Using Structure Alterable To Nonconductive State (i.e., Fuse) Patents (Class 438/132)
  • Patent number: 7242072
    Abstract: A fuse structure and method of forming the same is described, wherein the body of the fuse is formed from a crystalline semiconductor body on an insulator, preferably of a silicon-on-insulator wafer, surrounded by a fill-in dielectric. The fill-in dielectric is preferably a material that minimizes stresses on the crystalline body, such as an oxide. The body may be doped, and may also include a silicide layer on the upper surface. This fuse structure may be successfully programmed over a wide range of programming voltages and time.
    Type: Grant
    Filed: November 23, 2004
    Date of Patent: July 10, 2007
    Assignee: International Business Machines Corporation
    Inventors: Chandrasekharan Kothandaraman, Edward P. Maciejewski
  • Patent number: 7242141
    Abstract: An embodiment of the present invention pertains to an electroluminescent lighting device for area illumination. The lighting device is fault tolerant due, in part, to the patterning of one or both of the electrodes into strips, and each of one or more of these strips has a fuse formed on it. The fuses are integrated on the substrate. By using the integrated fuses, the number of external contacts that are used is minimized. The fuse material is deposited using one of the deposition techniques that is used to deposit the thin layers of the electroluminescent lighting device.
    Type: Grant
    Filed: September 27, 2004
    Date of Patent: July 10, 2007
    Assignee: Osram Opto Semiconductor GmbH
    Inventor: Florian Pschenitzka
  • Patent number: 7241646
    Abstract: In accordance with the teachings of the present invention, a semiconductor device having voltage output function trim circuitry and a method for the same are provided. In a particular embodiment, the method includes electrically coupling to a main circuit of a semiconductor device a plurality of resistances each operable to determine a different output voltage range of the main circuit, electrically coupling each of the plurality of resistances to a respective one of a plurality of fuses, electrically coupling each of a plurality of fuses to a respective one of a plurality of function trim pads, and electrically decoupling all but one of the plurality of resistances by applying a respective current between the respective function trim pads and an output node sufficient to open the respective fuses.
    Type: Grant
    Filed: March 3, 2005
    Date of Patent: July 10, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Sean Malolepszy, Marty Grabham, Ronald Michallick
  • Patent number: 7232711
    Abstract: An integrated circuit and method of fabricating the integrated circuit. The integrated circuit, including: one or more power distribution networks; one or more ground distribution networks; one or more data networks; and fuses temporarily and electrically connecting power, ground or data wires of the same or different networks together, the same or different networks selected from the group consisting of the one or more power distribution networks, the one or more ground distribution networks, the one or more data networks, and combinations thereof.
    Type: Grant
    Filed: May 24, 2005
    Date of Patent: June 19, 2007
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey P. Gambino, Kirk D. Peterson
  • Patent number: 7205631
    Abstract: A polysilicon silicide stringer fuse is constructed having a narrow width by using an overlay tolerance of the photo stepper tool instead of the minimum critical dimension tolerance of the stepper tool. In an example embodiment, a fuse (200) for integration within a semiconductor comprises depositing an insulating layer (205) adjacent to the semiconductor substrate (203). A silicon layer (201) is formed with a first silicon material having a first resistance deposited adjacent the insulating layer (205). The silicon layer has a first width. A metal silicide stringer (202), having a second resistance different from the first resistance is deposited over a portion of the first silicon material (201) and having a second width that is less than the first width within at least a portion thereof. The metal silicide conducts current therethrough with approximately the second resistance and agglomerates in response to a programming current other than the conduct current therethrough with a same second resistance.
    Type: Grant
    Filed: December 13, 2003
    Date of Patent: April 17, 2007
    Assignee: NXP, B.V.
    Inventors: Richard Dondero, Doug Trotter
  • Patent number: 7192793
    Abstract: An organic light emitting device display may include transverse row and column lines. In a passively driven OLED display, a fuse may be positioned between the OLED material and the row electrode. When a short occurs, the single pixel may be separated from the circuit by the fuse, avoiding the possibility that an entire row of pixels may be adversely affected by the short associated with one single pixel along a row.
    Type: Grant
    Filed: July 28, 2004
    Date of Patent: March 20, 2007
    Assignee: Intel Corporation
    Inventor: Zilan Shen
  • Patent number: 7186593
    Abstract: An integrated circuit device is provided including an integrated circuit substrate having a fuse region. A window layer is provided on the integrated circuit substrate that defines a fuse region. The window layer is positioned at an upper portion of the integrated circuit device and recessed beneath a surface of the integrated circuit device. A buffer pattern is provided between the integrated circuit substrate and the window layer and a fuse pattern is provided between the buffer pattern and the window layer. Methods of forming integrated circuit devices are also described.
