Specified Crystallographic Orientation Patents (Class 438/198)
  • Patent number: 7898003
    Abstract: A semiconductor structure. The structure includes (a) substrate, (b) a first semiconductor region on top of the substrate, wherein the first semiconductor region comprises a first semiconductor material and a second semiconductor material, which is different from the first semiconductor material, and wherein the first semiconductor region has a first crystallographic orientation, and (c) a third semiconductor region on top of the substrate which comprises the first and second semiconductor materials and has a second crystallographic orientation. The structure further includes a second semiconductor region and a fourth semiconductor region on top of the first and the third semiconductor regions respectively. Both second and fourth semiconductor regions comprise the first and second semiconductor materials. The second semiconductor region has the first crystallographic orientation, whereas the fourth semiconductor region has the second crystallographic orientation.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: March 1, 2011
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Huilong Zhu
  • Patent number: 7898012
    Abstract: A capacitor includes a pair of electrodes and a ferroelectric film sandwiched between the electrodes. The electrodes are provided perpendicular to the direction of the polarization axis of the ferroelectric film.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: March 1, 2011
    Assignee: Fujitsu Limited
    Inventor: Kenji Maruyama
  • Patent number: 7897447
    Abstract: A method for reducing defects at an interface between a amorphized, recrystallized cleaved wafer layer and an unamorphized cleaved wafer layer can comprise an anneal and an exposure to hydrochloric acid. The anneal and acid exposure can be performed within an epitaxial reactor chamber to minimize wafer transport.
    Type: Grant
    Filed: February 24, 2009
    Date of Patent: March 1, 2011
    Assignee: Texas Instruments Incorporated
    Inventor: Angelo Pinto
  • Patent number: 7892905
    Abstract: A process for forming a strained channel region for a MOSFET device via formation of adjacent silicon-germanium source/drain regions, has been developed. The process features either blanket deposition of a silicon-germanium layer, or selective growth of a silicon-germanium layer on exposed portions of a source/drain extension region. A laser anneal procedure results in formation of a silicon-germanium source/drain region via consumption of a bottom portion of the silicon-germanium layer and a top portion of the underlying source/drain region. Optimization of the formation of the silicon-germanium source/drain region via laser annealing can be achieved via a pre-amorphization implantation (PAI) procedure applied to exposed portions of the source/drain region prior to deposition of the silicon-germanium layer. Un-reacted top portions of the silicon-germanium layer are selectively removed after the laser anneal procedure.
    Type: Grant
    Filed: August 2, 2005
    Date of Patent: February 22, 2011
    Assignee: Globalfoundries Singapore Pte. Ltd.
    Inventors: Kuang Kian Ong, Kin Leong Pey, King Jien Chui, Ganesh Samudra, Yee Chia Yeo, Yung Fu Chong
  • Publication number: 20110027951
    Abstract: A semiconductor structure in which a planar semiconductor device and a horizontal carbon nanotube transistor have a shared gate and a method of fabricating the same are provided in the present application. The hybrid semiconductor structure includes at least one horizontal carbon nanotube transistor and at least one planar semiconductor device, in which the at least one horizontal carbon nanotube transistor and the at least one planar semiconductor device have a shared gate and the at least one horizontal carbon nanotube transistor is located above a gate of the at least one planar semiconductor device.
    Type: Application
    Filed: October 12, 2010
    Publication date: February 3, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Toshiharu Furukawa, Mark C. Hakey, Steven J. Holmes, David V. Horak, Charles W. Koburger, III, Mark E. Masters
  • Publication number: 20110012176
    Abstract: An electronic device includes a conductive channel defining a crystal structure and having a length and a thickness tC; and a dielectric film of thickness tg in contact with a surface of the channel. Further, the film comprises a material that exerts one of a compressive or a tensile force on the contacted surface of the channel such that electrical mobility of the charge carriers (electrons or holes) along the channel length is increased due to the compressive or tensile force in dependence on alignment of the channel length relative to the crystal structure. Embodiments are given for chips with both hole and electron mobility increased in different transistors, and a method for making such a transistor or chip.
    Type: Application
    Filed: July 20, 2009
    Publication date: January 20, 2011
    Inventors: Dureseti CHIDAMBARRAO, Xiao Hu LIU, Lidija SEKARIC
  • Patent number: 7871876
    Abstract: Embodiments herein present a device, method, etc. for a dual-plane complementary metal oxide semiconductor. The device comprises a fin-type transistor on a bulk silicon substrate. The fin-type transistor comprises outer fin regions and a center semiconductor fin region, wherein the center fin region has a {110} crystalline oriented channel surface. The outer fin regions comprise a strain inducing material that stresses the center semiconductor fin region. The strain inducing material contacts the bulk silicon substrate, wherein the strain inducing material comprises germanium and/or carbon. Further, the fin-type transistor comprises a thick oxide member on a top face thereof. The fin-type transistor also comprises a first transistor on a first crystalline oriented surface, wherein the device further comprises a second transistor on a second crystalline oriented surface that differs from the first crystalline oriented surface.
