Making Regenerative-type Switching Device (e.g., Scr, Igbt, Thyristor, Etc.) Patents (Class 438/133)
  • Publication number: 20090095978
    Abstract: An over-voltage protection thyristor has reduced junction capacitance making it suitable for use in high bandwidth applications. The reduced capacitance is achieved through the introduction of a deep base region. The deep base region has a graded doping ,concentration which reduces with depth into the substrate. The thyristor is useful for protecting sensitive electrical equipment from transient surges.
    Type: Application
    Filed: December 9, 2008
    Publication date: April 16, 2009
    Inventors: George Templeton, James Washburn
  • Patent number: 7504286
    Abstract: A method is provided for fabricating a memory device. A semiconductor substrate is provided which includes a first well region having a first conductivity type, a second well region having the first conductivity type, a first gate structure overlying the first well region and the second gate structure overlying the second well region. An insulating material layer is conformally deposited overlying exposed portions of the semiconductor substrate. Photosensitive material is provided over a portion of the insulating material layer which overlies a portion of the second well region. The photosensitive material exposes portions of the insulating material layer. The exposed portions of the insulating material layer are anisotropically etched to provide a sidewall spacer adjacent a first sidewall of the second gate structure, and an insulating spacer block formed overlying a portion of the second gate structure and adjacent a second sidewall of the second gate structure.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: March 17, 2009
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Hyun-Jin Cho
  • Publication number: 20090057716
    Abstract: A surge protection device with small-area buried regions (38, 60) to minimize the device capacitance. The doped regions (38, 60) are formed either in a semiconductor substrate (34), or in an epitaxial layer (82), and then an epitaxial layer (40, 84) is formed thereover to bury the doped regions (38, 60). The small features of the buried regions (38, 60) are maintained as such by minimizing high temperature and long duration processing of the chip. An emitter (42, 86) is formed in the epitaxial layer (40, 84).
    Type: Application
    Filed: August 28, 2007
    Publication date: March 5, 2009
    Inventor: Richard A. Rodrigues
  • Publication number: 20090057714
    Abstract: A thyristor having a semiconductor body in which a p-doped emitter, an n-doped base, a p-doped base and an n-doped main emitter are arranged successively in a vertical direction starting from a rear face toward a front face. For buffering of the transient heating, a metallization is applied to the front face and/or to the rear face and includes at least one first section which has an area-specific heat capacity of more than 50 J·K?1·m?2 at each point.
    Type: Application
    Filed: August 28, 2008
    Publication date: March 5, 2009
    Applicant: Infineon Technologies AG
    Inventors: Hans-Joachim Schulze, Franz-Josef Niedernostheide, Uwe Kellner-Werdehausen, Reiner Barthelmess
  • Patent number: 7498658
    Abstract: A trench gate type IGBT includes: a first semiconductor layer; a second semiconductor on the first semiconductor layer; a third semiconductor on the second semiconductor layer; trenches for separating the third semiconductor layer into first regions and second regions; a gate insulation film on an inner wall of each trench; a gate electrode on the gate insulation film; a fourth semiconductor layer in a surface portion of each first region and contacting each trench; a first electrode connecting to the first region and the fourth semiconductor layer; and a second electrode connecting to the first semiconductor layer. The first regions and the second regions are alternately arranged. Two second regions are continuously connected together to be integrated into one body.
    Type: Grant
    Filed: April 13, 2006
    Date of Patent: March 3, 2009
    Assignee: DENSO CORPORATION
    Inventors: Yoshihiko Ozeki, Kensaku Yamamoto
  • Patent number: 7498615
    Abstract: An electro-static discharge protection circuit includes a thyristor mode ensuring circuit and a thyristor rectifier circuit. The thyristor mode ensuring circuit includes a capacitive element connected between a higher potential line and a lower potential line, and ensures a constant and sufficient capacity independently of the number of input/output signal bits, even when the number of input/output signal bits is a theoretical minimum, i.e. 1, so that a surge current induced by electro-static discharge (ESD) applied to an output pad is injected into the first capacitive element to charge it. Thus, by means of the current caused by the surge current, the thyristor rectifier circuit is triggered into a thyristor mode, which allows the surge current to flow to the lower potential line through the thyristor rectifier circuit, protecting circuitry against the surge current.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: March 3, 2009
    Assignee: Oki Electric Industry Co., Ltd.
    Inventors: Toshikazu Kuroda, Hirokazu Hayashi, Yasuhiro Fukuda
  • Patent number: 7491586
    Abstract: A method of fabricating a thyristor-based memory may include forming different opposite conductivity-type regions in silicon for defining a thyristor and an access device in series relationship. An activation anneal may activate dopants previously implanted for the different regions. A damaging implant of germanium or xenon or argon may be directed into select regions of the silicon including at least one p-n junction region for the access device and the thyristor. A re-crystallization anneal may then be performed to re-crystallize at least some of the damaged lattice structure resulting from the damaging implant. The re-crystallization anneal may use a temperature less than that of the previous activation anneal.
