Making Regenerative-type Switching Device (e.g., Scr, Igbt, Thyristor, Etc.) Patents (Class 438/133)
  • Patent number: 8294242
    Abstract: Confirment techniques for non-volatile resistive-switching memories are described, including a memory element having a first electrode, a second electrode, a metal oxide between the first electrode and the second electrode. A resistive switching memory element described herein includes a first electrode adjacent to an interlayer dielectric, a spacer over at least a portion of the interlayer dielectric and over a portion of the first electrode and a metal oxide layer over the spacer and the first electrode such that an interface between the metal oxide layer and the electrode is smaller than a top surface of the electrode.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: October 23, 2012
    Assignee: Intermolecular, Inc.
    Inventor: Prashant Phatak
  • Publication number: 20120256231
    Abstract: A low voltage protection device that includes a silicon substrate comprises an inner layer of a first dopant type. The device also includes a first outer layer of a second dopant type disposed adjacent a first surface of the inner layer and a second outer layer of the second dopant type disposed adjacent a second surface of the inner layer opposite the first surface. The device further includes a first mesa region disposed in a peripheral region of a first side of the low voltage protection device. The first mesa region includes a first area that includes a peripheral portion of a cathode of the low voltage protection device, the cathode formed by diffusing a high concentration of dopant species of the first type on a first surface of the silicon substrate, and a second area comprising a high concentration of diffused dopant species of the second type.
    Type: Application
    Filed: June 20, 2011
    Publication date: October 11, 2012
    Applicant: LITTELFUSE, INC.
    Inventors: Richard Rodrigues, Johnny Chen, Ethan Kuo
  • Patent number: 8278715
    Abstract: An ESD protection structure is disclosed. A substrate comprises a first conductive type. A first diffusion region is formed in the substrate. A first doped region is formed in the first diffusion region. A second doped region is formed in the first diffusion region. A third doped region is formed in the substrate. A first isolation region is formed in the substrate, covers a portion of the first diffusion region and is located between the second and the third doped regions. A fourth doped region is formed in the substrate. When the first doped region is coupled to a first power line and the third and the fourth doped regions are coupled to a second power line, an ESD current can be released to the second power line from the first power line. During the release of the ESD current, the second doped region is not electrically connected to the first power line.
    Type: Grant
    Filed: February 2, 2011
    Date of Patent: October 2, 2012
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: Yeh-Ning Jou, Chia-Wei Hung, Hwa-Chyi Chiou, Yeh-Jen Huang, Shu-Ling Chang
  • Patent number: 8278682
    Abstract: A semiconductor device that has a reduced size and exhibits a superior blocking voltage capability. A semiconductor device includes an edge termination structure between an active region and an isolation region, the edge termination structure being composed of an edge termination structure for a forward bias section and an edge termination structure for a reverse bias section. A plurality of field limiting rings (FLRs) and a plurality of field plates (FPs) are provided in the edge termination structure for the forward bias section and the edge termination structure for the reverse bias section. A first forward FP that is the nearest of the plurality of FPs to the edge termination structure for the reverse bias section is formed to extend towards the isolation region side. A first reverse FP that is the nearest of the plurality of FPs to the edge termination structure for the forward bias section is formed to extend towards the active region side.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: October 2, 2012
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Koh Yoshikawa, Kenichi Iguchi
  • Publication number: 20120231587
    Abstract: Embodiments include methods for forming an electrostatic discharge (ESD) protection device coupled across input-output (I/O) and common terminals of a core circuit, where the ESD protection device includes first and second merged bipolar transistors. A base of the first transistor serves as collector of the second transistor and the base of the second transistor serves as collector of the first transistor, the bases having, respectively, first and second widths. A first resistance is coupled between an emitter and base of the first transistor and a second resistance is coupled between an emitter and base of the second transistor. ESD trigger voltage Vt1 and holding voltage Vh can be independently optimized by choosing appropriate base widths and resistances. By increasing Vh to approximately equal Vt1, the ESD protection is more robust, especially for applications with narrow design windows, for example, with operating voltage close to the degradation voltage.
    Type: Application
    Filed: May 25, 2012
    Publication date: September 13, 2012
    Applicant: FREESCALE SEMICONDUCOTR, INC.
