a fuse pattern and a guard ring, and a method of fabricating the same are provided. The fuse pattern formed on a multiple-layered metal interconnect layer is stepped shape increasing a vertical distance between the fuse pattern and the guard ring.
    Type: Grant
    Filed: August 23, 2007
    Date of Patent: September 28, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kwang-kyu Bang, Jun-ho Jang, Yoo-mi Lee
  • Patent number: 7799617
    Abstract: A semiconductor device includes an etching protection layer to protect a metal layer in a bonding pad area when a metal fuse is etched.
    Type: Grant
    Filed: July 9, 2007
    Date of Patent: September 21, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Chear-Yeon Mun
  • Patent number: 7791111
    Abstract: A semiconductor device has a plurality of fuse element portions each of which including a first fuse interconnect having a fuse to be portion, a second fuse interconnect connected to an internal circuit, a first impurity diffusion layer for electrically connecting the first fuse interconnect and the second fuse interconnect, and a second impurity diffusion layers. The first fuse interconnect, the second fuse interconnect, and the first impurity diffusion layer of each of the plurality of fuse element portions are arranged approximately parallel to one another at a predetermined pitch distance.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: September 7, 2010
    Assignee: NEC Electronics Corporation
    Inventors: Kazumasa Kuroyanagi, Shoji Koyama
  • Patent number: 7785937
    Abstract: An electrical fuse and a first dielectric layer thereupon are formed on a semiconductor substrate. Self-assembling block copolymers containing two or more different polymeric block components are applied into a recessed region surrounded by a dielectric template layer. The self-assembling block copolymers are then annealed to form a pattern of multiple circles having a sublithographic diameter. The pattern of multiple circles is transferred into the first dielectric layer by a reactive ion etch, wherein the portion of the first dielectric layer above the fuselink has a honeycomb pattern comprising multiple circular cylindrical holes. A second dielectric layer is formed over the circular cylindrical holes by a non-conformal chemical vapor deposition and sublithographic cavities are formed on the fuselink. The sublithographic cavities provide enhanced thermal insulation relative to dielectric materials to the fuselink so that the electrical fuse may be programmed with less programming current.
    Type: Grant
    Filed: September 17, 2009
    Date of Patent: August 31, 2010
    Assignee: International Business Machines Corporation
    Inventors: Deok-kee Kim, Wai-Kin Li, Haining S. Yang
  • Patent number: 7785935
    Abstract: The present invention provides a manufacturing method for forming an integrated circuit device and to a corresponding integrated circuit device. The manufacturing method for forming an integrated circuit device comprises the steps of: forming a first level on a substrate; forming a second level above the first level; forming a cap layer on the second level which covers a first region of the level and leaves a second region uncovered; and simultaneously etching a first contact hole in the first region and a second contact hole in the second region such that the etching is selective to the cap layer in the second region and proceeds to a greater depth in the first region.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: August 31, 2010
    Assignee: Qimonda AG
    Inventors: Ole Bosholm, Marco Lepper, Goetz Springer, Detlef Weber, Grit Bonsdorf, Frank Pietzschmann
  • Patent number: 7785936
    Abstract: The present invention relates to a method for repairing a semiconductor device. The method includes cutting a fuse without creation of residue by transforming the fuse into a nonconductor of high resistance by oxidizing the fuse by irradiating the fuse with an oxygen ion beam instead of a laser in a blowing process. The method includes transforming a fuse corresponding to a defective cell among a plurality of fuses formed in an upper portion of a semiconductor substrate into an oxide film.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: August 31, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Chi Hwan Jang
  • Patent number: 7785934
    Abstract: A structure fabrication method. The method includes providing a structure. The structure includes (a) a substrate layer, (b) a first fuse electrode in the substrate layer, and (c) a fuse dielectric layer on the substrate layer and the first fuse electrode. The method further includes (i) forming an opening in the fuse dielectric layer such that the first fuse electrode is exposed to a surrounding ambient through the opening, (ii) forming a fuse region on side walls and bottom walls of the opening such that the fuse region is electrically coupled to the first fuse electrode, and (iii) after said forming the fuse region, filling the opening with a dielectric material.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: August 31, 2010
    Assignee: International Business Machines Corporation
    Inventors: Louis Lu-Chen Hsu, Jack Allan Mandelman, William Robert Tonti, Chih-Chao Yang
  • Publication number: 20100214704
    Abstract: An electrostatic discharge (ESD) protection circuit (40) is coupled across input-output (I/O) pads (21) and common terminals (24) of a core circuit (22) to protect it from ESD events. The circuit (40) comprises, a unidirectional ESD clamp (23) and two or more floating diodes (42, 44) arranged in parallel opposed configuration in series with the ESD clamp (23), the combination coupled between the I/O pads (21) and the reference terminals (24). In a preferred arrangement, the two strings of opposed parallel coupled diodes (42, 44) are used with different numbers of diodes in each string. These diodes (42, 44) operate in forward conduction (43, 45), so the energy dissipated therein during an ESD event is much reduced compared to a reverse biased diode and they can have smaller area. Signal clipping at the I/O pad (21) is reduced, less power is dissipated and less chip area is utilized.