    Type: Grant
    Filed: June 22, 2005
    Date of Patent: February 17, 2009
    Assignee: T-RAM Semiconductor, Inc.
    Inventors: Andrew E Horch, Hyun-Jin Cho, Farid Nemati, Scott Robins, Rajesh N. Gupta, Kevin J. Yang
  • Patent number: 7491584
    Abstract: Electrostatic discharge (ESD) protection device in high voltage and the relevant manufacturing method is disclosed. The mentioned ESD protection device is disposed to bridge a ground and an input connected with an inner circuit to be protected. In which, the ESD protection device for high voltage comprises at least one PNP transistor and at least one diode connected in parallel, and an ESD discharging path is formed thereby. The PNP transistor is formed with an adjacent heavily doped P-type semiconductor zone (P+), lightly doped N-type semiconductor zone (N?), and a P-type semiconductor substrate. The diode is formed with an adjacent lightly doped N-type semiconductor zone and a light doped P-type semiconductor zone.
    Type: Grant
    Filed: July 22, 2005
    Date of Patent: February 17, 2009
    Assignee: Mediatek Inc.
    Inventors: Ding-Jeng Yu, Tao Cheng, Chao-Chih Chiu
  • Patent number: 7488627
    Abstract: A thyristor-based memory may comprise a thyristor accessible via an access transistor. A temperature dependent bias may be applied to at least one of a supporting substrate and an electrode capacitively-coupled to a base region of the thyristor. The voltage level of the adaptive bias may change with respect to temperature and may influence and/or compensate an inherent bipolar gain of the thyristor in accordance with the change in bias and may enhance its performance and/or reliability over a range of operating temperature. In a particular embodiment, the thyristor may be formed in a layer of silicon of an SOI substrate and the adaptive bias coupled to a supporting substrate of the SOI structure.
    Type: Grant
    Filed: July 15, 2006
    Date of Patent: February 10, 2009
    Assignee: T-RAM Semiconductor, Inc.
    Inventors: Farid Nemati, Kevin J. Yang
  • Patent number: 7488626
    Abstract: In a method of fabricating a semiconductor memory device, a thyristor may be formed in a layer of semiconductor material. Carbon may be implanted and annealed in a base-emitter junction region for the thyristor to affect leakage characteristics. The density of the carbon and/or a bombardment energy and/or an anneal therefore may be selected to establish a low-voltage, leakage characteristic for the junction substantially greater than its leakage absent the carbon. In one embodiment, an anneal of the implanted carbon may be performed in common with an activation for other implant regions the semiconductor device.
    Type: Grant
    Filed: July 10, 2006
    Date of Patent: February 10, 2009
    Assignee: T-RAM Semiconductor, Inc.
    Inventors: Kevin J. Yang, Farid Nemati, Scott Robins, James D. Plummer, Hyun-Jin Cho
  • Patent number: 7482205
    Abstract: A starting wafer for high voltage semiconductor devices is formed by implanting arsenic into the top surface of a p type silicon substrate wafer to a depth of about 0.1 micron. A N type non-graded epitaxial layer is then grown atop the substrate without any diffusion step so that the arsenic is not intentionally driven. Device junction are then diffused into the epitaxially grown layer.
    Type: Grant
    Filed: December 11, 2006
    Date of Patent: January 27, 2009
    Assignee: International Rectifier Corporation
    Inventor: Thomas Herman
  • Patent number: 7479414
    Abstract: An electrostatic discharge (ESD) device and method is provided. The ESD device can comprise a substrate doped to a first conductivity type, an epitaxial region doped to the second conductivity type, and a first well doped to the first conductivity type disposed in the substrate. The first well can comprise a first region doped to the first conductivity type, a second region doped to a second conductivity type, and a first isolation region disposed between the first region and the second region. The ESD device can also comprise a second well doped to a second conductivity type disposed in the substrate adjacent to the first well, where the second well can comprise a third region doped to the first conductivity type, a fourth region doped to the second conductivity type, and a second isolation region disposed between the third region and the fourth region.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: January 20, 2009
    Assignee: Intersil Americas Inc.
    Inventors: Javier A. Salcedo, Juin J. Liou, Joseph C. Bernier, Donald K. Whitney
  • Publication number: 20080308837
    Abstract: A Silicon on Insulator (SOI) Integrated Circuit (IC) chip with devices such as a vertical Silicon Controlled Rectifier (SCR), vertical bipolar transistors, a vertical capacitor, a resistor and/or a vertical pinch resistor and method of making the device(s). The devices are formed in a seed hole through the SOI surface layer and insulator layer to the substrate. A buried diffusion, e.g., N-type, is formed through the seed hole in the substrate. A doped epitaxial layer is formed on the buried diffusion and may include multiple doped layers, e.g., a P-type layer and an N-type layer. Polysilicon, e.g., P-type, may be formed on the doped epitaxial layer. Contacts to the buried diffusion are formed in a contact liner.