    Inventors: AMAURY GENDRON, Chai Ean Gill, Rouying Zhan
  • Publication number: 20120205714
    Abstract: Apparatus and methods for electronic circuit protection under high stress operating conditions are provided. In one embodiment, an apparatus includes a substrate having a first p-well, a second p-well adjacent the first p-well, and an n-type region separating the first and second p-wells. An n-type active area is over the first p-well and a p-type active area is over the second p-well. The n-type and p-type active areas are electrically connected to a cathode and anode of a high reverse blocking voltage (HRBV) device, respectively. The n-type active area, the first p-well and the n-type region operate as an NPN bipolar transistor and the second p-well, the n-type region, and the first p-well operate as a PNP bipolar transistor. The NPN bipolar transistor defines a relatively low forward trigger voltage of the HRBV device and the PNP bipolar transistor defines a relatively high reverse breakdown voltage of the HRBV device.
    Type: Application
    Filed: February 11, 2011
    Publication date: August 16, 2012
    Applicant: Analog Devices, Inc.
    Inventors: Javier A. Salcedo, David Hall Whitney
  • Patent number: 8242537
    Abstract: An IGBT with a fast reverse recovery time rectifier includes an N-type drift epitaxial layer, a gate, a gate insulating layer, a P-type doped base region, an N-type doped source region, a P-type doped contact region, and a P-type lightly doped region. The P-type doped base region is disposed in the N-type drift epitaxial layer, and the P-type doped contact region is disposed in the N-type drift epitaxial layer. The P-type lightly doped region is disposed between the P-type contact doped region and the N-type drift epitaxial layer, and is in contact with the N-type drift epitaxial layer.
    Type: Grant
    Filed: November 10, 2009
    Date of Patent: August 14, 2012
    Assignee: Anpec Electronics Corporation
    Inventors: Wei-Chieh Lin, Jen-Hao Yeh, Ho-Tai Chen
  • Patent number: 8236623
    Abstract: In some aspects, a method of fabricating a memory cell is provided that includes (1) fabricating a steering element above a substrate; and (2) fabricating a reversible-resistance switching element coupled to the steering element by selectively fabricating carbon nano-tube (CNT) material above the substrate. Numerous other aspects are provided.
    Type: Grant
    Filed: December 31, 2007
    Date of Patent: August 7, 2012
    Assignee: SanDisk 3D LLC
    Inventors: April Schricker, Mark Clark, Brad Herner
  • Patent number: 8236624
    Abstract: In a method for producing an electronic component, a first doped connection region and a second doped connection region are formed on or above a substrate; a body region is formed between the first doped connection region and the second doped connection region; at least two gate regions separate from one another are formed on or above the body region; at least one partial region of the body region is doped by means of introducing dopant atoms, wherein the dopant atoms are introduced into the at least one partial region of the body region through at least one intermediate region formed between the at least two separate gate regions.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: August 7, 2012
    Assignee: Infineon Technologies AG
    Inventors: Harald Gossner, Thomas Schulz, Christian Russ, Gerhard Knoblinger
  • Patent number: 8237147
    Abstract: A switching element according to the present invention includes an ion-conducting layer, first electrode 11 and second electrode 12 placed in contact with the ion-conducting layer, and third electrode 15 placed in contact with the ion-conducting layer and to control electrical conductivity between the first electrode and the second electrode, wherein the shortest distance between any two of first, second, and third electrodes 11, 12, and 13 is defined by the film thickness of the ion-conducting layer.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: August 7, 2012
    Assignee: NEC Corporation
    Inventor: Toshitsugu Sakamoto
  • Publication number: 20120178222
    Abstract: Silicon controlled rectifiers (SCR), methods of manufacture and design structures are disclosed herein. The method includes forming a common P-well on a buried insulator layer of a silicon on insulator (SOI) wafer. The method further includes forming a plurality of silicon controlled rectifiers (SCR) in the P-well such that N+ diffusion cathodes of each of the plurality of SCRs are coupled together by the common P-well.
    Type: Application
    Filed: January 6, 2011
    Publication date: July 12, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michel J. ABOU-KHALIL, Kiran V. Chatty, Robert J. Gauthier, JR., Junjun Li
  • Publication number: 20120175674
    Abstract: The present invention relates generally to power switches for aircraft. According to a first aspect, the present invention provides an integrated solid state power switch for fault protection in an aircraft power distribution system. The integrated solid state power switch is formed of semiconductor material that provides a field effect transistor (FET) channel that is operable during normal device operation to provide an operating current flow path and a bipolar transistor channel that is operable during device overload conditions to provide an overload current flow path. A method for manufacturing such an integrated solid state power switch is also described. Various embodiments of the invention provide automatic overload current protection for aircraft systems without the need to use bulky switches or heavy cooling equipment.