    Type: Grant
    Filed: September 16, 2003
    Date of Patent: March 6, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Hyun-Chul Kim
  • Patent number: 7183141
    Abstract: A programmable interconnect structure and method of operating the same provides a programmable interconnection between electrical contacts. The interconnect includes material that has a reversibly programmable resistance. The material includes a molecular matrix with ionic complexes distributed through the molecular matrix. Application of an electrical field or electric current causes the molecular composite material to assume a desired resistivity (or conductivity) state. This state is retained by the molecular composite material to thus form a conductive or a non-conductive path between the electrical contacts.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: February 27, 2007
    Assignee: Spansion LLC
    Inventors: Vladimir Bulovic, Aaron Mandell, Andrew Perlman
  • Patent number: 7183623
    Abstract: A wafer containing integrated circuits having fuses which are selectively blown to trim circuit perimeters. The fuses are located adjacent scribe lanes, and fuse pads are located in the scribe lanes. The integrated circuits are trimmed by selectively energizing the fuse pads to blow selective fuses. When the integrated circuits are severed from the wafer, the fuse pads are severed from the integrated circuits.
    Type: Grant
    Filed: October 2, 2001
    Date of Patent: February 27, 2007
    Assignee: Agere Systems Inc.
    Inventors: William D. Jensen, David W. Kelly, Ronen Malka
  • Patent number: 7180102
    Abstract: A fusible link formed on a semiconductor substrate. The fusible link comprises a silicide layer overlying a polysilicon layer. The fusible link is programmed to an open state by passing a current therethrough that opens the polysilicon and the silicide layers.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: February 20, 2007
    Assignee: Agere Systems Inc.
    Inventor: Frank Yauchee Hui
  • Patent number: 7180154
    Abstract: Integrated circuit devices are provided including an integrated circuit substrate and first through fourth spaced apart lower interconnects on the integrated circuit substrate. The third and fourth spaced apart lower interconnects are parallel to the first and second lower interconnects. A first fuse is provided on the first and second lower interconnects between the first and second lower interconnects and is electrically coupled to the first and second lower interconnects. A second fuse is provided spaced apart from the first fuse and on the third and fourth lower interconnects. The second fuse is between the third and fourth lower interconnects and is electrically coupled to the third and fourth lower interconnects. Related methods of fabricating integrated circuit devices are also provided.
    Type: Grant
    Filed: May 13, 2004
    Date of Patent: February 20, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Tai-Heui Cho, Hyuck-Jin Kang, Heui-Won Shin, Gwang-Seon Byun, Sun-Joon Kim
  • Patent number: 7179662
    Abstract: A method and system for sealing or covering exposed fuses on a semiconductor device are disclosed. A semiconductor device prober incorporating a spray device for applying a sealing compound to individual fuses on a semiconductor device subsequent to testing the semiconductor device is disclosed. A method and system for sealing exposed fuses on a semiconductor device is disclosed which allows the sealing step to be performed either prior to or following singulation of the semiconductor device into individual dice.
    Type: Grant
    Filed: September 16, 2002
    Date of Patent: February 20, 2007
    Assignee: Formfactor, Inc.
    Inventor: Benjamin N. Eldridge
  • Patent number: 7148089
    Abstract: An improved fuse link structure and method of forming the same, the method including forming a dual damascene structure by a trench-first process to form a dual damascene having a relatively thinner fuse link portion spanning an area between and overlying fuse metal interconnect structures including a mechanically robust dielectric insulating layer portion underlying the relatively thinner fuse link portion.
    Type: Grant
    Filed: March 1, 2004
    Date of Patent: December 12, 2006
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Meng-Chi Hung, Hao-Yi Tsai, Shang-Yong Hou
  • Patent number: 7141995
    Abstract: A semiconductor manufacturing device includes a prober whose needles are at once engaged for contacting pads of two chip forming regions within a wafer. In one chip forming region, trimming is performed, while in the other chip forming region, inspecting posterior to trimming is performed.