    Type: Grant
    Filed: January 16, 2008
    Date of Patent: January 18, 2011
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Edward J. Nowak
  • Patent number: 7867880
    Abstract: The present invention provides metal precursors for low temperature deposition. The metal precursors include a metal ring compound including at least one metal as one of a plurality of elements forming a ring. Methods of forming a metal thin layer and manufacturing a phase change memory device including use of the metal precursors is also provided.
    Type: Grant
    Filed: July 2, 2007
    Date of Patent: January 11, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hye-young Park, Sung-lae Cho, Byoung-jae Bae, Jin-il Lee, Ji-eun Lim, Young-lim Park
  • Patent number: 7863117
    Abstract: An apparatus and method for a multilayer silicon over insulator (SOI) device is provided. In the multilayer SOI device, the crystal orientation of at least one active region of a device is different than the active region of at least another device. Where the multilayer SOI device has a first layer including a PMOS device with a silicon active region having a crystal orientation of [100], the second layer may be an NMOS device with a active region having a silicon layer having a crystal orientation of [110]. The second layer is bonded to the first layer. The method and apparatus can be extended to more than two layers thus forming a multilayer SOI device having a different crystal orientation at each layer. The multiple layer SOI device may form circuits of reduced surface area.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: January 4, 2011
    Assignee: International Business Machines Corporation
    Inventors: Mahmoud A. Mousa, Christopher S. Putnam
  • Publication number: 20100327329
    Abstract: According to one embodiment, a semiconductor device includes a transistor, an element isolation insulating film, and a metal silicide layer. The transistor contains a gate electrode and an epitaxial crystal layer. The epitaxial crystal layer is formed on at least one side of the gate electrode in the semiconductor substrate and includes a facet having a different plane direction from a principal plane of the semiconductor substrate. The element isolation insulating film contains a lower layer and an upper layer. A horizontal distance between the upper layer and the gate electrode is smaller than a horizontal distance between the lower layer and the gate electrode. A part of the upper layer contacts with the facet. The metal silicide layer is formed on an upper surface of the epitaxial crystal layer and on a region of the facet above a contact portion of the facet with the upper layer.
    Type: Application
    Filed: June 16, 2010
    Publication date: December 30, 2010
    Inventor: Hiroshi ITOKAWA
  • Patent number: 7855111
    Abstract: Hybrid orientation technology (HOT) substrates for CMOS ICs include (100)-oriented silicon regions for NMOS and (110) regions for PMOS for optimizing carrier mobilities in the respective MOS transistors. Boundary regions between (100) and (110) regions must be sufficiently narrow to support high gate densities and SRAM cells. This invention provides a method of forming a HOT substrate containing regions with two different silicon crystal lattice orientations, with boundary morphology less than 40 nanometers wide. Starting with a direct silicon bonded (DSB) wafer of a (100) substrate wafer and a (110) DBS layer, NMOS regions in the DSB layer are amorphized by a double implant and recrystallized on a (100) orientation by solid phase epitaxy (SPE). Crystal defects during anneal are prevented by a low temperature oxide layer on the top surface of the wafer. An integrated circuit formed with the inventive method is also disclosed.
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: December 21, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Haowen Bu, Shaofeng Yu, Angelo Pinto, Ajith Varghese
  • Patent number: 7851790
    Abstract: The present invention describes a method of and an apparatus for providing a wafer, the wafer including Silicon; etching trenches in the wafer to form Silicon fins; filling Silicon Oxide in the trenches; planarizing the Silicon Oxide; recessing the Silicon Oxide to a first thickness to form exposed Silicon pedestals from the Silicon fins; depositing SiGe over the exposed Silicon pedestal; recessing the Silicon Oxide to a second thickness; undercutting the exposed Silicon pedestals to form necked-in Silicon pedestals; oxidizing thermally and annealing the SiGe; and forming Germanium nanowires.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: December 14, 2010
    Assignee: Intel Corporation
    Inventors: Willy Rachmady, Been-Yih Jin, Ravi Pillarisetty, Robert Chau
  • Patent number: 7842559
    Abstract: A method of fabricating a multi-gate device is disclosed. In one aspect, the method includes providing a substrate having a first semiconductor layer with a first carrier mobility enhancing parameter, an insulating layer, a second semiconductor layer with a second carrier mobility enhancing parameter different from the first carrier mobility enhancing parameter. A first and second dielectric layer are then provided on the substrate. A first trench is formed in a first active region through the dielectric layers, the second semiconductor layer and the buried insulating layer. A first fin is formed in the first trench, protruding above the first dielectric layer and having the first carrier mobility enhancing parameter. A second trench is formed in a second active region through the dielectric layers. A second fin is formed in the second trench, protruding above the first dielectric layer and having the second mobility enhancing parameter.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: November 30, 2010
    Assignee: IMEC
    Inventors: Stefan Jakschik, Nadine Collaert
  • Patent number: 7833854