    Type: Application
    Filed: April 7, 2011
    Publication date: July 12, 2012
    Inventors: Adrian Shipley, Martin James Stevens, Phil Mawby, Angus Bryant
  • Publication number: 20120161200
    Abstract: A mesa-type bidirectional vertical power component, including a substrate of a first conductivity type; a layer of the second conductivity type on each side of the substrate; first regions of the first conductivity type in each of the layers of the second conductivity type; and, at the periphery of each of its surfaces, two successive grooves, the internal groove crossing the layers of the second conductivity type, second doped regions of the first conductivity type being formed under the surface of the external grooves and having the same doping profile as the first regions.
    Type: Application
    Filed: December 21, 2011
    Publication date: June 28, 2012
    Applicant: STMicroelectronics (Tours) SAS
    Inventors: Yannick Hague, Samuel Menard
  • Patent number: 8207519
    Abstract: A nanoscale switching device is provided, comprising: a first electrode of a nanoscale width; a second electrode of a nanoscale width; an active region disposed between the first and second electrodes, the active region having at least one non-conducting layer comprising an electronically semiconducting or nominally insulating and a weak ionic conductor switching material capable of carrying a species of dopants and transporting the dopants under an electric field; and a source layer interposed between the first electrode and the second electrode and comprising a highly reactive and highly mobile ionic species that reacts with a component in the switching material to create dopants that are capable of drifting through the non-conducting layer under an electric field, thereby controlling dopant profile by ionic modulation. A crossbar array comprising a plurality of the nanoscale switching devices is also provided, along with a process for making at least one nanoscale switching device.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: June 26, 2012
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Janice H Nickel, Michael Renne Ty Tan, Zhiyong Li
  • Patent number: 8198144
    Abstract: A method of forming a memory device. The method provides a semiconductor substrate having a surface region. A first dielectric layer is formed overlying the surface region of the semiconductor substrate. A bottom wiring structure is formed overlying the first dielectric layer and a second dielectric material is formed overlying the top wiring structure. A bottom metal barrier material is formed to provide a metal-to-metal contact with the bottom wiring structure. The method forms a pillar structure by patterning and etching a material stack including the bottom metal barrier material, a contact material, a switching material, a conductive material, and a top barrier material. The pillar structure maintains a metal-to-metal contact with the bottom wiring structure regardless of the alignment of the pillar structure with the bottom wiring structure during etching. A top wiring structure is formed overlying the pillar structure at an angle to the bottom wiring structure.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: June 12, 2012
    Assignee: Crossbar, Inc.
    Inventor: Scott Brad Herner
  • Patent number: 8153481
    Abstract: A semiconductor power device comprises a semiconductor substrate. The substrate includes an N-type silicon region and N+ silicon region. An oxide layer overlies the N? type silicon region, the oxide layer formed using a Plasma Enhanced Chemical Vapor deposition (PECVD) method. First and second electrodes are coupled to the N? type silicon region and the N+ type silicon region, respectively. The oxide layer has a thickness 0.5 to 3 microns. The power device also includes a polymide layer having a thickness of 3 to 20 microns; a first field plate overlying the oxide layer; and second field plate overlying the polymide layer and the first field plate, wherein the second field plate overlaps the first field plate by 2 to 15 microns.
    Type: Grant
    Filed: April 27, 2006
    Date of Patent: April 10, 2012
    Assignee: IXYS Corporation
    Inventor: Subhas Chandra Bose Jayappa Veeramma
  • Patent number: 8145020
    Abstract: A semiconductor device includes a direct light-triggered thyristor triggered by an optical gate signal, a first optical fiber connected to the direct light-triggered thyristor and through which the optical gate signal is transmitted, a second optical fiber used to extend the first optical fiber, and a inter-optical-fiber relaying unit configured to connect the first optical fiber to the second optical fiber and to input the optical gate signal output from the second optical fiber to the first optical fiber.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: March 27, 2012
    Assignee: Toshiba Mitsubishi—Electric Industrial Systems Corporation
    Inventor: Takafumi Fujimoto
  • Publication number: 20120061719
    Abstract: A Shockley diode including: a vertical stack of first to fourth layers of alternated conductivity types between first and second electrodes; a recess formed in the fourth layer and extending vertically to penetrate into the second layer; a first region of same conductivity type as the second layer but of greater doping level, extending at the bottom of the recess in the second layer; and a second region of same conductivity type as the third layer but of greater doping level, extending along the lateral walls of the recess and connecting the first region to the fourth layer.
    Type: Application
    Filed: August 16, 2011
    Publication date: March 15, 2012
    Applicant: STMicroelectronics (Tours) SAS
    Inventors: Samuel Menard, Yannick Hague
  • Publication number: 20120056240
    Abstract: A semiconductor device includes a baseplate and a first and a second insulated gate bipolar transistor (IGBT) substrate coupled to the baseplate. The semiconductor device includes a first and a second diode substrate coupled to the baseplate and a first, a second, and a third control substrate coupled to the baseplate. Bond wires couple the first and second IGBT substrates to the first control substrate. Bond wires couple the first and second IGBT substrates to the second control substrate via the first and second diode substrates, and bond wires couple the first and second IGBT substrates to the third control substrate via the second diode substrate.