    Type: Application
    Filed: June 14, 2007
    Publication date: December 18, 2008
    Inventors: Robert J. Gauthier, JR., Junjun Li, Souvick Mitra, Mahmoud A. Mousa, Christopher S. Putnam
  • Patent number: 7459759
    Abstract: A magnetic random access memory described in embodiments of the present invention comprises a conductive line, a soft magnetic material which surrounds the conductive line, a gap disposed in a part of the soft magnetic material, and a magneto-resistive element in which a part of a vertical magnetization film as a magnetic free layer is positioned in the gap and in which a vertical magnetization film as a magnetic pinned layer is positioned outside the gap.
    Type: Grant
    Filed: June 6, 2006
    Date of Patent: December 2, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshiaki Fukuzumi, Toshihiko Nagase
  • Patent number: 7442584
    Abstract: A method for manufacturing an isolated vertical power device includes forming, in a back surface of a first conductivity type substrate, back isolation wall trenches that surround a conduction region of the device. In a front surface of the substrate, front isolation wall trenches are formed around the conduction region. Thereafter, a film containing a second type dopant is deposited in the front and back isolation wall trenches. In the conduction region on the back surface, conduction region trenches are formed inside the perimeter of the isolation wall trenches. A first type dopant is deposited in the conduction region trenches. The dopants are diffused from the conduction region trenches and isolation wall trenches to form a first conductivity type conduction region structure and a second conductivity type isolation wall.
    Type: Grant
    Filed: November 21, 2005
    Date of Patent: October 28, 2008
    Assignee: STMicroelectronics, Inc.
    Inventor: Richard Austin Blanchard
  • Publication number: 20080258690
    Abstract: The present invention provides a thermal switching element that has a quite different configuration from that of a conventional technique and can control heat transfer by the application of energy, and a method for manufacturing the thermal switching element. The thermal switching element includes a first electrode, a second electrode, and a transition body arranged between the first electrode and the second electrode. The transition body includes a material that causes an electronic phase transition by application of energy. The thermal conductivity between the first electrode and the second electrode is changed by the application of energy to the transition body.
    Type: Application
    Filed: June 13, 2008
    Publication date: October 23, 2008
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Akihiro Odagawa, Yasunari Sugita, Hideaki Adachi, Masahiro Deguchi
  • Patent number: 7439117
    Abstract: A method is described for designing a micro electromechanical device in which the risk of self-actuation of the device in use is reduced. The method includes locating a first conductor in a plane and locating a second conductor with its collapsible portion at a predetermined distance above the plane. The method also includes laterally offsetting the first conductor by a predetermined distance from a region of maximum actuation liability. The region of maximum actuation liability is where an attraction force to be applied to activate the device is at a minimum.
    Type: Grant
    Filed: December 23, 2005
    Date of Patent: October 21, 2008
    Assignee: Interuniversitair Microelektronica Centrum (IMEC)
    Inventors: Hendrikus Tilmans, Xavier Rottenberg
  • Patent number: 7436003
    Abstract: A vertical thyristor for ESD protection comprises an anode (10), a cathode (16), a first gate electrode (12) and a second gate electrode (14). The first (12) and second (14) gate electrodes are arranged between the anode (10) and the cathode (16), wherein the first gate electrode (12) is an epitaxial silicon layer (20) formed upon the anode (10) and the second gate electrode (14) is an epitaxial silicon-germanium layer (24) formed upon the first gate electrode (12). The method of fabricating such a vertical thyristor comprises the steps of depositing an epitaxial silicon layer (20) upon the anode (10) and depositing an epitaxial silicon-germanium layer (24) upon the epitaxial silicon layer (20), wherein the epitaxial silicon layer (20) forms the first gate electrode (12) and the epitaxial silicon-germanium layer (24) forms the second gate electrode (14) of the vertical thyristor.
    Type: Grant
    Filed: February 3, 2006
    Date of Patent: October 14, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Reiner Jumpertz, Klaus Schimpf
  • Publication number: 20080230801
    Abstract: A method for manufacturing a trench type power semiconductor device is provided. The method includes: forming a first silicon oxide film on a silicon substrate; forming a thermal oxidation-resistant film on the first silicon oxide film; forming an opening in the first silicon oxide film and the thermal oxidation-resistant film; forming a sidewall on an inner side surface of the opening; forming a trench in the silicon substrate by etching the silicon substrate using the first silicon oxide film, the thermal oxidation-resistant film, and the sidewall as a mask; removing the sidewall; forming a second silicon oxide film thicker than the first silicon oxide film on an inner surface of the trench by applying thermal oxidation to the silicon substrate; burying a trench gate electrode in the trench; removing the thermal oxidation-resistant film; and introducing impurities into at least part of a region of the silicon substrate between the trenches.