    Abstract: The present invention provides a method of integrating semiconductor devices such that different types of devices are formed upon a specific crystal orientation of a hybrid substrate that enhances the performance of each type of device. Specifically, the present invention provides a method of integrating semiconductor devices such that pFETs are located on a (110) crystallographic plane, while nFETs are located on a (100) crystallographic plane of a planar hybrid substrate. The method of the present invention also improves the performance of creating SOI-like devices with a combination of a buried insulator and counter-doping layers. The present invention also relates to semiconductor structures that are formed utilizing the method of the present invention.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: November 16, 2010
    Assignee: International Business Machines Corporation
    Inventors: Meikei Ieong, Min Yang
  • Patent number: 7834425
    Abstract: The present invention relates to a hybrid orientation semiconductor-on-insulator (SOI) substrate structure that contains a base semiconductor substrate with one or more first device regions and one or more second device regions located over the base semiconductor substrate. The one or more first device regions include an insulator layer with a first semiconductor device layer located atop. The one or more second device regions include a counter-doped semiconductor layer with a second semiconductor device layer located atop. The first and the second semiconductor device layers have different crystallographic orientations. Preferably, the first (or the second) device regions are n-FET device regions, and the first semiconductor device layer has a crystallographic orientation that enhances electron mobility, while the second (or the first) device regions are p-FET device regions, and the second semiconductor device layer has a different surface crystallographic orientation that enhances hole mobility.
    Type: Grant
    Filed: May 5, 2008
    Date of Patent: November 16, 2010
    Assignee: International Business Machines Corporation
    Inventors: Meikei Ieong, Xinlin Wang, Min Yang
  • Publication number: 20100273300
    Abstract: This disclosure concerns a semiconductor device comprising a convex-shaped semiconductor layer formed on a semiconductor substrate; an insulation film formed on the semiconductor substrate, the insulation film having a film thickness to the extent that a lower part of the semiconductor layer is buried; a gate electrode formed on a set of both opposed side faces via a gate insulation film; and a source region and a drain region formed on a side face side on which the gate electrode is not formed in the semiconductor layer, wherein the semiconductor layer is formed so as to dispose surfaces of a peripheral part excepting a central part on an outer side than surfaces of the central part covered by at least the gate electrode.
    Type: Application
    Filed: July 1, 2010
    Publication date: October 28, 2010
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Kiyotaka Miyano
  • Patent number: 7821044
    Abstract: Embodiments are an improved transistor structure and the method of fabricating the structure. In particular, a wet etch of an embodiment forms source and drain regions with an improved tip shape to improve the performance of the transistor by improving control of short channel effects, increasing the saturation current, improving control of the metallurgical gate length, increasing carrier mobility, and decreasing contact resistance at the interface between the source and drain and the silicide.
    Type: Grant
    Filed: January 15, 2008
    Date of Patent: October 26, 2010
    Assignee: Intel Corporation
    Inventors: Mark T. Bohr, Steven J. Keating, Thomas A. Letson, Anand S. Murthy, Donald W. O'Neill, Willy Rachmady
  • Patent number: 7811874
    Abstract: The object is to provide a method for the fabrication of a semiconductor device having undergone an anneal treatment for the purpose of forming such ohmic contact as enables decrease of ohmic contact resistance and being provided on the (000-1) plane of silicon carbide with an insulating film and provide the semiconductor device. The method for the fabrication of a silicon carbide semiconductor device includes the steps of performing thermal oxidation on the (000-1) plane of a silicon carbide semiconductor in a gas containing at least oxygen and moisture, thereby forming an insulating film in such a manner as to contact the (000-1) plane of the silicon carbide semiconductor, removing part of the insulating film, thereby forming an opening part therein, depositing contact metal on at least part of the opening part, and performing a heat treatment, thereby forming a reaction layer of the contact metal and silicon carbide, wherein the heat treatment is implemented in a mixed gas of an inert gas and hydrogen.
    Type: Grant
    Filed: January 16, 2007
    Date of Patent: October 12, 2010
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Shinsuke Harada, Makoto Katou, Kenji Fukuda, Tsutomu Yatsuo
  • Patent number: 7795682
    Abstract: The disclosure concerns a method of manufacturing a semiconductor device including forming a plurality of fins made of a semiconductor material on an insulating layer; forming a gate insulating film on side surfaces of the plurality of fins; and forming a gate electrode on the gate insulating film in such a manner that a compressive stress is applied to a side surface of a first fin which is used in an NMOSFET among the plurality of fins in a direction perpendicular to the side surface and a tensile stress is applied to a side surface of a second fin which is used in a PMOSFET among the plurality of fins in a direction perpendicular to the side surface.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: September 14, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Akio Kaneko, Atsushi Yagishita, Satoshi Inaba
  • Patent number: 7790528
    Abstract: A semiconductor process and apparatus provide a planarized hybrid substrate (15) by thermally oxidizing SOI sidewalls (90) in a trench opening (93) to form SOI sidewall oxide spacers (94) which are trimmed while etching through a buried oxide layer (80) to expose the underlying bulk substrate (70) for subsequent epitaxial growth of an epitaxial semiconductor layer (96).