    Type: Grant
    Filed: November 23, 2004
    Date of Patent: November 28, 2006
    Assignee: Denso Corporation
    Inventors: Michio Yamashita, Katuhiko Mori, Takashi Suzuki, Teruhiko Uchimura
  • Patent number: 7115512
    Abstract: The invention includes methods by which a fuse box of a semiconductor construction is fabricated to have a substantially uniform layer over fuses extending therein. In particular aspects, the invention includes methods in which one or more processing steps associated with fabrication and patterning of bond pads and redistribution layers is conducted simultaneously over a fuse box region to form and/or remove materials that are directly over the fuse box region.
    Type: Grant
    Filed: May 17, 2004
    Date of Patent: October 3, 2006
    Assignee: Micron Technology
    Inventors: Werner Juengling, Steven M. McDonald, Kunal R. Parekh
  • Patent number: 7107469
    Abstract: A structure and associated method of processing data on a semi-conductor device comprising an input island, a processing island, and an output island formed on the semiconductor device. The input island is adapted to accept a specified amount of data and enable a means for providing a first specified voltage for powering the processing island after accepting the specified amount of data. The processing island is adapted to receive and process the specified amount of data from the input island upon powering the processing island by the first specified voltage. The output island is adapted to be powered by a second specified voltage. The processing island is further adapted to transmit the processed data to the output island upon said powering by the second specified voltage. The first specified voltage is adapted to be disabled thereby removing power from processing island upon completion of transmission of the processed data to the output island.
    Type: Grant
    Filed: July 11, 2003
    Date of Patent: September 12, 2006
    Assignee: International Business Machines Corporation
    Inventors: Rafael Blanco, John M. Cohn, Kenneth J. Goodnow, Douglas W. Stout, Sebastian T. Ventrone
  • Patent number: 7101804
    Abstract: A method for forming a fuse includes forming an interconnection pattern and a fuse pattern on a substrate using a damascene process. A passivation layer is formed on a surface of the substrate over the interconnection pattern and the fuse pattern. Then, the passivation layer is patterned to form a pad opening that exposes a portion of the interconnection pattern. A metal pad is formed on the interconnection pattern in the pad opening. A portion of the metal pad extends over the passivation layer. The passivation layer on the fuse pattern is partially etched to form a fuse opening.
    Type: Grant
    Filed: February 25, 2004
    Date of Patent: September 5, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ja-Young Choi, Ki-Young Lee
  • Patent number: 7095119
    Abstract: A semiconductor device is equipped with fuses each made of a conductive material vertically extended through an insulator layer employed in the semiconductor device. Holes are formed which vertically penetrate the insulator layer. Sidewalls are formed on their corresponding wall surfaces of the holes. The holes formed with the sidewalls are buried with a conductive material.
    Type: Grant
    Filed: January 22, 2004
    Date of Patent: August 22, 2006
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Shunji Takase
  • Patent number: 7092273
    Abstract: A p-channel non-volatile memory (NVM) transistor is programmed by shifting the threshold voltage of the transistor. The threshold voltage is shifted by introducing a programming current to the gate electrode of the transistor, and simultaneously introducing a negative bias to the transistor. The threshold voltage of the p-channel NVM transistor is shifted in response to the negative bias condition and the heat generated by the programming current. The high temperature accelerates the threshold voltage shift. The threshold voltage shift is accompanied by an agglomeration of material in the gate electrode. The agglomeration of material in the gate electrode is an indication of the high temperature reached during programming. The threshold voltage shift of the p-channel NVM transistor is permanent.
    Type: Grant
    Filed: February 14, 2006
    Date of Patent: August 15, 2006
    Assignee: Xilinx Inc.
    Inventor: Kevin T. Look
  • Patent number: 7087974
    Abstract: An anti-fuse is manufactured by forming an isolation region including an insulating material layer buried in a surface of a device formation region on a surface of a semiconductor substrate, and by forming diffusion regions at both sides of the isolation region, then by contacting electrodes to the respective diffusion regions. The anti-fuse is initially in a non-conductive state, and is programmed to be in a permanently conductive state by a simple writing circuit.
    Type: Grant
    Filed: February 9, 2004
    Date of Patent: August 8, 2006
    Assignee: Kawasaki Microelectronics Inc.
    Inventors: Isamu Kuno, Tomoharu Katagiri
  • Patent number: 7084007
    Abstract: The present invention provides for a common substrate with multiple sections, each constituting a separate layer of a memory device. Fold lines are arranged on the substrate to define separate sections and to provide a means for folding the sections on each other to form a multiple-layer memory device. In one application, a substrate has a fold line formed by alterations to the substrate material to form a fold line on the substrate. A first conductor section is formed with an array of parallel conductors or wires spaced across the section. A second section on the common substrate has an array of parallel conductors or wires spaced across the second section, the conductors being perpendicular to the conductors on the first section. The first and second sections are folded along the fold line over on top of each other, after a semiconductor layer has been deposited on one or both of the conductor layers, thereby forming a matrix of memory cells.