    Type: Application
    Filed: March 18, 2008
    Publication date: September 25, 2008
    Inventors: Atsushi MURAKOSHI, Noboru MATSUDA
  • Publication number: 20080233686
    Abstract: An electrostatic discharge (ESD) protection device includes a diode located in a substrate and an N-type metal oxide semiconductor (NMOS) device located in the substrate adjacent the diode, wherein both the diode and the NMOS are coupled to an input device, and at least a portion of the diode and at least a portion of the NMOS device collectively form an ESD protection device.
    Type: Application
    Filed: May 1, 2008
    Publication date: September 25, 2008
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jian-Hsing LEE, Deng-Shun Chang
  • Patent number: 7423299
    Abstract: A semiconductor device, for example a diode (200), having a pn junction (101) has an insulating material field shaping region (201) adjacent, and possibly bridging, the pn junction. The field shaping region (201) preferably has a high dielectric constant and is coupled via capacitive voltage coupling regions (204,205) to substantially the same voltages as are applied to the pn junction. When a reverse voltage is applied across the pn junction (101) and the device is non-conducting, a capacitive electric field, is present in a part of the field shaping region which extends beyond a limit of the pn junction depletion region which would exist in the absence of the field shaping region (201), the electric field in the field shaping region inducing a stretched electric field limited to a correspondingly stretched pn junction depletion region (208,209) and an increased reverse breakdown voltage of the device.
    Type: Grant
    Filed: May 6, 2004
    Date of Patent: September 9, 2008
    Assignee: NXP B.V.
    Inventors: Anco Heringa, Raymond J. E. Hueting, Jan W. Slotboom
  • Publication number: 20080179624
    Abstract: A semiconductor device includes an ESD device region disposed within a semiconductor body of a first semiconductor type, an isolation region surrounding the ESD device region, a first doped region of a second conductivity type disposed at a surface of the semiconductor body within the ESD region, and a second doped region of the first conductivity type disposed between the semiconductor body within the ESD region and at least a portion of the first doped region, where the doping concentration of the second doped region is higher than the semiconductor body. A third doped region of the second semiconductor type is disposed on the semiconductor body and a fourth region of the first conductivity type is disposed over the third doped region. A fifth doped region of the second conductivity type is disposed on the semiconductor body. A trigger device and an SCR is formed therefrom.
    Type: Application
    Filed: January 26, 2007
    Publication date: July 31, 2008
    Inventors: Cornelius Christian Russ, Kai Esmark, David Alvarez, Jens Schneider
  • Patent number: 7402494
    Abstract: A method for fabricating a high voltage semiconductor device, which comprises a semiconductor substrate; a gate insulation layer formed on the semiconductor substrate; and a gate electrode formed on the gate insulation layer, comprising: forming a mask pattern on the semiconductor substrate; forming a first low-density impurity implanted region on the semiconductor substrate using the mask pattern, in which the first low-density impurity implanted region is overlapped with the gate electrode; selectively removing a part of the mask pattern from a region where the gate electrode is to be formed to form a gate-formation mask; and forming the gate insulating layer and the gate electrode using the gate-formation mask.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: July 22, 2008
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Tsukasa Yajima
  • Patent number: 7387918
    Abstract: When a high-voltage, such as from an ESD pulse, is placed across a silicon controlled rectifier, which includes an NPN transistor and a PNP transistor that is connected to the NPN transistor, the likelihood of punch through occurring between two regions of the rectifier is substantially reduced by forming the collector of the NPN transistor between the emitter and collector of the PNP transistor.
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: June 17, 2008
    Assignee: National Semiconductor Corporation
    Inventors: Vladislav Vashchenko, Peter J. Hopper, Ann Concannon, Marcel Ter Beek
  • Patent number: 7384825
    Abstract: Methods of fabricating phase change memory elements include forming an insulating layer on a semiconductor substrate, forming a through hole penetrating the insulating layer, forming a lower electrode in the through hole and forming a recess having a sidewall comprising a portion of the insulating layer by selectively etching a surface of the lower electrode relative to the insulating layer. A phase change memory layer is formed on the lower electrode. The phase change memory layer has a portion confined by the recess and surrounded by the insulating layer. An upper electrode is formed on the phase change memory layer. Phase change memory elements are also provided.