    Type: Application
    Filed: February 26, 2009
    Publication date: August 26, 2010
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Daniel J. Lamey, David C. Burdeaux, Olivier Lembeye
  • Patent number: 7784009
    Abstract: Electrically programmable fuses for an integrated circuit and design structures thereof are presented, wherein the electrically programmable fuse has a first terminal portion and a second terminal portion interconnected by a fuse element. The first terminal portion and the second terminal portion reside over a first support and a second support, respectively, with the first support and the second support being spaced apart, and the fuse element bridging the distance between the first terminal portion over the first support and the second terminal portion over the second support. The fuse, first support and second support define a ?-shaped structure in elevational cross-section through the fuse element. The first terminal portion, second terminal portion and fuse element are coplanar, with the fuse element residing above a void. The design structure for the fuse is embodied in a machine-readable medium for designing, manufacturing or testing a design of the fuse.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: August 24, 2010
    Assignee: International Business Machines Corporation
    Inventors: Roger A. Booth, Jr., Kangguo Cheng, Jack A. Mandelman, William R. Tonti
  • Publication number: 20100203719
    Abstract: A first via opening is formed to a first conductor and a second via opening is formed to a second conductor. The first and second via openings are formed through insulative material. Then, the first conductor is masked from being exposed through the first via opening and to leave the second conductor outwardly exposed through the second via opening. An antifuse dielectric is formed within the second via opening over the exposed second conductor while the first conductor is masked. Then, the first conductor is unmasked to expose it through the first via opening. Then, conductive material is deposited to within the first via opening in conductive connection with the first conductor to form a conductive interconnect within the first via opening to the first conductor and to within the second via opening over the antifuse dielectric to form an antifuse comprising the second conductor, the antifuse dielectric within the second via opening and the conductive material deposited to within the second via opening.
    Type: Application
    Filed: April 19, 2010
    Publication date: August 12, 2010
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Jasper Gibbons, Darren Young
  • Patent number: 7772047
    Abstract: A semiconductor device having a redistribution layer, and methods of forming same, are disclosed. After fabrication of semiconductor die on a wafer, a tape assembly is applied onto a surface of the wafer, in contact with the surfaces of each semiconductor die on the wafer. The tape assembly includes a backgrind tape as a base layer, and a film assembly adhered to the backgrind tape. The film assembly in turn includes an adhesive film on which is deposited a thin layer of conductive material. The redistribution layer pattern is traced into the tape assembly, using for example a laser. Thereafter, the unheated portions of the tape assembly may be removed, leaving the heated redistribution layer pattern on each semiconductor die.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: August 10, 2010
    Assignee: SanDisk Corporation
    Inventors: Chien-Ko Liao, Chin-Tien Chiu, Jack Chang Chien, Cheemen Yu, Hem Takiar
  • Patent number: 7772680
    Abstract: The invention includes semiconductor fuse arrangements containing an electrically conductive plate over and in electrical contact with a plurality of electrically conductive links. Each of the links contacts the electrically conductive plate as a separate region relative to the other links, and the region where a link makes contact to the electrically conductive plate is a fuse. The invention also includes methods of forming semiconductor fuse arrangements.