    Type: Grant
    Filed: October 30, 2003
    Date of Patent: August 1, 2006
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Craig M Perlov, Christopher A Schantz
  • Patent number: 7067897
    Abstract: A semiconductor device comprising a substrate, a plurality of dielectric films formed on the substrate, laid one upon another, and a fuse interconnect-wire formed above the substrate and covered with a predetermined one of the dielectric films, and including a fuse main body which is to be blown to electrically disconnect the fuse interconnect-wire, which is smaller than a bottom of a fuse-blowing recess made in the predetermined dielectric film, which has a length not less than the diameter of a fuse-blowing laser beam and which opposes the bottom of the fuse-blowing recess.
    Type: Grant
    Filed: February 13, 2003
    Date of Patent: June 27, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masaaki Hatano, Hiroshi Ikegami, Takamasa Usui, Mie Matsuo
  • Patent number: 7067359
    Abstract: A method and apparatus for providing an electrical fuse is provided. An electrical fuse is patterned from the active layer of a semiconductor-on-insulator (SOI) wafer. One shape of the electrical fuse may be a first and second portion electrically coupled via a third section. The third section is typically thinner than the first and second portion. An ion implant is performed to fully deplete the electrical fuse, and a silicidation process is performed. Thereafter, standard processing techniques may be used to form vias and other integrated circuit structures.
    Type: Grant
    Filed: March 26, 2004
    Date of Patent: June 27, 2006
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Chi-Hsi Wu
  • Patent number: 7029955
    Abstract: A silicided polysilicon based fuse device that is programmable by optical and electrical energy in the polysilicon layer without damage to nearby structures, comprising: a Si substrate; an insulating layer disposed on the substrate; and a fuse device section comprising poly-Si/a silicide/ and a barrier layer, the fuse device section forming an electrical discontinuity in the poly Si layer in response to an electrical pulse or an optical pulse applied to it.
    Type: Grant
    Filed: September 23, 2003
    Date of Patent: April 18, 2006
    Assignee: Infineon Technologies AG
    Inventor: Chandrasekharan Kothandaraman
  • Patent number: 7026692
    Abstract: A p-channel non-volatile memory (NVM) transistor is programmed by shifting the threshold voltage of the transistor. The threshold voltage is shifted by introducing a programming current to the gate electrode of the transistor, and simultaneously introducing a negative bias to the transistor. The threshold voltage of the p-channel NVM transistor is shifted in response to the negative bias condition and the heat generated by the programming current. The high temperature accelerates the threshold voltage shift. The threshold voltage shift is accompanied by an agglomeration of material in the gate electrode. The agglomeration of material in the gate electrode is an indication of the high temperature reached during programming. The threshold voltage shift of the p-channel NVM transistor is permanent.
    Type: Grant
    Filed: November 12, 2003
    Date of Patent: April 11, 2006
    Assignee: Xilinx, Inc.
    Inventor: Kevin T. Look
  • Patent number: 7023031
    Abstract: A CMOS image sensor formed on a chip has a ROM disposed on the chip for recording pixel defect locations, chip-by-chip variations such as bias, and other manufacturing production data. Testing results and repair solutions are written to the ROM after production testing. A simple circuit for writing information to the ROM also is provided on the CMOS chip. During operational use of the image sensor, data is read from the on-chip ROM to assist in compensating for manufacturing process variations.
    Type: Grant
    Filed: August 19, 2002
    Date of Patent: April 4, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Richard H. Tsai
  • Patent number: 7007375
    Abstract: A semiconductor component includes adjustment circuitry configured to adjust selected physical and electrical characteristics of the component or elements thereof, and an input/output configuration of the component. The component includes a semiconductor die, a substrate attached to the die, and terminal contacts on the substrate. The adjustment circuitry includes conductors and programmable links, such as fuses or anti-fuses, in electrical communication with the die and the terminal contacts. The adjustment circuit can also include capacitors and inductance conductors. The programmable links can be placed in a selected state (e.g., short or open) using a laser or programming signals. A method for fabricating the component includes the steps of forming the adjustment circuitry, and then placing the programmable links in the selected state to achieve the selected adjustment.