    Type: Grant
    Filed: April 7, 2005
    Date of Patent: June 10, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Joon-sang Park, Chang-ki Hong, Sang-yong Kim
  • Patent number: 7385250
    Abstract: A semiconductor device comprises a semiconductor portion including first semiconductor layers of a first conduction type and second semiconductor layers of a second conduction type alternately arranged on the surface of a semiconductor substrate to form a striped shape. A main region is formed to arrange a main cell in a well. A current sense cell is arranged in a sense well. A sense region is formed having the direction of the length in a direction that intersects the direction of alternate arrangement of the first semiconductor layers and the second semiconductor layers.
    Type: Grant
    Filed: June 20, 2006
    Date of Patent: June 10, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Ichiro Omura, Wataru Saito
  • Publication number: 20080128742
    Abstract: An apparatus for switching microwave signals includes a plurality of input lines, a plurality of output lines; and a plurality of thyristors. Each thyristor has a lower conducting surface that is electrically connected to one of the input lines and an upper conducting surface that is electrically connected to one of the output lines. A selected thyristor transmits a microwave signal between a selected input line and a selected output line in an ON state and blocks the microwave signal between the selected input line and the selected output line in an OFF state.
    Type: Application
    Filed: April 16, 2007
    Publication date: June 5, 2008
    Applicant: TeraBurst Networks, Inc.
    Inventors: Jules D. Levine, Ross LaRue, Stanley Freske, Thomas Holden
  • Publication number: 20080128744
    Abstract: A lateral Insulated Gate Bipolar Transistor (LIGBT) includes a semiconductor substrate and an anode region in the semiconductor substrate. A cathode region of a first conductivity type in the substrate is laterally spaced from the anode region, and a cathode region of a second conductivity type in the substrate is located proximate to and on a side of the cathode region of the first conductivity type opposite from the anode region. A drift region in the semiconductor substrate extends between the anode region and the cathode region of the first conductivity type. An insulated gate is operatively coupled to the cathode region of the first conductivity type and is located on a side of the cathode region of the first conductivity type opposite from the anode region. An insulating spacer overlies the cathode region of the second conductivity type.
    Type: Application
    Filed: November 30, 2006
    Publication date: June 5, 2008
    Inventor: Jun Cai
  • Patent number: 7374974
    Abstract: A thyristor-based semiconductor device includes a thyristor body that has at least one region in the substrate and a thyristor control port in a trenched region of the device substrate. According to an example embodiment of the present invention, the trench is at least partially filled with a dielectric material and a control port adapted to capacitively couple to the at least one thyristor body region in the substrate. In a more specific implementation, the dielectric material includes deposited dielectric material that is adapted to exhibit resistance to voltage-induced stress that thermally-grown dielectric materials generally exhibit. In another implementation, the dielectric material includes thermally-grown dielectric material, and when used in connection with highly-doped material in the trench, grows faster on the highly-doped material than on a sidewall of the trench that faces the at least on thyristor body region in the substrate.
    Type: Grant
    Filed: March 5, 2004
    Date of Patent: May 20, 2008
    Assignee: T-RAM Semiconductor, Inc.
    Inventors: Andrew Horch, Scott Robins
  • Patent number: 7364971
    Abstract: A semiconductor device includes a body region, a drift region having a first part and a second part, and a trench gate electrode. The body region is disposed on the drift region. The first and second parts extend in an extending direction so that the second part is adjacent to the first part. The trench gate electrode penetrates the body region and reaches the drift region so that the trench gate electrode faces the body region and the drift region through an insulation layer. The trench gate electrode extends in a direction crossing with the extending direction of the first and second parts. The first part includes a portion near the trench gate electrode, which has an impurity concentration equal to or lower than that of the body region.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: April 29, 2008
    Assignee: DENSO CORPORATION
    Inventors: Hitoshi Yamaguchi, Mikimasa Suzuki, Yoshiyuki Hattori
  • Publication number: 20080090337
    Abstract: An electrically actuated switch comprises a first electrode, a second electrode, and an active region disposed therebetween. The active region comprises at least one primary active region comprising at least one material that can be doped or undoped to change its electrical conductivity, and a secondary active region comprising at least one material for providing a source/sink of ionic species that act as dopants for the primary active region(s). Methods of operating the switch are also provided.
    Type: Application
    Filed: October 3, 2006
    Publication date: April 17, 2008
    Inventor: R. Stanley Williams
  • Patent number: 7351614
    Abstract: A thyristor-based semiconductor device includes a filled trench separating and electrically insulating adjacent thyristor control ports. According to an example embodiment of the present invention, the filled trench is formed in a substrate adjacent to at least one thyristor body region. The filled trench includes a conductive filler material, an insulative material formed on the conductive filler material and at least two laterally-adjacent thyristor control ports separated from one another by the conductive filler material and the insulative material. One of the control ports is adapted for capacitively coupling to the thyristor body region for controlling current in the thyristor. With this approach, two or more control ports can be formed in a single filled trench and electrically isolated by the conductive filler material/insulative material combination.