    Type: Grant
    Filed: August 18, 2005
    Date of Patent: August 10, 2010
    Assignee: Micron Technology, Inc.
    Inventor: H. Montgomery Manning
  • Patent number: 7767499
    Abstract: A method is disclosed to form an upward-pointing p-i-n diode formed of deposited silicon, germanium, or silicon-germanium. The diode has a bottom heavily doped p-type region, a middle intrinsic or lightly doped region, and a top heavily doped n-type region. The top heavily doped p-type region is doped with arsenic, and the semiconductor material of the diode is crystallized in contact with an appropriate silicide, germanide, or silicide-germanide. A large array of such upward-pointing diodes can be formed with excellent uniformity of current across the array when a voltage above the turn-on voltage of the diodes is applied. This diode is advantageously used in a monolithic three dimensional memory array.
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: August 3, 2010
    Assignee: SanDisk 3D LLC
    Inventor: S. Brad Herner
  • Patent number: 7767500
    Abstract: An improved superjunction semiconductor device includes a charged balanced pylon in a body region, where a top of the pylon is large to create slight charge imbalance. A MOSgated structure is formed over the top of the pylon and designed to conduct current through the pylon. By increasing a dimension of the top of the pylon, the resulting device is less susceptible to variations in manufacturing tolerances to obtain a good breakdown voltage and improved device ruggedness.
    Type: Grant
    Filed: October 26, 2006
    Date of Patent: August 3, 2010
    Assignee: Siliconix Technology C. V.
    Inventor: Srikant Sridevan
  • Publication number: 20100181621
    Abstract: An integrated circuit, design structures and methods of forming the integrated circuit which includes a signal pad ESD coupled to an I/O signal pad and a power supply ESD coupled to a source VDD. The signal pad ESD and the power supply ESD are integrated in a single ESD structure.
    Type: Application
    Filed: January 19, 2009
    Publication date: July 22, 2010
    Applicant: International Business Machines Corporation
    Inventors: Shunhua T. Chang, Kiran V. Chatty, Robert J. Gauthier, JR., Mujahid Muhammad
  • Patent number: 7759226
    Abstract: The electrical fuse includes a cathode pad, an anode pad and a fuse link connecting the cathode pad to the anode pad. The cathode pad includes a group of multiple electrical contacts and a solitary electrical contact disposed a predetermined distance from the group and near the fuse link, i.e., between the group of multiple electrical contacts and the fuse link. The cathode and anode pads as well as the fuse link include a polysilicon layer and a silicide layer.
    Type: Grant
    Filed: August 30, 2005
    Date of Patent: July 20, 2010
    Assignee: Altera Corporation
    Inventors: Shih-Lin S. Lee, Richard Smolen, Peter Mcelheny, Christopher Pass
  • Patent number: 7759766
    Abstract: A thin semiconductor layer is formed and patterned on a semiconductor substrate to form a thin semiconductor fuselink on shallow trench isolation and between an anode semiconductor region and a cathode semiconductor region. During metallization, the semiconductor fuselink is converted to a thin metal semiconductor alloy fuselink as all of the semiconductor material in the semiconductor fuselink reacts with a metal to form a metal semiconductor alloy. The inventive electrical fuse comprises the thin metal semiconductor alloy fuselink, a metal semiconductor alloy anode, and a metal semiconductor alloy cathode. The thin metal semiconductor alloy fuselink has a smaller cross-sectional area compared with prior art electrical fuses. Current density within the fuselink and the divergence of current at the interface between the fuselink and the cathode or anode comparable to prior art electrical fuses are obtained with less programming current than prior art electrical fuses.