    Type: Grant
    Filed: March 31, 2003
    Date of Patent: March 7, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Aaron M. Schoenfeld, David J. Corisis, Tyler J. Gomm
  • Patent number: 7005727
    Abstract: A programmable package with a fuse embedded therein, and fabrication method are provided. The fuse has first and second terminal ends joined by a central portion defining a fusible link. The ends include a portion of the first and second conductive layers, the central portion including a portion of the first conductive layer. The first layer may be electroless copper and the second layer may be electrolytic copper. The fuse may have a dog-bone or a bow tie shape. The method includes providing a substrate with a dielectric layer, and forming the fuse by depositing first conductive layer, forming and patterning second conductive layer over a portion of the first layer, and patterning first layer to form interconnects between areas of the second layer.
    Type: Grant
    Filed: September 3, 2002
    Date of Patent: February 28, 2006
    Assignee: Intel Corporation
    Inventors: Hamid Azimi, Debabrata Gupta, Saliya Witharana
  • Patent number: 6991970
    Abstract: A method used to form a semiconductor device comprises providing first and second circuit portions having first and second pad portions respectively. The second circuit portion is electrically isolated from the first circuit portion. The first and second pad portions are then electrically connected, for example with a ball bond or a wire bond, to electrically couple the first and second circuit portions. In various embodiments the semiconductor device will not function until the pad portions are electrically coupled, and in other embodiments the functionality of the device may be selectively controlled by connecting selected pad portions from a plurality of pad portions. Isolating the first and second circuit portions allows electrical operations such as antifuse programming to be carried out without adversely affecting related circuits. Once electrical operations are completed, the isolated circuit portions are electrically coupled to provide a complete circuit.
    Type: Grant
    Filed: August 30, 2001
    Date of Patent: January 31, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Rich Fogal, Tracy Reynolds, Timothy Cowles
  • Patent number: 6991971
    Abstract: A method for fabricating a fuse for a semiconductor device. The method including: providing a substrate; forming a first dielectric layer on a top surface of said substrate; forming a dielectric mandrel on a top surface of said first dielectric layer; forming a second dielectric layer on top of said mandrel and a top surface of said first dielectric layer forming contact openings down to said substrate in said first and second dielectric layers on opposite sides of said mandrel, said contacts spaced away from said mandrel and leaving portions of said second dielectric layer between said mandrel and said contacts; removing said second dielectric layer from over said mandrel between said contact openings to form a trough; and filling said trough and contact openings with a conductor.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: January 31, 2006
    Assignee: International Business Machines Corporation
    Inventors: Timothy H. Daubenspeck, Thomas L. McDevitt, William T. Motsiff, Anthony K. Stamper
  • Patent number: 6984549
    Abstract: The invention includes semiconductor fuse arrangements containing an electrically conductive plate over and in electrical contact with a plurality of electrically conductive links. Each of the links contacts the electrically conductive plate as a separate region relative to the other links, and the region where a link makes contact to the electrically conductive plate is a fuse. The invention also includes methods of forming semiconductor fuse arrangements.
    Type: Grant
    Filed: August 19, 2004
    Date of Patent: January 10, 2006
    Assignee: Micron Technology, Inc.
    Inventor: H. Montgomery Manning
  • Patent number: 6982219
    Abstract: A semiconductor device comprises a semiconductor substrate having a bonding pad region; and a bonding pad and a fuse box formed in the bonding pad region. Thus, the chip size can be reduced and the manufacturing yield can be increased.
    Type: Grant
    Filed: January 4, 2005
    Date of Patent: January 3, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Hyun-Chul Kim
  • Patent number: 6982471
    Abstract: The present invention relates to a semiconductor memory device including a fuse box wherein the layout of a fuse box used to control a memory cell array is improved, a fuse box is divided into a plurality of blocks, and an index mark is applied to every fuse box or to every block so that a user may recognize each fuse box. In an embodiment, there is provided a semiconductor memory device including a fuse box comprising a plurality of cell matrices and a fuse box. The plurality of cell matrices are arranged adjacently each other. The fuse box is defined by a fuse barrier layer formed at a side of the plurality of cell matrices, wherein the fuse box comprises a plurality of cell matrices, wherein the fuse box comprises a plurality of fuses shared by the plurality of cell matrices, and the fuse barrier layer is configured to have a length long enough to be shared by the plurality of cell matrices.
    Type: Grant
    Filed: December 18, 2003
    Date of Patent: January 3, 2006
    Assignee: Hynix Semiconductor Inc.