    Type: Grant
    Filed: September 20, 2005
    Date of Patent: April 1, 2008
    Assignee: T-Ram Semiconductor, Inc.
    Inventor: Andrew Horch
  • Patent number: 7339203
    Abstract: A thyristor and a method for manufacturing the thyristor that includes a gate region extending from the first major surface into a semiconductor substrate and an anode region extending from the second major surface into the semiconductor substrate. A cathode region extends into a portion of the gate region. Optionally, enhanced doped regions extend into the gate and anode regions. A mesa structure having a height HG is formed from the first major surface and a mesa structure having a height HA is formed from the second major surface. The gate region extends under the first major surface of the semiconductor substrate and it extends vertically into the semiconductor substrate a distance that is greater than height HG. The anode region extends under the second major surface of the semiconductor substrate and it extends vertically into the semiconductor substrate a distance that is greater than height HA.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: March 4, 2008
    Assignee: Semiconductor Components Industries, L.L.C.
    Inventors: Emmanuel Saucedo-Flores, David M. Culbertson
  • Patent number: 7332749
    Abstract: A compact, inexpensive static induction thyristor (SIThy) which is less likely to be broken down at a high voltage rise-up rate during operation and which is used in a high-voltage pulse generator capable of generating a high-voltage short pulse is provided. Thicknesses and impurity concentrations of a base region and a buffer region are determined such that a peak voltage obtained by a peak current at which a punch-through state is brought about does not exceed a breakdown voltage of the SIThy. Such design can achieve an SIThy having a self protecting function of autonomously preventing its breakdown without compromising a turn-on performance in which the peak voltage does not drastically exceed the breakdown voltage of the SIThy even when the peak current increases. Further, a compact SIThy capable of generating a short pulse can be achieved by reducing a gate-channel current-carrying area to a minimum.
    Type: Grant
    Filed: March 7, 2005
    Date of Patent: February 19, 2008
    Assignee: NGK Insulators, Ltd.
    Inventors: Naohiro Shimizu, Takayuki Sekiya
  • Patent number: 7329566
    Abstract: A semiconductor component and method of manufacture, including an insulated gate bipolar transistor (IGBT) (100, 200) that includes a semiconductor substrate (110) having a first conductivity type and buried semiconductor region (115) having a second conductivity type located above the semiconductor substrate. The IGBT further includes a first semiconductor region (120) having the first conductivity type located above the buried semiconductor region, a second semiconductor region (130) having the second conductivity type located above at least a portion of the first semiconductor region, an emitter (150) having the second conductivity type disposed in the second semiconductor region, and a collector (170) having the second conductivity type disposed in the first semiconductor region. A sinker region (140) is provided to electrically tie the buried semiconductor region (115) to the second semiconductor region (130).
    Type: Grant
    Filed: May 31, 2005
    Date of Patent: February 12, 2008
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Vishnu K. Khemka, Amitava Bose, Ronghua Zhu
  • Patent number: 7327541
    Abstract: A two-terminal ESD protection structure formed by an arrangement of five adjacent semiconductor regions (112, 114, 116, 118, and 120) of alternating conductivity type provides protection against both positive and negative ESD voltages. The middle semiconductor region electrically floats. When the two terminals (A and K) of the ESD protection structure are subjected to an ESD voltage, the structure goes into operation by triggering one of its two inherent thyristors (170 and 180) into a snap-back mode that provides a low impedance path through the structure for discharging the ESD current.
    Type: Grant
    Filed: June 22, 2004
    Date of Patent: February 5, 2008
    Assignee: National Semiconductor Corporation
    Inventors: Albert Z. H. Wang, Chen H. Tsay, Peter Deane
  • Patent number: 7316941
    Abstract: In one embodiment, a thyristor device may be formed in series relationship with a MOSFET. Alternating regions of opposite conductivity type may be formed in semiconductor material for defining source, body and drain regions for the MOSFET device, and in series relationship to the thyristor. A primary dopant for a commonly-shared cathode/anode-emitter and drain/source region may have a concentration that is at least one order of magnitude greater than that of any background dopant therein. In a particular embodiment, the thyristor device and the MOSFET in series relationship therewith collectively define part of a thyristor-based memory.
    Type: Grant
    Filed: July 26, 2005
    Date of Patent: January 8, 2008
    Assignee: T-RAM Semiconductor, Inc.