    Type: Grant
    Filed: May 1, 2007
    Date of Patent: September 7, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Gregory S. Spencer, John M. Grant, Gauri V. Karve
  • Patent number: 7790539
    Abstract: A microelectronic device and a method for producing the device can overcome the disadvantages of known electronic devices composed of carbon molecules, and can deliver performance superior to the known devices. An insulated-gate field-effect transistor includes a multi-walled carbon nanotube (10) having an outer semiconductive carbon nanotube layer (1) and an inner metallic carbon nanotube layer (2) that is partially covered by the outer semiconductive carbon nanotube layer (1). A metal source electrode (3) and a metal drain electrode (5) are brought into contact with both ends of the semiconductive carbon nanotube layer (1) while a metal gate electrode (4) is brought into contact with the metallic carbon nanotube layer (2). The space between the semiconductive carbon nanotube layer (1) and the metallic carbon nanotube layer (2) is used as a gate insulating layer.
    Type: Grant
    Filed: November 20, 2008
    Date of Patent: September 7, 2010
    Assignee: Sony Corporation
    Inventors: Ryuichiro Maruyama, Masafumi Ata, Masashi Shiraishi
  • Publication number: 20100216286
    Abstract: A method for reducing defects at an interface between a amorphized, recrystallized cleaved wafer layer and an unamorphized cleaved wafer layer can comprise an anneal and an exposure to hydrochloric acid. The anneal and acid exposure can be performed within an epitaxial reactor chamber to minimize wafer transport.
    Type: Application
    Filed: February 24, 2009
    Publication date: August 26, 2010
    Inventor: Angelo Pinto
  • Publication number: 20100207172
    Abstract: In contrast to a conventional planar CMOS technique in design and fabrication for a field-effect transistor (FET), the present invention provides an SGT CMOS device formed on a conventional substrate using various crystal planes in association with a channel type and a pillar shape of an FET, without a need for a complicated device fabrication process. Further, differently from a design technique of changing a surface orientation in each planar FET, the present invention is designed to change a surface orientation in each SGT to achieve improvement in carrier mobility. Thus, a plurality of SGTs having various crystal planes can be formed on a common substrate to achieve a plurality of different carrier mobilities so as to obtain desired performance.
    Type: Application
    Filed: February 12, 2010
    Publication date: August 19, 2010
    Inventors: Fujio Masuoka, Keon Jae Lee
  • Patent number: 7776674
    Abstract: A method for forming a semiconductor structure. The method includes providing a semiconductor structure which includes (a) substrate, (b) a first semiconductor region on top of the substrate, wherein the first semiconductor region comprises a first semiconductor material and a second semiconductor material, which is different from the first semiconductor material, and wherein the first semiconductor region has a first crystallographic orientation, and (c) a third semiconductor region on top of the substrate which comprises the first and second semiconductor materials and has a second crystallographic orientation. The method further includes forming a second semiconductor region and a fourth semiconductor region on top of the first and the third semiconductor regions respectively. Both second and fourth semiconductor regions comprise the first and second semiconductor materials.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: August 17, 2010
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Huilong Zhu
  • Publication number: 20100203689
    Abstract: A drive strength tunable FinFET, a method of drive strength tuning a FinFET, a drive strength ratio tuned FinFET circuit and a method of drive strength tuning a FinFET, wherein the FinFET has either at least one perpendicular and at least one angled fin or has at least one double-gated fin and one split-gated fin.
    Type: Application
    Filed: April 19, 2010
    Publication date: August 12, 2010
    Applicant: International Business Machines Corporation
    Inventors: Kerry Bernstein, Edward J. Nowak, BethAnn Rainey
  • Patent number: 7772059
    Abstract: A method of fabricating graphene transistors, comprising providing an SOI substrate, performing an optional threshold implant on the SOI substrate, forming an upper silicon layer mesa island, carbonizing the silicon layer into SiC utilizing a gaseous source, converting the SiC into graphene, forming source/drain regions on opposite longitudinal ends of the graphene, forming gate oxide between the source/drain regions on the graphene, forming gate material over the gate oxide, creating a transistor edge, depositing dielectric onto the transistor edge and performing back end processing.