    Inventors: Kang Seol Lee, Ji Hoon Lee
  • Patent number: 6979601
    Abstract: A metal silicide fuse for a semiconductor device. The fuse includes a conductive region positioned adjacent a common well of a first conductivity type, a terminal region positioned adjacent a well of a second conductivity type, and a narrowed region located between the terminal region and the conductive region and positioned adjacent a boundary between the two wells. Upon applying at least a programming current to the fuse, the fuse “blows” at the narrowed region. The diode or diodes between wells of different conductivity types wells and the Schottky diode or diodes between the remaining portions of the fuse and wells adjacent thereto control the flow of current through the remainder of the fuse and through the associated wells of the semiconductor device. When the fuse has been “blown,” the diodes and Schottky diodes prevent current of a normal operating voltage from flowing through the wells of the semiconductor device.
    Type: Grant
    Filed: April 21, 2003
    Date of Patent: December 27, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Kenneth W. Marr, Michael P. Violette
  • Patent number: 6972474
    Abstract: In a semiconductor device having a fuse 11 which makes connection between a first interconnection 10 and a second interconnection 12, and a first low heat-conductive section 13 which makes connection between the first interconnection 10 and a third interconnection 14 at a site of the first interconnection 10 where the fuse 11 is not connected, the first low heat-conductive section 13 is fabricated from a material having a heat conductivity lower than that of the material to form the first interconnection 10. When the fuse is blown with the laser beam irradiation, the heat dissipation through the heat conduction along the fuse and the interconnection is to be suppressed, and thereby a satisfactory disconnection at the fuse is to be achieved.
    Type: Grant
    Filed: December 10, 2004
    Date of Patent: December 6, 2005
    Assignee: NEC Electronics Corporation
    Inventor: Shingo Hashimoto
  • Patent number: 6972220
    Abstract: An anti-fuse structure that can be programmed at low voltage and current and which potentially consumes very little chip spaces and can be formed interstitially between elements spaced by a minimum lithographic feature size is formed on a composite substrate such as a silicon-on-insulator wafer by etching a contact through an insulator to a support semiconductor layer, preferably in combination with formation of a capacitor-like structure reaching to or into the support layer. The anti-fuse may be programmed either by the selected location of conductor formation and/or damaging a dielectric of the capacitor-like structure. An insulating collar is used to surround a portion of either the conductor or the capacitor-like structure to confine damage to the desired location. Heating effects voltage and noise due to programming currents are effectively isolated to the bulk silicon layer, permitting programming during normal operation of the device.
    Type: Grant
    Filed: February 12, 2003
    Date of Patent: December 6, 2005
    Assignee: International Business Machines Corporation
    Inventors: Claude L. Bertin, Ramachandra Divakaruni, Russell J. Houghton, Jack A. Mandelman, William R. Tonti
  • Patent number: 6969869
    Abstract: The semiconductor device comprising a chalcogenide phase change material. The chalcogenide material being programmed from one resistance state to another resistance state by applying a programming current to a resistor which is in thermal contact with the chalcogenide material. The semiconductor device may be used as memory element or as a programmable fuse.
    Type: Grant
    Filed: September 5, 2003
    Date of Patent: November 29, 2005
    Assignee: Ovonyx, Inc.
    Inventors: Steve Hudgens, John D. Davis, Thomas J. McIntyre, John C. Rodgers, Keith K. Sturcken
  • Patent number: 6964906
    Abstract: A programmable element including a semiconductor material doped with a dopant that alters the resistance of the element when exposed to actinic radiation. Rather than producing a mechanical deformation, the radiation rearranges the bonding configuration of the dopant in the element, allowing it to be placed on a chip in close proximity to other device structures without risking damage to those structures. After formation, the programmable element is subjected to a laser anneal process in which the dopant is electrically activated. The activation process allows the dopant to donate a charge carrier to the crystal structure. Rapid cooling following laser anneal preserves the desired bonding configuration of the dopant produced in the programmable element. Laser anneals have been shown to reduce the resistivity of a programmable element by at least a factor of two.
    Type: Grant
    Filed: July 2, 2002
    Date of Patent: November 15, 2005
    Assignee: International Business Machines Corporation
    Inventors: Patricia S. Bunt, John J. Ellis-Monaghan
  • Patent number: 6960495
    Abstract: A method for forming a contact in a three dimensional monolithic memory is disclosed. In a preferred embodiment, the method comprises depositing a conductive layer over and in contact with a plurality of antifuses, wherein said antifuses are part of a story of active devices formed above a substrate; patterning and etching said conductive layer and insulating dielectric to form a contact void; and filling the contact void, wherein the conductive layer does not comprise silicon.