    Type: Application
    Filed: September 8, 2010
    Publication date: March 8, 2012
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Reinhold Spanke, Waleri Brekel, Ivonne Benzler
  • Patent number: 8129788
    Abstract: A protection circuit and method are provided for protecting semiconductor devices from electrostatic discharge (ESD). Generally, the ESD protection circuit includes a silicon controlled rectifier (SCR) formed in a substrate and configured to transfer charge from a protected node to a negative power supply, VSS, during an ESD event, and a trigger device to activate transfer of charge by the SCR when a voltage on the protected node reaches a predetermined trigger voltage. The trigger device includes a gated-diode and MOS capacitor formed in a well formed in the substrate, the trigger device configured to inject electrons into the well during charging of the MOS capacitor, forward biasing a node of the SCR, hence allowing fast triggering of the SCR device. The trigger voltage can be set independent of a holding voltage by adjusting the length of the well and area of the capacitor. Other embodiments are also disclosed.
    Type: Grant
    Filed: January 22, 2007
    Date of Patent: March 6, 2012
    Assignee: Cypress Semiconductor Corporation
    Inventors: Andrew Walker, Helmut Puchner
  • Publication number: 20120043583
    Abstract: A low leakage, low capacitance diode based triggered electrostatic discharge (ESD) silicon controlled rectifiers (SCR), methods of manufacture and design structure are provided. The method includes providing a silicon film on an insulator layer. The method further includes forming isolation regions which extend from an upper side of the silicon layer to the insulator layer. The method further includes forming one or more diodes in the silicon layer, including a p+ region and an n+ region formed in a well bordered by the isolation regions. The isolation regions isolate the one or more diodes in a vertical direction and the insulator layer isolates the one or more diodes from an underlying P or N type substrate, in a horizontal direction.
    Type: Application
    Filed: August 20, 2010
    Publication date: February 23, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michel J. ABOU-KHALIL, Shunhua T. CHANG, Kiran V. CHATTY, Robert J. GAUTHIER, JR., Junjun LI, Mujahid MUHAMMAD
  • Publication number: 20120025261
    Abstract: This invention discloses an insulated gate bipolar transistor (IGBT) formed in a semiconductor substrate. The IGBT comprises a buffer layer of a first conductivity type formed below an epitaxial layer of the first conductivity having body and source regions therein. The IGBT further includes a lowly doped substrate layer below the buffer layer and a dopant layer of a second conductivity type disposed below the lowly doped substrate layer and above a drain electrode of said IGBT attached to a bottom surface of said semiconductor substrate wherein the dopant layer of the second conductivity type has a higher dopant concentration than the lowly doped substrate layer.
    Type: Application
    Filed: July 30, 2010
    Publication date: February 2, 2012
    Inventors: Madhur Bobde, Anup Bhalla, Lingpeng Guan
  • Publication number: 20120018738
    Abstract: Electronic device structures including semiconductor ledge layers for surface passivation and methods of manufacturing the same are disclosed. In one embodiment, the electronic device includes a number of semiconductor layers of a desired semiconductor material having alternating doping types. The semiconductor layers include a base layer of a first doping type that includes a highly doped well forming a first contact region of the electronic device and one or more contact layers of a second doping type on the base layer that have been etched to form a second contact region of the electronic device. The etching of the one or more contact layers causes substantial crystalline damage, and thus interface charge, on the surface of the base layer. In order to passivate the surface of the base layer, a semiconductor ledge layer of the semiconductor material is epitaxially grown on at least the surface of the base layer.
    Type: Application
    Filed: July 26, 2010
    Publication date: January 26, 2012
    Applicant: CREE, INC.
    Inventors: Qingchun Zhang, Anant Agarwal
  • Publication number: 20120018737
    Abstract: Electronic device structures that compensate for non-uniform etching on a semiconductor wafer and methods of fabricating the same are disclosed. In one embodiment, the electronic device includes a number of layers including a semiconductor base layer of a first doping type formed of a desired semiconductor material, a semiconductor buffer layer on the base layer that is also formed of the desired semiconductor material, and one or more contact layers of a second doping type on the buffer layer. The one or more contact layers are etched to form a second contact region of the electronic device. The buffer layer reduces damage to the semiconductor base layer during fabrication of the electronic device. Preferably, a thickness of the semiconductor buffer layer is selected to compensate for over-etching due to non-uniform etching on a semiconductor wafer on which the electronic device is fabricated.