    Type: Grant
    Filed: January 16, 2008
    Date of Patent: August 10, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Ashesh Parikh, Andrew Marshall
  • Publication number: 20100197088
    Abstract: A method for manufacturing a semiconductor device, includes: forming a first-conductivity-type semiconductor region on a semiconductor layer; forming a mask member on the first-conductivity-type semiconductor region; selectively forming an opening in the mask member; etching the first-conductivity-type semiconductor region exposed to the opening to form a trench having a larger diameter than the opening and an eaves-like mask projected above the trench and made of the mask member; and forming a second-conductivity-type semiconductor region in the trench below the eaves-like mask by epitaxial growth to form a structure section in which the first-conductivity-type semiconductor region and the second-conductivity-type semiconductor region are alternately repeated in a direction generally parallel to a major surface of the semiconductor layer.
    Type: Application
    Filed: January 21, 2010
    Publication date: August 5, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Tomoyuki SAKUMA, Shingo SATO
  • Publication number: 20100197118
    Abstract: A semiconductor structure includes an epitaxial surface semiconductor layer having a first dopant polarity and a first crystallographic orientation, and a laterally adjacent semiconductor-on-insulator surface semiconductor layer having a different second dopant polarity and different second crystallographic orientation. The epitaxial surface semiconductor layer has a first edge that has a defect and an adjoining second edge absent a defect. Located within the epitaxial surface semiconductor layer is a first device having a first gate perpendicular to the first edge and a second device having a second gate perpendicular to the second edge. The first device may include a performance sensitive logic device and the second device may include a yield sensitive memory device.
    Type: Application
    Filed: April 9, 2010
    Publication date: August 5, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Shreesh Narasimha, Paul David Agnello, Xiaomeng Chen, Judson R. Holt, Mukesh Vijay Khare, Byeong Y. Kim, Devendra K. Sadana
  • Patent number: 7767510
    Abstract: There is provided a method of manufacturing a semiconductor device. In one aspect, the method includes providing a strained silicon layer having a crystal orientation located over a semiconductor substrate having a different crystal orientation. A mask is placed over a portion of the strained silicon layer to leave an exposed portion of the strained silicon layer. The exposed portion of the strained silicon layer is amorphized and re-crystallized to a crystal structure having an orientation the same as the semiconductor substrate.
    Type: Grant
    Filed: June 11, 2007
    Date of Patent: August 3, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Rick L. Wise, Angelo Pinto
  • Patent number: 7763505
    Abstract: By appropriately adapting the length direction and width directions of transistor devices with respect to the crystallographic orientation of the semiconductor material such that identical vertical and horizontal growth planes upon re-crystallizing amorphized portions are obtained, the number of corresponding stacking faults may be significantly reduced. Hence, transistor elements with extremely shallow PN junctions may be formed on the basis of pre-amorphization implantation processes while substantially avoiding any undue side effects typically obtained in conventional techniques due to stacking faults.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: July 27, 2010
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Andreas Gehring, Markus Lenski, Jan Hoentschel, Thorsten Kammler
  • Patent number: 7755172
    Abstract: A method for growing III-V nitride films having an N-face or M-plane using an ammonothermal growth technique. The method comprises using an autoclave, heating the autoclave, and introducing ammonia into the autoclave to produce smooth N-face or M-plane Gallium Nitride films and bulk GaN.
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: July 13, 2010
    Assignees: The Regents of the University of California, Japan Science and Technology Agency
    Inventors: Tadao Hashimoto, Hitoshi Sato, Shuji Nakamura
  • Patent number: 7749829
    Abstract: A semiconductor process and apparatus provides a planarized hybrid substrate (16) by removing a nitride mask layer (96) and using an oxide polish stop layer (92) when an epitaxial semiconductor layer (99) is being polished for DSO and BOS integrations. To this end, an initial SOI wafer semiconductor stack (11) is formed which includes one or more oxide polish stop layers (91, 92) formed between the SOI semiconductor layer (90) and a nitride mask layer (93). The oxide polish stop layer (92) may be formed by depositing a densified LPCVD layer of TEOS to a thickness of approximately 100-250 Angstroms.
    Type: Grant
    Filed: May 1, 2007
    Date of Patent: July 6, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Gauri V. Karve, Debby Eades, Gregory S. Spencer, Ted R. White
  • Patent number: 7745276
    Abstract: A method for manufacturing a SiC semiconductor device includes: preparing a SiC substrate having a (11-20)-orientation surface; forming a drift layer on the substrate; forming a base region in the drift layer; forming a first conductivity type region in the base region; forming a channel region on the base region to couple between the drift layer and the first conductivity type region; forming a gate insulating film on the channel region; forming a gate electrode on the gate insulating film; forming a first electrode to electrically connect to the first conductivity type region; and forming a second electrode on a backside of the substrate. The device controls current between the first and second electrodes by controlling the channel region. The forming the base region includes epitaxially forming a lower part of the base region on the drift layer.