    Type: Grant
    Filed: May 26, 2004
    Date of Patent: November 1, 2005
    Assignee: Matrix Semiconductor, Inc
    Inventors: Michael Vyvoda, S. Brad Herner
  • Patent number: 6951781
    Abstract: Disclosed is a semiconductor device comprising a semiconductor substrate, a first metal wiring and a fuse, both being formed as the same level above the semiconductor substrate, a first insulating film formed on the first metal wiring and the fuse, the first insulating film having a first pad opening arriving at the first metal wiring, a second metal wiring formed at least within the first pad opening, the second metal wiring not extending above the fuse, a stopper film formed on the first insulating film and the second metal wiring, and a second insulating film formed above the stopper film. A second pad opening is formed to expose the second metal wiring by removing the second insulating film and the stopper film, a fuse opening is formed above at least the fuse by removing the second insulating film and the stopper film, and by removing the first insulating film incompletely.
    Type: Grant
    Filed: November 15, 2004
    Date of Patent: October 4, 2005
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Mitsuhiro Omura, Fumio Sato
  • Patent number: 6949416
    Abstract: Disclosed is a technique capable of enhancing the degree of freedom in the layout of a rerouting layer in a wafer level CSP in which defect repairing is performed by cutting a fuse. More specifically, after the defect repairing is performed by irradiating a laser beam to a fuse, an organic passivation layer (photo-sensitive polyimide layer) is filled in a fuse opening. Thereafter, a rerouting layer, a bump land, an uppermost wiring layer, and a solder bump are formed on the organic passivation layer. In the following steps of the defect repairing, the baking process to cure an elastomer layer and the uppermost protection layer is conducted at a temperature below 260° C. in order to prevent the variance of the refresh times of memory cells.
    Type: Grant
    Filed: January 29, 2004
    Date of Patent: September 27, 2005
    Assignee: Renesas Technology Corp.
    Inventors: Toshio Miyamoto, Ichiro Anjo, Asao Nishimura, Yoshihide Yamaguchi
  • Patent number: 6946331
    Abstract: An apparatus and a method for manufacturing semiconductor devices is disclosed for selectively disconnecting a fuse element out of plural fuse elements formed on a semiconductor wafer substrate which is provided with the plural fuse elements and a dielectric layer having at least one opening corresponding to the location for the plural fuse elements.
    Type: Grant
    Filed: September 22, 2003
    Date of Patent: September 20, 2005
    Assignee: Ricoh Company
    Inventor: Kazunari Kimino
  • Patent number: 6946379
    Abstract: A semiconductor device having at least one fuse and an alignment mark formed therein. An etch resistant layer over the surface of the fuse and alignment mark, which provides a uniform passivation thickness for use in conjunction with laser fuse deletion processes.
    Type: Grant
    Filed: June 3, 2004
    Date of Patent: September 20, 2005
    Assignee: International Business Machines Corporation
    Inventors: Timothy H. Daubenspeck, Thomas L. McDevitt, William T. Motsiff, Henry A. Nye, III
  • Patent number: 6936872
    Abstract: A CMOS image sensor formed on a chip has a ROM disposed on the chip for recording pixel defect locations, chip-by-chip variations such as bias, and other manufacturing production data. Testing results and repair solutions are written to the ROM after production testing. A simple circuit for writing information to the ROM also is provided on the CMOS chip. During operational use of the image sensor, data is read from the on-chip ROM to assist in compensating for manufacturing process variations.
    Type: Grant
    Filed: August 19, 2002
    Date of Patent: August 30, 2005
    Assignee: Micron Technology, Inc.
    Inventor: Richard H. Tsai
  • Patent number: 6933591
    Abstract: Programmable fuses for integrated circuits are provided. The fuses may be based on polysilicon or crystalline silicon fuse links coated with silicide or other conductive thin films. Fuses may be formed on silicon-on-insulator (SOI) substrates. A fuse may be blown by applying a programming current to the fuse link. The silicon or polysilicon in the fuses may be provided with a p-n junction. When a fuse is programmed, the silicide or other conductive film forms an open circuit. This forces current though the underlying p-n junction. Unlike conventional silicided polysilicon fuses, fuses with p-n junctions change their qualitative behavior when programmed. Unprogrammed fuses behave like resistors, while programmed fuses behave like diodes. The presence of the p-n junction allows sensing circuitry to determine in a highly accurate qualitative fashion whether a given fuse has been programmed.