    Type: Application
    Filed: July 21, 2010
    Publication date: January 26, 2012
    Applicant: Cree, Inc.
    Inventors: Qingchun Zhang, Anant Agarwal
  • Publication number: 20120012892
    Abstract: Memory devices and methods of making memory devices are shown. Methods and configurations as shown provide folded and vertical memory devices for increased memory density. Methods provided allow trace wiring in a memory array to be formed on or near a surface of a memory device.
    Type: Application
    Filed: July 19, 2010
    Publication date: January 19, 2012
    Inventors: Suraj J. Mathew, Chandra Mouli
  • Patent number: 8093107
    Abstract: A thyristor based semiconductor device includes a thyristor having cathode, P-base, N-base and anode regions disposed in electrical series relationship. The N-base region for the thyristor has a cross-section that defines an inverted “T” shape, wherein a buried well in semiconductor material forms is operable as a part of the N-base. The stem to the inverted “T” shape extends from the upper surface of the semiconductor material to the buried well. The P-base region for the thyristor extends laterally outward from a side of the stem that is opposite the anode region of the thyristor, and is further bounded between the buried well and a surface of the semiconductor material. A thinned portion for the N-base is defined between the cathode region of the thyristor and the buried well, and may include supplemental dopant of concentration greater than that for some other portion of the N-base.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: January 10, 2012
    Assignee: T-RAM Semiconductor, Inc.
    Inventors: Farid Nemati, Scott Robins, Kevin J. Yang
  • Patent number: 8093622
    Abstract: A semiconductor device having a thyristor SCR with reduced turn-off time. A third semiconductor region of the second conductivity type (anode AN) and a fourth semiconductor region of the first conductivity type (anode gate AG) are formed in the top layer of a first semiconductor region; fifth semiconductor region of the first conductivity type (cathode CA) and sixth semiconductor region of the second conductivity type (cathode gate CG) are formed in the top layer of a second semiconductor region; a gate insulating film and gate electrode MG are formed on the second semiconductor region. When the thyristor is turned off from the on state, a higher potential than that on the anode is applied to the anode gate, and a diode made up of the anode and the anode gate inside the thyristor is made to conduct so as to control the potential of the anode during driving.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: January 10, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Hideaki Kawahara, Toshimi Satoh, Toshiyuki Tani
  • Publication number: 20110316042
    Abstract: Memory devices and methods of making memory devices are shown. Methods and configurations as shown provide folded and vertical memory devices for increased memory density. Methods provided reduce a need for manufacturing methods such as deep dopant implants.
    Type: Application
    Filed: June 29, 2010
    Publication date: December 29, 2011
    Applicant: Micron Technology, Inc.
    Inventors: Sanh D. Tang, John K. Zahurak, Michael P. Violette
  • Patent number: 8081850
    Abstract: A device includes a resonator capable of supporting a plasmon mode, a gain structure arranged to couple energy into the resonator, and a memristive layer arranged to provide an interaction with the plasmon mode. An electric signal applied to the memristive layer can change the interaction and change a resonant frequency of the plasmon mode.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: December 20, 2011
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Raymond G. Beausoleil, Sagi V. Mathal, Alexandre M. Bratkovski
  • Publication number: 20110303947
    Abstract: Apparatuses and methods for electronic circuit protection are disclosed. In one embodiment, an apparatus comprises a well having an emitter and a collector region. The well has a doping of a first type, and the emitter and collector regions have a doping of a second type. The emitter region, well, and collector region are configured to operate as an emitter, base, and collector for a first transistor, respectively. The collector region is spaced away from the emitter region to define a spacing. A first spacer and a second spacer are positioned adjacent the well between the emitter and the collector. A conductive plate is positioned adjacent the well and between the first spacer and the second spacer, and a doping adjacent the first spacer, the second spacer, and the plate consists essentially of the first type.
    Type: Application
    Filed: June 9, 2010
    Publication date: December 15, 2011
    Applicant: Analog Devices, Inc.