    Type: Grant
    Filed: February 5, 2008
    Date of Patent: June 29, 2010
    Assignee: Denso Corporation
    Inventors: Eiichi Okuno, Hiroki Nakamura, Naohiro Suzuki
  • Patent number: 7745888
    Abstract: A semiconductor device includes a substrate, a p-channel MIS transistor formed on an n-type well on the substrate, having a first gate dielectric and a first gate electrode formed thereon and formed of a Ta—C alloy wherein a crystal orientation ratio of a TaC (111) face in a film thickness direction [TaC (111) face/{TaC (111) face+TaC (200) face}] is 80% or more, and an n-channel MIS transistor formed on a p-type well on the substrate, having a second gate dielectric and a second gate electrode formed thereon and formed of a Ta—C alloy wherein a crystal orientation ratio of a TaC (111) face in a film thickness direction [TaC (111) face/{TaC (111) face+TaC (200) face}] is 60% or less.
    Type: Grant
    Filed: September 10, 2008
    Date of Patent: June 29, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masato Koyama, Reika Ichihara, Yoshinori Tsuchiya, Yuuichi Kamimuta, Akira Nishiyama
  • Patent number: 7741192
    Abstract: A thin semiconductor wafer, on which a top surface structure and a bottom surface structure that form a semiconductor chip are formed, is affixed to a supporting substrate by a double-sided adhesive tape. Then, on the thin semiconductor wafer, a trench to become a scribing line is formed by wet anisotropic etching with a crystal face exposed so as to form a side wall of the trench. On the side wall of the trench with the crystal face thus exposed, an isolation layer for holding a reverse breakdown voltage is formed by ion implantation and low temperature annealing or laser annealing so as to be extended to the top surface side while being in contact with a p collector region as a bottom surface diffused layer. Then, laser dicing is carried out to neatly dice a collector electrode, formed on the p collector region, together with the p collector region, without presenting any excessive portions and any insufficient portions under the isolation layer.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: June 22, 2010
    Assignee: Fuji Electric Systems Co., Ltd.
    Inventors: Kazuo Shimoyama, Manabu Takei, Haruo Nakazawa
  • Publication number: 20100148223
    Abstract: A semiconductor device includes an insulated-gate field-effect transistor which is disposed on a semiconductor substrate having an element formation plane in a (110) plane direction, and which has a channel length direction in a <?110> direction, and a first element isolation insulation film which is buried in a trench in an element isolation region of the semiconductor substrate and has a positive expansion coefficient, the first element isolation insulation film applying a compressive stress by operation heat to the insulated-gate field-effect transistor in the channel length direction.
    Type: Application
    Filed: December 15, 2009
    Publication date: June 17, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Zhengwu Jin
  • Publication number: 20100140716
    Abstract: The present disclosure provides an integrated circuit. The integrated circuit includes a semiconductor substrate having a first region and a second region; a first gate stack of an n-type field-effect transistor (FET) in the first region; and a second gate stack of a p-type FET in the second region. The first gate stack includes a high k dielectric layer on the semiconductor substrate, a first crystalline metal layer in a first orientation on the high k dielectric layer, and a conductive material layer on the first crystalline metal layer. The second gate stack includes the high k dielectric layer on the semiconductor substrate, a second crystalline metal layer in a second orientation on the high k dielectric layer, and the conductive material layer on the second crystalline metal layer.
    Type: Application
    Filed: December 10, 2008
    Publication date: June 10, 2010
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Simon Su-Horng Lin, Chi-Ming Yang, Chyi Shyuan Chern, Chin-Hsiang Lin
  • Patent number: 7727340
    Abstract: In one aspect the present invention provides a method for manufacturing a silicon carbide semiconductor device. A layer of silicon dioxide is formed on a silicon carbide substrate and nitrogen is incorporated at the silicon dioxide/silicon carbide interface. In one embodiment, nitrogen is incorporated by annealing the semiconductor device in nitric oxide or nitrous oxide. In another embodiment, nitrogen is incorporated by annealing the semiconductor device in ammonia.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: June 1, 2010
    Assignees: Vanderbilt University, Auburn University
    Inventors: Gilyong Y. Chung, Chin-Che Tin, John R. Williams, Kyle McDonald, Massimiliano De Ventra, Robert A. Weller, Socrates T. Pantelides, Leonard C. Feldman
  • Publication number: 20100112763
    Abstract: A semiconductor device includes a transistor. The transistor includes a substrate having an inclined surface, a first upper surface extending from a lower portion of the inclined surface, and a second upper surface extending from an upper end of the inclined surface. A gate stack structure is formed on the inclined surface and includes a gate electrode. A first impurity region formed on one of the first and second upper surfaces contacts the gate stack structure. A second impurity region formed on the second upper surface contacts the gate stack structure. A channel between the first and second impurity regions is formed along the inclined surface in a crystalline direction.