    Inventor: Rajesh Gupta
  • Publication number: 20070269936
    Abstract: The present invention discloses a method of manufacturing a super large wide-angle super high-speed response LCD apparatus by using a photolithographic process for three times. The invention adopts a halftone exposure technology and a nitrogen ion doped technology to form a gate electrode, a common electrode, a pixel electrode and a contact pad, and then uses the halftone exposure technology to form a silicon (Si) island and a contact hole, and a general exposure technology to form a source electrode, a drain electrode and an alignment control electrode. A P-CVD apparatus is provided for forming a passivation layer into a film by using a masking deposition method, or an ink-jet coating method is used to coat a protective layer at a partial area, and a photolithographic process is performed for three times to manufacture a TFT matrix substrate of the super large wide-angle super high-speed response LCD.
    Type: Application
    Filed: May 16, 2007
    Publication date: November 22, 2007
    Inventors: Sakae Tanaka, Toshiyuki Samejima
  • Patent number: 7297558
    Abstract: A W plug (24) is formed and a W oxidation preventing barrier metal film (25) is formed thereon. After that, an SiON film (27) thinner than the W oxidation preventing barrier metal film (25) is formed and Ar sputter etching is performed on the SiON film (27). As a result, the shape of the surface of the SiON film (27) becomes gentler and deep trenches disappear. Next, an SiON film (28) is formed on the whole surface. A voidless W oxidation preventing insulating film (29) is composed of the SiON (28) film and the SiON film (27).
    Type: Grant
    Filed: April 15, 2005
    Date of Patent: November 20, 2007
    Assignee: Fujitsu Limited
    Inventors: Yasutaka Ozaki, Tatsuya Yokota, Nobutaka Ohyagi
  • Patent number: 7285804
    Abstract: An integrated circuit structure includes a semiconductor substrate and a horizontal semiconductor fin on top of the semiconductor substrate. An access transistor gate and a thyristor gate are on top of the semiconductor substrate and in contact with the horizontal semiconductor fin. An access transistor is at least a portion of the horizontal semiconductor fin and the access transistor gate. A thyristor is at least a portion of the horizontal semiconductor fin and the thyristor gate, the access transistor is in contact with the thyristor.
    Type: Grant
    Filed: March 10, 2005
    Date of Patent: October 23, 2007
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Elgin Quek, Jia Zhen Zheng, Pradeep R. Yelehanka, Weining Li
  • Patent number: 7285805
    Abstract: In a low voltage ESD protection device, an extra control electrode is created by not connecting the n+ drain and p+ emitter regions of the LVTSCR, and controlling the control electrode by means of a diode connected NMOS.
    Type: Grant
    Filed: August 14, 2006
    Date of Patent: October 23, 2007
    Assignee: National Semiconductor Corporation
    Inventors: Vladislav Vashchenko, Peter J. Hopper
  • Patent number: 7279367
    Abstract: In a method of processing a semiconductor device, a silicide-blocking layer may be formed over a semiconductor material. After defining the silicide-blocking layer, impurities may be implanted into portions of the semiconductor material as defined by the silicide-blocking layer. After the implant, silicide may be formed in a surface region of the semiconductor material as permitted by the silicide-blocking layer. Regions of the impurity implant may comprise boundaries that are related to the outline of the silicide formed thereover. In a further embodiment, the implant may define a base region to a thyristor device. The implant may be performed with an angle of incidence to extend portions of the base region beneath a peripheral edge of the blocking mask. Next, an anode-emitter region may be formed using an implant of a substantially orthogonal angle of incidence and self-aligned to the mask.
    Type: Grant
    Filed: December 7, 2004
    Date of Patent: October 9, 2007
    Assignee: T-Ram Semiconductor, Inc.
    Inventors: Andrew E. Horch, Fred Hause
  • Patent number: 7271040
    Abstract: A p-type impurity layer is formed in an n-type semiconductor substrate. Since the p-type impurity layer has a low impurity concentration and a sufficiently shallow depth of 1.0 ?m or less, the carrier injection coefficient can be reduced. In the p-type impurity layer, a p-type contact layer of a high impurity concentration is formed for reducing a contact resistance. Since the p-type contact layer has a sufficiently shallow depth of 0.2 ?m or less, it does not influence the carrier injection coefficient. Further, a silicide layer is formed between the p-type contact layer and an electrode such that the contact-layer-side end of the silicide layer corresponds to that portion of the p-type contact layer, at which the concentration profile of the contact layer assumes a peak value. The silicide layer further reduces the contact resistance.