    Type: Grant
    Filed: October 16, 2003
    Date of Patent: August 23, 2005
    Assignee: Altera Corporation
    Inventors: Lakhbeer S. Sidhu, Irfan Rahim
  • Patent number: 6927100
    Abstract: The semiconductor device comprises: an insulation film 72 having a contact hole 74 which reaches a substrate 10 formed in; an interconnection layer 78 connected to the substrate 10 through the contact hole 74; a blocking layer 80 formed of the same conducting layer as the interconnection layer 78; an insulation film 82 formed on the insulation film 72; and fuses 88 formed on the insulation film 82 in a region where the blocking layer formed. This structure of the semiconductor device makes it possible that the blocking layer 80 for restraining the laser ablation to be formed without complicating the conventional semiconductor device fabrication steps.
    Type: Grant
    Filed: October 31, 2001
    Date of Patent: August 9, 2005
    Assignee: Fujitsu Limited
    Inventor: Taiji Ema
  • Patent number: 6924176
    Abstract: A conductive layer which is formed on an insulative layer on a semiconductor substrate is connected to the semiconductor substrate via a through portion which passes through the insulative layer and reaches the semiconductor substrate. In a state where the conductive layer is electrically connected to the semiconductor substrate via the through portion, a patterning process using a plasma etching is performed on the conductive layer, thereby forming a conductive path. After the formation of the conductive path, a heating process is performed on the substrate or the conductive path in order to disconnect the electrical connection between the through portion and the substrate by a reaction between the through portion and the semiconductor substrate which is in contact therewith.
    Type: Grant
    Filed: March 25, 2002
    Date of Patent: August 2, 2005
    Assignee: Oki Electric Industry Co., Ltd.
    Inventors: Toru Yoshie, Kazuhide Abe, Yusuke Harada
  • Patent number: 6913954
    Abstract: A fuse device including a transistor having a source, drain, and gate. The gate includes a first and second gate contact. A current may be run from the first gate contact to the second gate contact to heat the gate. The current through the gate indirectly heats the channel region beneath the gate, causing localized annealing of the channel region. The heated gate causes dopants to diffuse from the source and drain into the channel region, permanently changing the properties of the transistor material and programming the fuse device. The fuse device functions as a transistor in an unprogrammed state, and acts as a shunt in a programmed state, caused by the shorting of the source and drain of the transistor during programming.
    Type: Grant
    Filed: June 21, 2004
    Date of Patent: July 5, 2005
    Assignee: Infineon Technologies AG
    Inventor: Chandrasekharan Kothandaraman
  • Patent number: 6913953
    Abstract: A fuse area of a semiconductor device capable of preventing moisture-absorption and a method for manufacturing the fuse area are provided. When forming a guard ring for preventing permeation of moisture through the sidewall of an exposed fuse opening portion, an etch stop layer is formed over a fuse line. A guard ring opening portion is formed using the etch stop layer. The guard ring opening portion is filled with a material for forming the uppermost wiring of multi-level interconnect wirings or the material of a passivation layer, thereby forming the guard ring concurrently with the uppermost interconnect wiring or the passivation layer. Accordingly, permeation of moisture through an interlayer insulating layer or the interface between interlayer insulating layers around the fuse opening portion can be efficiently prevented by a simple process.
    Type: Grant
    Filed: December 31, 2002
    Date of Patent: July 5, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byung-yoon Kim, Won-seong Lee, Young-woo Park
  • Patent number: 6911357
    Abstract: The present invention provides a method and apparatus which facilitates wafer level burn-in testing of semiconductor dies. Sacrificial busses on the wafer supply voltage to respective on die Vcc and Vss sacrificial voltage pads during burn-in testing. The Vcc sacrificial pad on each die is connected to a secondary Vcc pad through an on-die sacrificial metal bus. An on-die fuse is interposed between the secondary Vcc pad and a normal Vcc die bonding pad. The fuse will blow when a die draws excessive current isolating a defective die from other dies on the wafer which are connected to the sacrificial busses. The Vss sacrificial pad is connected to a normal Vss die bonding pad through a sacrificial metal bus. After burn-in testing, the structures are removed. During this removal, the on-die sacrificial metal busses protect the secondary Vcc pad and Vss bonding pad. The secondary Vcc pad, Vcc bonding pad and Vss bonding pad can then be exposed for additional die testing.
    Type: Grant
    Filed: June 21, 2002
    Date of Patent: June 28, 2005
    Assignee: Micron Technology, Inc.
    Inventor: Kevin M. Devereaux