    Type: Application
    Filed: January 7, 2010
    Publication date: May 6, 2010
    Inventors: Xiaoxin Zhang, Wenxu Xianyu, Takashi Noguchi, Hans S. Cho, Huaxiang Yin
  • Patent number: 7704809
    Abstract: A silicon-on-insulator chip includes an insulator layer, typically formed over a substrate. A first silicon island with a surface of a first crystal orientation overlies the insulator layer and a second silicon island with a surface of a second crystal orientation also overlies the insulator layer. In one embodiment, the silicon-on-insulator chip also includes a first transistor of a first conduction type formed on the first silicon island, and a second transistor of a second conduction type formed on the second silicon island. For example, the first crystal orientation can be (110) while the first transistor is a p-channel transistor, and the second crystal orientation can be (100) while the second transistor is an n-channel transistor.
    Type: Grant
    Filed: March 18, 2008
    Date of Patent: April 27, 2010
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yee-Chia Yeo, Fu-Liang Yang
  • Patent number: 7704852
    Abstract: The present invention provides an improved amorphization/templated recrystallization (ATR) method for fabricating low-defect-density hybrid orientation substrates. ATR methods for hybrid orientation substrate fabrication generally start with a Si layer having a first orientation bonded to a second Si layer or substrate having a second orientation. Selected regions of the first Si layer are amorphized and then recrystallized into the orientation of the second Si layer by using the second Si layer as a template. The process flow of the present invention solves two major difficulties not disclosed by prior art ATR methods: the creation of “corner defects” at the edges of amorphized Si regions bounded by trenches, and undesired orientation changes during a high temperature post-recrystallization defect-removal annealing of non-ATR'd regions not bounded by trenches.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: April 27, 2010
    Assignee: International Business Machines Corporation
    Inventors: Keith E. Fogel, Katherine L. Saenger, Chun-Yung Sung, Haizhou Yin
  • Patent number: 7701017
    Abstract: A MOS semiconductor device includes a substrate having a first region with a Si(110) surface and a second region with a Si(100) surface, a p-channel MOSFET formed in the first region, and an n-channel MOSFET formed in the second region. The p-channel MOSFET including a first silicide layer formed on source/drain regions, and containing N atoms at an areal density of 8.5×1013 to 8.5×1014 cm?2, and F atoms at an areal density of less than 5.0×1012 cm?2. The n-channel MOSFET including a second silicide layer formed on a source/drain regions, and containing F atoms at an areal density of not less than 5.0×1013 cm?2.
    Type: Grant
    Filed: February 13, 2007
    Date of Patent: April 20, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Masakatsu Tsuchiaki
  • Patent number: 7691482
    Abstract: The present invention provides a method of forming a substantially planar SOI substrate having multiple crystallographic orientations including the steps of providing a multiple orientation surface atop a single orientation layer, the multiple orientation surface comprising a first device region contacting and having a same crystal orientation as the single orientation layer, and a second device region separated from the first device region and the single orientation layer by an insulating material, wherein the first device region and the second device region have different crystal orientations; producing a damaged interface in the single orientation layer; bonding a wafer to the multiple orientation surface; separating the single orientation layer at the damaged interface; wherein a damaged surface of said single orientation layer remains; and planarizing the damaged surface until a surface of the first device region is substantially coplanar to a surface of the second device region.
    Type: Grant
    Filed: June 23, 2006
    Date of Patent: April 6, 2010
    Assignee: International Business Machines Corporation
    Inventors: Huilong Zhu, Bruce B. Doris, Meikei Ieong, Philip J. Oldiges, Min Yang
  • Patent number: 7691688
    Abstract: Methods of forming a strained Si-containing hybrid substrate are provided as well as the strained Si-containing hybrid substrate formed by the methods. In the methods of the present invention, a strained Si layer is formed overlying a regrown semiconductor material, a second semiconducting layer, or both. In accordance with the present invention, the strained Si layer has the same crystallographic orientation as either the regrown semiconductor layer or the second semiconducting layer. The methods provide a hybrid substrate in which at least one of the device layers includes strained Si.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: April 6, 2010
    Assignee: International Business Machines Corporation
    Inventors: Kevin K. Chan, Meikei Ieong, Alexander Reznicek, Devendra K. Sadana, Leathen Shi, Min Yang
  • Publication number: 20100078687
    Abstract: A semiconductor process and apparatus includes forming <100> channel orientation CMOS transistors (24, 34) with enhanced hole mobility in the NMOS channel region and reduced channel defectivity in the PMOS region by depositing a first tensile etch stop layer (51) over the PMOS and NMOS gate structures, etching the tensile etch stop layer (51) to form tensile sidewall spacers (62) on the exposed gate sidewalls, and then depositing a second hydrogen rich compressive or neutral etch stop layer (72) over the NMOS and PMOS gate structures (26, 36) and the tensile sidewall spacers (62). In other embodiments, a first hydrogen-rich etch stop layer (81) is deposited and etched to form sidewall spacers (92) on the exposed gate sidewalls, and then a second tensile etch stop layer (94) is deposited over the NMOS and PMOS gate structures (26, 36) and the sidewall spacers (92).