    Type: Grant
    Filed: August 22, 2007
    Date of Patent: July 20, 2010
    Assignee: International Business Machines Corporation
    Inventors: Roger A. Booth, Jr., MaryJane Brodsky, Kangguo Cheng, Chengwen Pei
  • Patent number: 7750268
    Abstract: An energy-efficient method and system for processing target material such as microstructures in a microscopic region without causing undesirable changes in electrical and/or physical characteristics of material surrounding the target material is provided. The system includes a controller for generating a processing control signal and a signal generator for generating a modulated drive waveform based on the processing control signal. The waveform has a sub-nanosecond rise time. The system also includes a gain-switched, pulsed semiconductor seed laser for generating a laser pulse train at a repetition rate. The drive waveform pumps the laser so that each pulse of the pulse train has a predetermined shape. Further, the system includes a laser amplifier for optically amplifying the pulse train to obtain an amplified pulse train without significantly changing the predetermined shape of the pulses.
    Type: Grant
    Filed: August 22, 2007
    Date of Patent: July 6, 2010
    Assignee: GSI Group Corporation
    Inventor: Donald V. Smart
  • Patent number: 7745266
    Abstract: The present invention provides a semiconductor device with a fuse part and a method of forming the same. The method includes forming a selective metal layer on a via hole which is connected to a metal line in a semiconductor device, forming a fuse metal layer on the selective metal layer, and forming a fuse metal layer pattern by using a photosensitive layer pattern which is formed on the fuse metal layer.
    Type: Grant
    Filed: December 28, 2005
    Date of Patent: June 29, 2010
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Se-Yeul Bae
  • Publication number: 20100155884
    Abstract: The present invention discloses a fuse of a semiconductor device and manufacturing method thereof. The fuse of a semiconductor device of the present invention includes a first conductive pattern; and a second conductive pattern which is separated from the first conductive pattern with a given gap, wherein the first conductive pattern and the second conductive pattern are melted in a laser irradiation to be connected. Accordingly, the present invention prevents the damage of the adjacent fuse in the repair process, enabling to improve the reliability of device and accomplish the high integration.
    Type: Application
    Filed: June 30, 2009
    Publication date: June 24, 2010
    Applicant: Hynix Semiconductor Inc.
    Inventor: Hyung Jin PARK
  • Patent number: 7737528
    Abstract: A fuse structure for an integrated circuit device includes an elongated metal interconnect layer defined within an insulating layer; a metal cap layer formed on only a portion of a top surface of the metal interconnect layer; and a dielectric cap layer formed on both the metal cap layer and the remaining portions of the metal interconnect layer not having the metal cap layer formed thereon; wherein the remaining portions of the metal interconnect layer not having the metal cap layer formed thereon are susceptible to an electromigration failure mechanism so as to facilitate programming of the fuse structure by application of electric current through the elongated metal interconnect layer.
    Type: Grant
    Filed: June 3, 2008
    Date of Patent: June 15, 2010
    Assignee: International Business Machines Corporation
    Inventors: Griselda Bonilla, Kaushik Chanda, Ronald G. Filippi, Jeffrey P. Gambino, Stephan Grunow, Chao-Kun Hu, Sujatha Sankaran, Andrew H. Simon, Theodorus E. Standaert
  • Patent number: 7728407
    Abstract: A semiconductor device includes a semiconductor substrate, and an electrical fuse including a first conductor including a first cutting target region, and a second conductor branched from the first conductor and connected to the first conductor and including a second cutting target region, which are formed on the semiconductor substrate, wherein a flowing-out region is formed of the first conductor flowing toward outside between the first cutting target region and the second cutting target region in a condition of cutting the electrical fuse.
    Type: Grant
    Filed: May 16, 2007
    Date of Patent: June 1, 2010
    Assignee: NEC Electronics Corporation
    Inventor: Takehiro Ueda
  • Patent number: 7713792
    Abstract: A fuse structure, a method for fabricating the fuse structure and a method for programming a fuse within the fuse structure each use a fuse material layer that is used as a fuse, and located upon a monocrystalline semiconductor material layer in turn located over a substrate. At least part of the monocrystalline semiconductor material layer is separated from the substrate by a gap. Use of the monocrystalline semiconductor material layer, as well as the gap, provides for enhanced uniformity and reproducibility when programming the fuse.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: May 11, 2010
    Assignee: International Business Machines Corporation
    Inventors: Anil Kumar Chinthakindi, Deok-Kee Kim, Chandrasekharan Kothandaraman, Byeongju Park