    Type: Grant
    Filed: February 6, 2006
    Date of Patent: September 18, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Masahiro Tanaka
  • Patent number: 7268079
    Abstract: A method for fabricating a semiconductor and at least one second semiconductor zone of a semiconductor component having a semiconductor body having a first semiconductor zone. At least one field zone arranged in an edge region of the semiconductor body is reduced in size by means of an etching method. In another embodiment, the semiconductor body is partially removed in a region outside the first semiconductor zone. At least one second semiconductor zone is then fabricated in the partially removed region.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: September 11, 2007
    Assignee: Infineon Technologies AG
    Inventors: Elmar Falck, Franz-Josef Niedernostheide, Hans-Joachim Schulze, Reiner Barthelmess
  • Patent number: 7262100
    Abstract: A semiconductor device has a MOS gate side surface structure, including a gate electrode filling a trench formed in a semiconductor substrate with an insulator film between the trench and the gate electrode, a gate insulator film covering the surface of the gate electrode, a buffer region of one conductivity type in contact with the semiconductor substrate, a base region of the other conductivity type adjacent to the buffer region on the gate insulator film, and an emitter region of the one conductivity type adjacent to the base region on the side opposite to the buffer region. The semiconductor device and the method of manufacturing thereof can further improve the tradeoff between the on-voltage and the turn-off loss by increasing the amount of electrons injected from a cathode on the surface to increase an amount of carriers on the cathode side in a stable turned-on state of the device.
    Type: Grant
    Filed: September 2, 2005
    Date of Patent: August 28, 2007
    Assignee: Fuji Electric Holdings Co., Ltd.
    Inventors: Setsuko Wakimoto, Manabu Takei, Shinji Fujikake
  • Patent number: 7256434
    Abstract: A heterojunction bipolar transistor with InGaP as the emitter layer and capable of both reliable electrical conduction and thermal stability wherein a GaAs layer is inserted between the InGaP emitter layer and AlGaAs ballast resistance layer, to prevent holes reverse-injected from the base layer from diffusing and reaching the AlGaAs ballast resistance layer.
    Type: Grant
    Filed: December 23, 2004
    Date of Patent: August 14, 2007
    Assignee: Renesas Technology Corp.
    Inventors: Isao Ohbu, Chushiro Kusano, Yasunari Umemoto, Atsushi Kurokawa
  • Patent number: 7238553
    Abstract: When a high-voltage, such as from an ESD pulse, is placed across a silicon controlled rectifier, which includes an NPN transistor and a PNP transistor that is connected to the NPN transistor, the likelihood of punch through occurring between two regions of the rectifier is substantially reduced by forming the emitter of one transistor adjacent to the tails of the sinker down region of the other transistor.
    Type: Grant
    Filed: May 23, 2005
    Date of Patent: July 3, 2007
    Assignee: National Semiconductor Corporation
    Inventors: Vladislav Vashchenko, Andy Strachan, Peter J. Hopper, Philipp Lindorfer
  • Patent number: 7229858
    Abstract: In a method of manufacturing a semiconductor device, a semiconductor wafer is prepared that includes a plurality of IC chips, each having a circuit including a terminal for applying an electrical quantity to the circuit, and a switch electrically connected to the terminal. A wire is formed between adjacent IC chips to provide a parallel or series electrical connection between the terminals of the IC chips via the switch. A test is performed to determine the operability (defective or non-defective) of each of the IC chips. The switch is then operated to provide an electrical connection between the terminals of only those IC chips that were determined to not be defective and the wire. A conduction test is performed on the circuits of the IC chips through the wire.
    Type: Grant
    Filed: March 29, 2005
    Date of Patent: June 12, 2007
    Assignee: Denso Corporation
    Inventor: Yuji Kutsuna
  • Patent number: 7214985
    Abstract: An integrated circuit formed on a semiconductor substrate and configured to accommodate higher voltage devices and low voltage devices therein. In one embodiment, the integrated circuit includes a transistor having a gate located over a channel region recessed into a semiconductor substrate, and a source/drain including a lightly doped region located adjacent the channel region and a heavily doped region located adjacent the lightly doped region. The transistor also includes an oppositely doped well located under and within the channel region. The transistor still further includes a doped region, located between the heavily doped region and the oppositely doped well, having a doping concentration profile less than a doping concentration profile of the heavily doped region. The integrated circuit also includes a driver switch of a driver formed on the semiconductor substrate.
    Type: Grant
    Filed: August 23, 2004
    Date of Patent: May 8, 2007
    Assignee: Enpirion, Inc.
    Inventors: Ashraf W. Lotfi, Jian Tan
  • Patent number: 7205583
    Abstract: A thyristor and a method for manufacturing the thyristor that includes providing a semiconductor substrate that has first and second major surfaces. A first doped region is formed in the semiconductor substrate, wherein the first doped extends from the first major surface into the semiconductor substrate. The first doped region has a vertical boundary that has a notched portion. A second doped region is formed in first doped region, wherein the second doped region extends from the first major surface into the first doped region. A third doped region is formed in the semiconductor substrate, wherein the third doped region extends from the second major surface into the semiconductor substrate.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: April 17, 2007
    Assignee: Semiconductor Components Industries, L.L.C.
    Inventor: Emmanuel Saucedo-Flores