    Type: Application
    Filed: September 30, 2008
    Publication date: April 1, 2010
    Inventors: Da Zhang, Voon-Yew Thean, Christopher V. Baiocco, Jie Chen, Weipeng Li, Young Way Teh, Jin Wallner
  • Patent number: 7687357
    Abstract: A method for fabricating a transistor, the method includes forming a gate over a substrate to form a first resultant structure, forming a gate spacer at first and second sidewalls of the gate, etching portions of the substrate proximate to the gate spacer to form a recess in a source/drain region of the substrate, forming a first epitaxial layer including germanium to fill the recess, and performing a high temperature oxidation process to form a second epitaxial layer including germanium over an interfacial layer between the substrate and the first epitaxial layer, the second epitaxial layer having a germanium concentration that is higher than a germanium concentration of the first epitaxial SiGe layer, thereby forming a second resultant structure.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: March 30, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventors: Yong-Soo Kim, Hong-Seon Yang, Seung-Ho Pyi, Tae-Hang Ahn
  • Patent number: 7687340
    Abstract: A semiconductor structure fabrication method. First, a semiconductor structure is provided including (a) a semiconductor block having a first semiconductor material doped with a first doping polarity and having a first lattice orientation, and (b) a semiconductor region on the semiconductor block, wherein the semiconductor region is physically isolated from the semiconductor block by a dielectric region, and wherein the semiconductor region includes a second semiconductor material (i) doped with a second doping polarity opposite to the first doping polarity and (ii) having a second lattice orientation different from the first lattice orientation. Next, first and second gate stacks are formed on the semiconductor block and the semiconductor region, respectively. Then, (i) first and second S/D regions are simultaneously formed in the semiconductor block on opposing sides of the first gate stack and (ii) first and second discharge prevention semiconductor regions in the semiconductor block.
    Type: Grant
    Filed: September 4, 2007
    Date of Patent: March 30, 2010
    Assignee: International Business Machines Corporation
    Inventors: James William Adkisson, Jeffrey Peter Gambino, Alain Loiseau, Kirk David Peterson
  • Patent number: 7682932
    Abstract: A method for fabricating a hybrid orientation substrate includes steps of providing a direct silicon bonding (DSB) wafer having a first substrate with (100) crystalline orientation and a second substrate with (110) crystalline orientation directly bonded on the first substrate, forming and patterning a first blocking layer on the second substrate to define a first region not covered by the first blocking layer and a second region covered by the first blocking layer, performing an amorphization process to transform the first region of the second substrate into an amorphized region, and performing an annealing process to recrystallize the amorphized region into the orientation of the first substrate and to make the second region stressed by the first blocking layer.
    Type: Grant
    Filed: May 26, 2008
    Date of Patent: March 23, 2010
    Assignee: United Microelectronics Corp.
    Inventors: Chien-Ting Lin, Che-Hua Hsu, Yao-Tsung Huang, Guang-Hwa Ma
  • Patent number: 7674667
    Abstract: A CMOS structure includes a first device located using a first active region within a semiconductor substrate, where the first active region is planar and has a first crystallographic orientation. The CMOS structure also includes a second device that is located using a second active region within the semiconductor substrate, where the second active region is topographic and has a second crystallographic orientation absent the first crystallographic orientation. The first crystallographic orientation and the second crystallographic orientation allow for performance optimizations of the first device and the second device, typically with respect to charge carrier mobility. The topographic second active region may also have a single thickness. The CMOS structure may be fabricated using a crystallographically specific etchant for forming the topographic second active region.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: March 9, 2010
    Assignee: International Business Machines Corporation
    Inventor: Huilong Zhu
  • Patent number: 7674668
    Abstract: After a gate electrode is formed on a main surface of a semiconductor substrate, low concentration layers are formed on the main surface of the semiconductor substrate by implanting impurities therein, with using the gate electrode as a mask. Thereafter, first sidewalls and second sidewalls are formed on the both side surfaces of the gate electrode. Subsequently, nitrogen or the like is ion-implanted into the semiconductor substrate, with using the first sidewalls, the second sidewalls and the gate electrode as a mask, thereby forming a crystallization-control region (CCR) on the main surface of the semiconductor substrate. Then, after the second sidewalls are removed, high concentration layers for a source and a drain are formed on the main surface of the semiconductor substrate.
    Type: Grant
    Filed: December 26, 2007
    Date of Patent: March 9, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Norio Ishitsuka, Nobuyoshi Hattori, Tomio Iwasaki