    Inventors: Javier A. Salcedo, David Casey, Graham McCorkell
  • Patent number: 8039868
    Abstract: A design structure is embodied in a machine readable medium for designing, manufacturing, or testing a design. The design structure includes first and second silicon controlled rectifiers (SCRs) formed in a substrate. Further, the first and the second SCRs each include at least one component commonly shared between the first and the second SCRs.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: October 18, 2011
    Assignee: International Business Machines Corporation
    Inventors: Robert J. Gauthier, Jr., Junjun Li, Aniket Srivastava
  • Patent number: 8039322
    Abstract: A manufacturing method of a semiconductor device 10 includes forming a plurality of second conductive second semiconductor regions at specific intervals on one main surface of a first conductive first semiconductor region, the plurality of second conductive second semiconductor regions being opposite to the first conductive first semiconductor region, forming a plurality of the first conductive third semiconductor regions on a main surface of the second semiconductor region, the plurality of the first conductive third regions being separated from each other, forming a plurality of holes at specific intervals on an another main surface which faces the one main surface of the first semiconductor region, the plurality of holes being separated from each other, forming a pair of adjacent second conductive fourth semiconductor regions which are alternately connected at a bottom part of the hole within the first semiconductor region, and burying an electrode within the hole.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: October 18, 2011
    Assignee: Sanken Electric Co., Ltd.
    Inventors: Akio Iwabuchi, Shuichi Kaneko
  • Publication number: 20110180845
    Abstract: An electrostatic discharge (ESD) protection circuit includes a triggering diode that includes a junction between a P-grade (PG) region and an N-well. The PG region has a dopant profile equivalent to a P-drain dopant profile of a PMOS transistor having a breakdown voltage represented by V whereby the triggering diode for conducting a current when a voltage greater than the breakdown voltage V is applied. In an exemplary embodiment, the dopant profile of the PG region includes two dopant implant profiles that include a shallow implant profile with a higher dopant concentration and a deep implant profile with a lower dopant concentration.
    Type: Application
    Filed: April 5, 2011
    Publication date: July 28, 2011
    Inventor: Shekar Mallikarjunaswamy
  • Patent number: 7972908
    Abstract: A method of switching-off a monolithically integrated light-activated thyristor structure in an n-p-n-p-n-p sequence is herein presented. In the method a monolithically integrated semiconductor thyristor structure is illuminated through an optical aperture to convey light into the embedded switching semiconductor structure to electrically short a thyristor cathode and a thyristor base through a floating gate to turn off the thyristor.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: July 5, 2011
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventor: Yeuan-Ming Sheu
  • Patent number: 7968381
    Abstract: A semiconductor device having a thyristor-based device and a pass device exhibits characteristics that may include, for example, resistance to short channel effects that occur when conventional MOSFET devices are scaled smaller in connection with advancing technology. According to an example embodiment of the present invention, the semiconductor device includes a pass device having a channel in a fin portion over a semiconductor substrate, and a thyristor device coupled to the pass device. The fin has a top portion and a side portion and extends over the semiconductor substrate. The pass device includes source/drain regions separated by the channel and a gate facing and capacitively coupled to the side portion of the fin that includes the channel. The thyristor device includes anode and cathode end portions, each end portion having base and emitter regions, where one of the emitter regions is coupled to one of the source/drain regions of the pass device.
    Type: Grant
    Filed: October 16, 2006
    Date of Patent: June 28, 2011
    Assignee: T-RAM Semiconductor, Inc.
    Inventors: Andrew Horch, Scott Robins
  • Patent number: 7960216
    Abstract: Confinement techniques for non-volatile resistive-switching memories are described, including a memory element having a first electrode, a second electrode, a metal oxide between the first electrode and the second electrode. A resistive switching memory element described herein includes a first electrode adjacent to an interlayer dielectric, a spacer over at least a portion of the interlayer dielectric and over a portion of the first electrode and a metal oxide layer over the spacer and the first electrode such that an interface between the metal oxide layer and the electrode is smaller than a top surface of the electrode.
    Type: Grant
    Filed: May 8, 2009
    Date of Patent: June 14, 2011
    Assignee: Intermolecular, Inc.
    Inventor: Prashant Phatak
  • Publication number: 20110133247
    Abstract: SCR device is modified to improve turn-on speed for CDM stress conditions. A zener diode is integrated inside SCR device to create an internal feedback and improve turn-on speed. The zener diode is designed as a p+n+ diode in the boundary of the well-substrate junction. In the preferred implementation, zener diode is integrated inside the DSCR and is called zener-triggered DSCR. Zener-triggered DSCR reduces the first breakdown voltage to provide protection for thin gate oxide during HBM stress conditions. At the same time, this device increases turn-on speed to provide protection for CDM stress conditions.
    Type: Application
    Filed: December 8, 2009
    Publication date: June 9, 2011
    Inventors: Hossein Sarbishaei, Manoj Sachdev
  • Publication number: 20110127577
    Abstract: A method for manufacturing a transient voltage suppressing (TVS) array substantially following a manufacturing process for manufacturing a vertical semiconductor power device. The method includes a step of opening a plurality of isolation trenches in an epitaxial layer of a first conductivity type in a semiconductor substrate followed by applying a body mask for doping a body region having a second conductivity type between two of the isolation trenches. The method further includes a step of applying an source mask for implanting a plurality of doped regions of the first conductivity type constituting a plurality of diodes wherein the isolation trenches isolating and preventing parasitic PNP or NPN transistor due to a latch-up between the doped regions of different conductivity types.
    Type: Application
    Filed: February 1, 2011
    Publication date: June 2, 2011
    Inventor: Madhur Bobde
  • Publication number: 20110121361
    Abstract: The present invention provides a device for electrostatic discharge and the method of manufacturing thereof. P-well is formed on the substrate, and a first N+ doped region, a second N+ doped region and a P+ doped region are formed in the P-well; both ends of each doped region adopt shallow trench isolation for isolation. A lightly doped source-drain region portion is formed between the first N+ doped region and the shallow trench isolation connected thereto. Under the source-drain region, a halo injection with an inverse type is formed. The reverse conduction voltage of the collector of the bipolar transistor is lowered through the introduction of special doped region and the adoption of lightly doped source-drain technology for manufacturing the source-drain region as well as the manufacturing of halo injection with inverse type under the source-drain region, thus reducing the trigger voltage of the device.
    Type: Application
    Filed: December 22, 2008
    Publication date: May 26, 2011
    Applicant: GRACE SEMICONDUCTOR MANUFACTURING CORPORATION
    Inventors: Yi Shan, Jun He
  • Publication number: 20110124160
    Abstract: A semiconductor substrate and a method of its manufacture has a semiconductor substrate having a carbon concentration in a range of 6.0×1015 to 2.0×1017 atoms/cm3, both inclusively. One principal surface of the substrate is irradiated with protons and then heat-treated to thereby form a broad buffer structure, namely a region in a first semiconductor layer where a net impurity doping concentration is locally maximized. Due to the broad buffer structure, lifetime values are substantially equalized in a region extending from an interface between the first semiconductor layer and a second semiconductor layer formed on the first semiconductor layer to the region where the net impurity doping concentration is locally maximized. In addition, the local minimum of lifetime values of the first semiconductor layer becomes high.
    Type: Application
    Filed: January 31, 2011
    Publication date: May 26, 2011
    Applicant: FUJI ELECTRIC SYSTEMS CO., LTD.
    Inventor: Michio NEMOTO
  • Patent number: 7943438
    Abstract: A design structure is embodied in a machine readable medium for designing, manufacturing, or testing a design. The design structure includes a P+-N body diode and an N+-P body diode. The P+-N body diode and the N+-P body diode are laterally integrated.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: May 17, 2011
    Assignee: International Business Machines Corporation
    Inventors: Robert J. Gauthier, Jr., Junjun Li, Souvick Mitra
  • Patent number: 7943439
    Abstract: A manufacturing method is provided for manufacturing a semiconductor apparatus including a main semiconductor device and a subsidiary semiconductor device, which facilitates preventing characteristics variations from causing and reducing the manufacturing costs.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: May 17, 2011
    Assignee: Fuji Electric Systems Co., Ltd.
    Inventor: Koh Yoshikawa
  • Patent number: 7935619
    Abstract: Methods of forming polarity dependent switches for resistive sense memory are described. Methods for forming a memory unit include implanting dopant material more heavily in a source contact than a bit contact of a semiconductor transistor, and electrically connecting a resistive sense memory cell to the bit contact. The resistive sense memory cell is configured to switch between a high resistance state and a low resistance state upon passing a current through the resistive sense memory cell.
    Type: Grant
    Filed: May 5, 2010
    Date of Patent: May 3, 2011
    Assignee: Seagate Technology LLC
    Inventors: Chulmin Jung, Maroun Georges Khoury, Yong Lu, Young Pil Kim
  • Patent number: 7897440
    Abstract: A semiconductor device may comprise a plurality of memory cells. A memory cell may comprise a thyristor, at least a portion of which is formed in a pillar of semiconductor material. The pillar may comprise sidewalls defining a cylindrical circumference of a first diameter. In a particular embodiment, the pillars associated with the plurality of memory cells may define rows and columns of an array. In a further embodiment, a pillar may be spaced by a first distance of magnitude up to the first diameter relative to a neighboring pillar within its row. In an additional further embodiment, the pillar may be spaced by a second distance of a magnitude up to twice the first diameter, relative to a neighboring pillar within its column.
    Type: Grant
    Filed: November 24, 2008
    Date of Patent: March 1, 2011
    Assignee: T-RAM Semiconductor, Inc.
    Inventor: Andrew E. Horch
  • Patent number: 7894255
    Abstract: A new memory cell contains only a single thyristor without the need to include an access transistor. A memory array containing these memory cells can be fabricated on bulk silicon wafer. Each memory cell is separated from other memory cells by shallow trench isolation regions. The memory cell comprises a thyristor body and a gate. The thyristor body has two end region and two base regions. The gate is positioned over and insulated from at least a portion of one base region and offset from another base region. A first end region is connected to one of a word line, a bit line and a third line. A second end region is connected to another of the word line, bit line, and third line. The gate is connected to the remaining of the word line, bit line and third line.
    Type: Grant
    Filed: July 25, 2007
    Date of Patent: February 22, 2011
    Assignee: T-RAM Semiconductor, Inc.
    Inventors: Farid Nemati, Scott Robins, Kevin J. Yang
  • Patent number: 7893456
    Abstract: A thyristor-based memory may comprise a thyristor accessible via an access transistor. A temperature dependent bias may be applied to at least one of a supporting substrate and an electrode capacitively-coupled to a base region of the thyristor. The voltage level of the adaptive bias may change with respect to temperature and may influence and/or compensate an inherent bipolar gain of the thyristor in accordance with the change in bias and may enhance its performance and/or reliability over a range of operating temperature. In a particular embodiment, the thyristor may be formed in a layer of silicon of an SOI substrate and the adaptive bias coupled to a supporting substrate of the SOI structure.
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: February 22, 2011
    Assignee: T-RAM Semiconductor, Inc.
    Inventors: Farid Nemati, Kevin J. Yang
  • Patent number: 7883941
    Abstract: A method for fabricating a memory device is provided. A semiconductor layer is provided that includes first, second, third and fourth well regions of a first conductivity type in the semiconductor layer. A first gate structure overlies the first well region, a second gate structure overlies the second well region, a third gate structure overlies the third well region and is integral with the second gate structure, and a fourth gate structure overlies the fourth well region. Sidewall spacers are formed adjacent a first sidewall of the first gate structure and sidewalls of the second through fourth gate structures. In addition, an insulating spacer block is formed overlying a portion of the first well region and a portion of the first gate structure. The insulating spacer block is adjacent a second sidewall of the first gate structure.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: February 8, 2011
    Assignee: GlobalFoundries Inc.
    Inventor: Hyun-Jin Cho
  • Publication number: 20110006342
    Abstract: An electrostatic discharge (ESD) protection circuit coupled with an input/output (I/O) pad is provided. The ESD protection circuit includes a first field oxide device coupled between a first terminal that is capable of providing a first supply voltage and the I/O pad. The first field oxide device includes a drain end having a first type of dopant and a source end having the first type of dopant. The first field oxide device includes a first doped region having a second type of dopant disposed adjacent to the drain end of the first field oxide device and a second doped region having the second type of dopant disposed adjacent to the source end of the first field oxide device.
    Type: Application
    Filed: April 23, 2010
    Publication date: January 13, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shu-Chuan LEE, Kuo-Ji CHEN, Wade MA
  • Publication number: 20110006338
    Abstract: A collector region is not formed in at least a portion of an ineffective region where an insulating film is formed on a front face of an IGBT. In this portion in which the collector region is not formed, a collector electrode and a buffer layer contact each other. Since the buffer layer and the collector region differ from each other in conductivity type, no electric charge is introduced from the collector electrode into the buffer layer. Thus, introduction of electric charges into a drift region at a portion in the ineffective region is suppressed, which alleviates electric field concentration in a semiconductor substrate. Further, in the IGBT, the semiconductor substrate and the collector electrode contact each other and heat transfer to the collector electrode is not hindered even in the range where the collector region is not formed. Thus, concentration of heat generation in the semiconductor substrate is alleviated.
    Type: Application
    Filed: February 17, 2009
    Publication date: January 13, 2011
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Masaru Senoo
  • Patent number: 7858425
    Abstract: A PIN diode-based monolithic Nuclear Event Detector and method of manufacturing same for use in detecting a desired level of gamma radiation, in which a PIN diode is integrated with signal processing circuitry, for example CMOS circuitry, in a single thin-film Silicon On Insulator (SOI) chip. The PIN diode is implemented in the p-substrate layer. The signal processing circuitry is located in a thin semiconductor layer and is in electrical communication with the PIN diode. The PIN diode may be integrated with the signal processing circuitry onto a single chip, or may be fabricated stand alone using SOI methods according to the method of the invention.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: December 28, 2010
    Inventors: Thomas J. Sanders, Nicolaas W. Van Vonno, Clyde Combs, Glenn T. Hess